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Abstract

Although many spectal purpose inspection systems
have been developed, general purpose systems utiliz-
ing CAD models of the parts are still in the research
stage. While it is easy to define ad hoc algorithms for
inspection, il 1s much more difficult to justify the al-
gorithms with solid theory. In this paper we describe
a CAD-model-based machine vision system for dimen-
stonal inspection of machined parts, with emphasis on
the theory behind the system. The original contribu-
tions of our work are: 1) the use of precise defini-
tions of geometric tolerances suitable for use in image
processing, 2) the development of measurement algo-
rithms corresponding directly to these definitions, 3)
the derivation of the uncertainties in the measurement
tasks, and {) the use of this uncertainty information
in the decision-making process. Qur experimental re-
sults have verified the uncertainty dertvalions stalis-
tically, proved that the error probabilities obtained by
propagating uncertainties are lower than those obtain-
able without uncertainly propagation, and demonstrat-
ed that the inspection system responds in a predictable
manner when applied to deformed objects.

1 Introduction

CAD-based vision is the automatic production of
vision procedures for a specific task, given CAD mod-
els of the objects involved in the task and knowledge of
the environment in which the task is to be performed.
This approach is much more cost-effective than the
older approach of designing specialized techniques for
each new part and has been advocated by a number
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of people (e.g. [10], (8], [2]) for use in machine vi-
sion systems. Most of the CAD-based vision systems
have been for part recognition and pose estimation,
not for inspection, but a few inspection systems ([7),
(15]) have been built.

There are two major problems involved in automat-
ing the inspection process. The first problem is tech-
nique. The techniques to be used in the inspection sys-
tem must satisfy a set of standards. But the standards
for conventional inspection tasks were not designed for
machine vision and are, in most cases, unsuitable. For
example, consider the task of determining if a planar
surface is flat enough. There are several methods used
in industry to do this. One method is to dye (with ink)
the irregular surface and measure the area of the dyed
portion imprinted on a known planar surface. A sec-
ond method is to use a mechanical stylus. The stylus
is run all over the irregular surface and the highest and
lowest points are measured. This gives an idea of the
irregularity of the surface. These procedures are not
immediately adaptable to a machine vision system,
because the criteria for success are not standardized.
The second problem is interpretation of results. The
error of the final measurement depends on the error
at each step of the processing. Most machine vision
work has not seriously considered the propagation of
error.

While it is easy to define ad hoc algorithms for in-
spection, it is much more difficult to justify the algo-
rithms with solid theory. Our goal in this work is to
develop suitable definitions for a visual inspection sys-
tem, to develop the appropriate theory for analyzing
the errror of our measurements, and to design and im-
plement an experimental CAD-based vision system for
automated inspection of machined parts that employs
the definitions and theory we have developed. In this



paper, we describe the experimental system we are
building as a whole, with emphasis on the theory be-
hind the measurements and the experimental results
so far. In Section 2, we briefly describe the related
literature. Section 3 gives the appropriate definitions
for tolerances and for the measurement tasks that use
these tolerances. Section 4 derives the formulas for un-
certainty propagation for use in decision making. Sec-
tion 5 describes the design of our experimental system.
Section 6 discusses the image processing required for
the straightiness-of-edge task, and Section 7 describes
the experiments and results.

2 Related Literature

Though there is an abundance of literature in the
area of automatic visual inspection for specific do-
mains (c.g: solder joints, printed circuit boards, light
bulb filaments, ctc.), literature on inspection systems
(specifically CAD-based) for general machine parts is
hard to come by.

Requicha [14] was the first to lay down a formal
theory of tolerancing. We draw on the ideas in this
seminal work and the guidelines prescribed in the AN-
Slstandards (1] to set up formal definitions of the vari-
ous tolerances. Park el al[12] discussed issues in devel-
oping an automated inspection system with emphasis
on achieving an integrated CAD-Vision model, not on
the tolerance theory or the measurement tasks. Other
inspection systems have been described by [15] and
[5]. Although a number of coordinate measurement
machine (CMM) vendors claim to have solved the in-
spection problem, they work by fitting surfaces and
curves to image data and inspecting the parameters
of the fit. This, however, 15 not what the industrial
standards prescribe.

3 Measurement Definitions

We provide several different types of measurements
in our system: 1) the straightness of an edge, 2) the
angle between two edges, 3) the position of a corner,
4) the position of circular hole or slot, 5) the size of a
circular hole or slot, and 6) the form of a circular hole
or slot.

In order to implement these tasks, we must first
define them in a way that naturally leads to compu-
tational vision algorithms. Since machine vision relies
heavily on extracting features from the image data,
we will employ the methodology of geometric toleranc-
ing, which is widely used in industry, is well-defined
in terms of ANSI standards, and makes explicit use of
features.
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The major problem with feature-based measure-
ment is that if the features are imperfect, the mea-
surement are not well-defined. For instance, the dis-
tance between two jagged edges is not well-defined.
The angle between two broken line segments is not
well-defined. The coordinates of a vertex with respect
to a coordinate system formed by two imperfect lines
are not well-defined. Geometric tolerancing solves this
problem with the introduction of the simulated da-
tum feature, a perfectly-formed geometric entity that
is associated with an imperfectly shaped, manufac-
tured object. Thus, our inspection system associates
with imperfect, real features, corresponding perfectly-
formed features so that measurements can be made.
We consider five geometric features in our inspection
tasks. They are: straight lines, circles with the ma-
terial side external to the circle, circles with the ma-
terial side internal to the circle, rectangles with the
material side external Lo the rectangle, and rectangles
with the material side internal to the rectangle, These
correspond to the two-dimensional counterparts of a
planar feature, a cylindrical slot, a cylindrical part, a
rectangular slot, and a rectangular part, respectively.
In order to implement our measurement tasks, datum
features have to be associated with these five geomet-
ric features.

In the remainder of this section, we define the simu-
lated datum features for the important object features
that are required for our inspection tasks and then
specily the measurements that are required for a few
of the tasks.

3.1 Datum Features - Definitions and
Construction

Planar Features Planar features in 3D are the pla-
nar surfaces of the object. Because we do not have 3D
sensors, the only planar features we inspect are edges.
The simulated datum feature for a straight edge is a
straight line positioned so as to minimize the integral
sum of distances between points on the edge to the
line. A digital edge is just a sequence of N points.
This gives us the problem of how to construct a sup-
porting line L to the N points such that the sum of
perpendicular distances from the points to the line is
a minimum. We have proven that the supporting line
must pass through an edge of the convex hull of the
N points [11]. So our procedure is to compute the
sum of the perpendicular distances to the given points
for all the edges of the convex hull of the points and
choose the edge yielding the lowest sum of distances.
This edge is the required straight line datum. Figure
1 illustrates the construction of the simulated datum



feature.

Cylindrical Parts and Slots The 2D profile of a
cylindrical part is a circle with the material side in-
ternal to the circle. The associated simulated datum
is the smallest circumscribing circle. The 2D counter-
part of a cylindrical slot is a circle with the material
side external to the circle. The associated simulated
datum is the largest inscribing circle. Constructing
the smallest circumscribing circle and the largest in-
scribing circle for a set of 2D data points is a well-
defined computational geometry problem [13].

3.2 Tolerance Definitions and Measure-

ments

Our experimental work has so far been with straight
edges. We have worked with three different tasks:
measuring the straightness of an edge, measuring
the angle between two edges, and determining corner
point position. We define these straight edge measure-
ment tasks as follows.

Straightness of an Edge

An edge with a straightness tolerance T, conforms to
the specification if it can be enclosed completely by
two parallel lines at a separation less than 7,. We
check for the straightness in the following way. The
required simulated datum feature (in this case, a s-
traight line) is first constructed. This datum line is
then translated until all the edge points are on or be-
tween the simulated datum and this translated ver-
sion. If the distance between these two parallel lines
is less than 7}, the edge conforms to the straightness
specification. This is illustrated in Figure 1.

Angle Between Two Edges

Let the ideal angle between two edges be ;4 and let
the angular tolerance be specified by 7,. The two
edges satisfy the angular tolerance, if the angle be-
tween the two associated simulated datum features
is Ogs, satisfying O;g — T5/2 < Os < Oia + Ta/2.
We construct the simulated datum features associat-
ed with the two edges as outlined before. Then we
measure the angle between the two resultant straight
lines. The measured angle has to lie within the inter-
val [0jq — Ty /2,054 + T4 /2] for the edges to conform to
the angularity tolerance.

4 Uncertainty Propagation in Mea-

surements

A real image is seldom absolutely noise free. Noise
in the image leads to uncertainties in the attributes
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Figure 1: Line segments (1), (2), and (3) form the
convex hull of the set of edge points. Edge (1), since
it minimizes the sum of the perpendicular distances
to the edge points, is the required datum line. Point
(X1,Y)1) is the farthest from the datum line in terms
of perpendicular distance. The perpendicular distance
of (X1,Y1) from datum line (1) should conform to the
straightness tolerance.

of the entities output by image processing algorithms.
Uncertainty in the lower-level image entities leads to
uncertainty in the tolerance measurement tasks. To
illustrate this, we will take the reader through one
task, namely measurement of straightness of an edge.
The derivations for variances of other measurements
are similar in principle.

4.1 Noise Model

Let the true edge pixel position be denoted by
(zi,%). Let the observed edge pixel position be de-
noted by (#;,%). Our model for the noisy, observed
edge pixel is, &; = 2; + ¢;, yi = yi + &. where, ¢; and
£; are samples from independent distributions that are
even functions [16), with mean zero and variances o,
and o¢,, respectively.

4.2 Datum Line Uncertainty

The simulated datum line for straight edges is the
nearest-supporting line that passes through an edge
L, of the convex hull of the edge pixels. Let us denote
the end points of this hull edge by (z, y1) and (x2, y2).
We can write the line equation as L; : az + By +
v = 0. Since, we only have noisy observations (#y, i)
and (22, 42), the observed line parameters would be
expressed as functions of (2, ¥2).

Let us estimate the behavior of one of the line pa-
rameters a as a result of noise on the edge pixels. We
will represent a by a Taylor series expansion around
the true edge points (21, ) and (22, y2). We can then
truncate the Taylor series as an approximation and in-



clude only the linear terms. As a result
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Jn a similar way, we can estiinate the variances of
the parameters 3 and 4 in terms of the coordinates
(z1,41) and (22,¥2). To measure the straightness of
this edge, L, we have to find another linc parallel to
this datum line and such that all the edge pixels are
on or between the two lines. Assume that this parallel
line, Lo, passes through (xs,ys). The cquation for Lo
is Ly : &z + fy — (&3 + fya) = 0. The distance be-
tween the two parallel lines that should conform to the
straightness tolerance is d = az3 + Syz + 5. Since o
and 3 are themselves functions of  which is the angle
that the line makes with the X-axis, we can rewrite d
as a function of # and 4. Proceeding with the trun-
cated Taylor series expansion as before,

Vid) = V[0)[zscost + yasinb])’ + V[$] +
2[zgcosf + ys sin 0]Cov[é, 9]

(2)

Equation 2 expresses the uncertainty of the
straightness measurement, given the observed coordi-

nates of the two edge pixels that support the datun.

line ( (#;,#) and (&2,92)) and the third edge pix-
el (£3,y3) that is farthest away from this datum line,
and the variances of the observed edge pixel positions.
Thus, the uncertainties in the edge pixel positions have
been propagated all the way up to the measurement
task.

5 System Design

We are building a system called ICIS (Interactive
CAD-based Inspection System) to test our concepts
and to illustrate how we think automated inspection

1234

should be carried out. ICIS consists of two parts: an
interactive front end and a set of computer programs
to handle the actual inspection tasks. The interactive
front end allows the user of the system to select the
inspection tasks required for the part to be inspect-
ed. The user first selects the part from a database of
CAD models. A wire-frame view of the object is then
displayed on the screen. The user employs a virtual
sphere device (see [4]) to interactively rotate the ob-
ject so that he/she can view the various features to be
inspected. A combination of menus and mouse clicks
on the wire-frame image is used {o select the actual
tasks to be performed. Figure 2 gives an example of
a typical screen displayed to the user by ICIS.

The interaclive system works with a 3D vision mod-
el of the object, derived from the original CAD model.
The vision model is a hierarchical, relational model of
the part in terms of its surfaces, its edges, and their
interrelationships. This vision model has been used in
our automatic pose cstimation work [3]. Tor use in
the inspection system, we have augmented the mod-
el to include inspection specifications and tolerances.
For example, each edge has an associated straightness
tolerance. The system derives this information from
its interaction with the user.

The second part of the system is the set of inspec-
tion procedures. We are initially focusing on mea-
surement tasks. The measurement procedures call on
image processing procedures to extract the required
information from the image(s) of the object and then
make the decisions as to the acceptability of the part.

6 Image Processing for Inspection
Tasks

The transformation matrix from the object recogni-
tion stage yields information, with a degree of uncer-
tainty, about approximately where {o expect features
of the object to appear on the image. The image pro-
cessing operators, instead of operating on the entire
image, operate only in specific regions where we expect
features (such as edges) to lie. We call these specific
regions “search windows”. Given the uncertain trans-
formation matrix and an estitnate of the noise in the
image, an accurate estimate of the size and position
of these search windows can be obtained. We have
developed an adaptive Kalman-filter-based algorithm
{11] to fuse these two uncertainties to get an estimate
of the'size and position of the search windows. All the
measurement fasks in this work require just two basic
low-level entities. They are (1) edge pixels and (2)
corner pixels. The sequence of image processing oper-
ations employed is geared toward extracting these two
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Figure 2: A typical screen displayed by ICIS. An edge has been selected from the hidden-line-removed object.
Straightness tolerance has been selected. On the bottom right is the “virtual sphere” with the current viewpoint

highlighted.

primitive features from selected regions in the image
that are defined by the search windows.

The first step in our image processing sequence is
edge detection, We employ the Haralick edge operator
[6], which uses the zero crossings of the second direc-
tional derivative to classify edge pixels. The edge de-
tector output is contaminated with stray noise speck-
s, spurious edge pixels and small segments that can-
not be grouped with other segments on the basis of
adjacency or orientation. Thus, a necessary step af-
ter edge detection is symbolic grouping of edge pixels
to form a higher-level entity. As a preliminary step
we perform a connecied shrink operation. The out-
put of the shrink operator is a symbolic image of arc
segments that are one pixel wide. After very small
segments are removed, the remaining segments are
grouped according to adjacency and orientation. The
adjacency condition can be relaxed to group edge seg-
ments that are broken because of noise. The set of
edge segments ountput by the grouping process is di-
rectly used by the measurement procedures. Corner
pixcls are obtained as a by-product of the grouping
process described above. Points of high curvature on
the arc segments are classified as corners.

7

Experiments and Results

Our experiments consisted of three phases. Iu the
first phase, the accuracy of the variance formulas de-
rived for the various measurement tasks were checked.
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In particular, we were interested in the conditions un-
der which the first order Taylor series approximation
would fail. We employed a stacistical testing proce-
dure for this purpose, taking the straightness mea-
surement as an example task. In the second phase,
the performance of the measurement algorithins was
determined with and without error propagation. As
in the first phase, the straightness mcasurement task
was utilized as a representative task. The goal of the
third phase was to test the inspection system with ma-
chined objects at varying degrees of deformations. To
do this for the straightness measurement task would
require a method of progressively deforming the s-
traightness of an edge. Since this type of deformation
is not well-defined, we chose the angle-measurement
task, for which it was possible to introduce systemat-
ic deformations to the machined object. By repeated
machining of the object, we progressively varied the
angle of one edge with respect to another.

Phase 1

As a first step in our experiments, we checked for
the aceuracy of the variance formulas derived for the
various measurement tasks, We employed a statistical
testing procedure for this purpose, taking the straight-
ness measurement as an example task.

In order to test whether 0%, the variance of the
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Figure 3: Results of the statistical test to verify
straightness variance. The datum line used was ori-
ented at 45°. The straightness of the synthetic edge
used in this test was 35 pixels. The distance between
the two edge points that support the datum line was
varied from 20 pixels down to 10 pixels. The test fails
when the absolute value of the test statistic becomes
higher than 1.96 (significance level a = 0.05). The test
comes close to a breakdown when the distance is 12
pixels (4 times o) and breaks down when the. distance
is 10 pixels.

straightness measure d is equal to V[d], the analyt-
ic formula derived, the null and alternate hypotheses
were formulated to be

Hy :"2& V[J]
Ho:o®; # Vd),

and the test statistic to be

Test =

Since the distribution of o* 7 18 not known, we approx-
imate the mean and variance of o? 4 by the experi-
mental mean straightness measure variance and the
mean variance of the straightness measure variance,
respectively. The statistical test was carried out with
the significance level a=0.05, corresponding to a value
of +1.96 for a normalized Gaussian random variable.
Thus the null hypothesis would be accepted if the test
statistic were between +1.96.

Figure 3 shows the result of the statistical test for
a line oriented at 45°, with perpendicular distance to
the farthest edge point being 35 pixels. The statisti-
cal test value fell below the significance level when the
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Figure 1: The machined object.

distance between the two points fell below 12. Thus,
for the linearizaiion appraximations made in the vari-
ance derivations to hold, the two points that support
the datum line must be separated by at least four
standard deviations {(of the noise).

Phase 2

The second stage of our experiments focused on de-
termining the performance of the measurement algo-
rithms with and without error propagation. We again
tested the straightness measurement algorithm. Our
experimental object 1s shown in Figure 4. The ob-
Ject was modeled using PADL-2 and machined on a
CAMM-3 modeling machine. We selected two edges
in this image: a “good” edge (in terms of straightness)
and a “bad” edge. We determined the datum lines for
the good edge and for the bad edge.

An evaluation process influenced by [9] was then
employed (see [11] for a detailed description of the ex-
perimental methodology). This procedure starts with
the real data obtained from the image and performs
1000 different perturbations at each of several noise
levels to thoroughly test the procedures. The false
alarm and misdetection probabilities we obtained for
various noise levels have been plotted in Figures 5 and
6. Our results show that the decision making proce-
dure that takes error propagation into account yields
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Figure 6: Error probabilities with noise ¢ = 1.5.

lower error probabilities than the one that does not
propagate errors.

Phase 3

In the third stage of experiments, the inspection
system was tested with machined objects at varying
degrees of deformation. Consider the visual inspec-
tion system to be a black box whose input is in the
form of images of machined objects. Given a partic-
ular measurement task to perform (e.g measurement
of angularity of a pair of edges), the system outputs
a numerical measure along with the associated vari-
ance. The numerical measure and the associated vari-
ance are used in conjunction with the tolerance speci-
fications in deciding the goodness of the feature(s). In
our experiments, we were not directly interested in the
actual value of the numerical measure, because 1) we
do not possess accurate tactile measurement devices
that could perform the same procedures manually for
comparison, and 2) the actual values of the tolerance
specifications are decided by the manufacturer and are
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Figure 7: (a). The original machined object. (b) The
same object after the fifth angular deformation. (c)
The ohject after the tenth deformation.

arbitrary. In the light of these factors, what we were
interested in observing was the behavior of the mea-
sure output by the inspection system as the machined
object underwent deformation.

The object shown in Fig 7 was machined on our
CAMM-3 modeling machine to the best possible ac-
curacy of the machine. A pair of mutually perpen-
dicular edges were sclected. One of the edges was de-
formed systematically by additional machining such
that the angle between the two edges increased. With
this monotonic increase in the angle, the output mea-
sure of the system was observed. Each deformation
produced an increase in angle of approximately two
degrees and there were ten such deformations. The
output of the system as shown in Figure 8 clearly in-
dicates that the angularity measure output by the in-
spection system is also monotonic.

8 Conclusions

In this paper, we described a CAD-based machine
vision system for dimensional inspection of machined
parts. The system performs inspection by strictly ad-
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Figure 8: Progressive angular deformation of the test
object produces monotonic change in the angular mea-
sure output by the inspection system.

hering to well-defined tolerance definitions. Hence
all the measurements made by the system have a
strong underlying theoretical basis. We extended our
three-dirnensional vision models originally develope-
d for posc determination to include the tolerance in-
formation. We propagated uncertainties from lower-
level edge pixels all the way up to the measurement
tasks. We then incorporated these uncertainties in
our decision making Lo rule a featurc acceptable or
not. Our experimental results verified the uncertainty
derivations statistically, proved that the error proba-
bilities obtained by propagating uncertainties are Jow-

er than thosc obtainable without uncertainty propaga-

tion, and demonstrated that the system responds in a
predictable manner to progressively deformed objects.

This work sets up a theoretical and operational
framework for a CAD-based inspection system. Addi-
tional measurement tasks can be included by setting
up precise tolerance definitions adhering to the guide-
lines described. Uncertainty propagation for these ad-
ditional tasks can be done by following the methodol-
ogy outlined for the straightness of cdge task.
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