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Abstract

This paper considers the problem of shape-based recog-
nition and pose estimation of 3-D free-form objects in
scenes that contain occlusion and clutter. Our approach
is based on a novel set of discriminating descriptors called
spherical spin images, which encode the shape information
conveyed by classes of distributions of surface points con-
structed with respect to reference points on the surface of an
object. The key to this approach is the relationship that ex-
ists between the l2 metric, which compares n-dimensional
signatures in Euclidean space, and the metric of the com-
pact space on which the class representatives (spherical
spin images) are defined. The connection allows us to ef-
ficiently utilize the linear correlation coefficient to discrim-
inate scene points which have spherical spin images that
are similar to the spherical spin images of points on the
object being sought. The paper also addresses the prob-
lem of a compressed spherical-spin-image representation
by means of a random projection of the original descriptors
that reduces the dimensionality without a significant loss of
recognition/localization performance. Finally, the efficacy
of the proposed representation is validated in a compara-
tive study of the two algorithms introduced here that use
uncompressed and compressed spherical spin images ver-
sus two previous spin image algorithms reported recently
in the literature. The results of 2012 experiments suggest
that the performance of our proposed algorithms is signif-
icantly better with respect to accuracy and speed than the
performance of the other algorithms tested.

1. Introduction

With the increased availability and decreased prices for
3-D scanners, the use of range data for recognizing and lo-
cating 3-D objects in complex scenes is a feasible option.
Shape-based recognition systems that use surface signatures
to represent the shape of the object are particularly attrac-

tive, because they can handle a wide-variety of objects, in-
cluding those whose shape cannot be easily approximated
with parametric models (often called “free-form” objects).
A surface signature at a given point on the surface of an
object is a descriptor that encodes the geometric properties
measured in a neighborhood of the point. Curvature is one
of the oldest and most basic local descriptors of shape. In
early work, Besl and Jain [1] characterized surface points
according to the signs of their mean and Gaussian curva-
tures, which could then be used to classify points into sym-
bolic categories, such as peaks, pits, ridges, and valleys.
Faugeras and Hebert [6] used curvature for detecting prim-
itive features (points, lines, planes, and quadric patches) in
range data scenes. In recent years, more complex surface-
signature representation schemes have been reported in the
literature. They include the splash representation of Stein
and Medioni [13], the point signatures of Chua and Jarvis
[2], the shape spectrum scheme of Dorai and Jain [4], the
surface signatures from simplex meshes of Yamany et al.,
[14], the harmonic shape images of Zhang and Hebert [15],
and the spin-image representation introduced by Johnson
and Hebert [9].

The problem of shape-based 3-D object recognition in
complex scenes is difficult for two principal reasons. In the
first place, real range data scenes generally contain multiple
objects. The clutter due to the presence of surface points
that are not part of the object being sought can cause confu-
sion in the recognition process. In the second place, scenes
also contain varying levels of occlusion, so there is only
partial information pertaining to the object of interest.

This paper addresses the problems described above by
proposing a simple and general representation of shape that
is amenable for effectively recognizing and locating objects
in complex 3-D scenes. The spherical-spin-image repre-
sentation (related to the spin-image approach introduced in
[9]) is a general representation of shape based on a collec-
tion of descriptors (spherical spin images) that are robust
to scene clutter and occlusion. The paper also considers re-
ducing the dimensionality of the spherical spin images by



means of a random projection to a subspace of lower di-
mension, thus accomplishing a compact representation of
shape we call compressed spherical-spin images. Random
projections are transformations that are much faster than
traditional transforms like the Karhunen-Loeve Transform
(KLT), since they do not depend on the data to be com-
pressed. They were introduced in [7] and used subsequently
in [3] for density estimation and pattern recognition ap-
plications. Finally, the paper presents two algorithms that
use uncompressed and compressed spherical spin images to
recognize and locate objects in range data scenes. A per-
formance evaluation is conducted to compare these two al-
gorithms to their counterpart spin image algorithms given
in [9]. The results of 2012 experiments suggest that the
spherical spin-image representation significantly improves
the recognition/localization performance and dramatically
reduces the matching time of the spin-image algorithm. It
also suggest that the compressed spherical spin-image rep-
resentation outperforms the recognition/localization rates of
its compressed spin-image counterpart.

The rest of our paper is structured as follows. We de-
scribe the original spin-image representation in Section 2,
since it motivated our representation of shape. Section 3 is
devoted to the spherical-spin image representation and Sec-
tion 4 to our recognition algorithms. Section 5 discusses the
results of the comparative study, and Section 6 concludes
the paper.

2. Spin Images

In [9] Johnson and Hebert introduce an elegant and pow-
erful representation for surface matching. The spin image
representation comprises a set of descriptive images asso-
ciated with the oriented points on the surface of an object.
These images are created by constructing a pose-invariant
2-D coordinate system at an oriented point (3-D point with
normal vector) on the surface, and accumulating the coordi-
nates (�; �) of other points in a 2-D histogram called a spin
image as explained in Figure 1. The representation assumes
that surfaces are approximated by regular polygonal surface
meshes, of a given mesh resolution, defined as the median
length of all edges in the mesh. The spin image represen-
tation is robust to scene clutter and occlusion and therefore
suitable for object recognition posed as a surface-matching
problem.

Matching surfaces with spin images consists of finding
correspondences between surface points of two instances of
the same object, from which a rigid transformation that reg-
isters the surfaces is calculated. Correspondences are found
by comparing spin images from points of one surface (usu-
ally the model) with spin images from points of a second
surface (usually the scene) using a loss function of the lin-
ear correlation coefficient as a measure of similarity, and

T

N

α

β

Q

P
p

���
���
���
���
���

���
���
���
���
���

Image

N

β

α
��
��
��
��

��
��
��
��

Mesh System
CoordinateSurface Spin 

P

Figure 1. The spin image for point P is constructed by
accumulating in a 2-D histogram the coordinates � and �
of a set of contributing points (such as Q) on the mesh rep-
resenting the object . Contributing points are those that are
within a specified distance of P and for which the surface
normal forms an angle of less than a specified size with the
surface normal N of P. The coordinate � is the distance
from P to the projection of Q onto the tangent plane Tp; �
is the distance from Q to this plane.

selecting the correspondence pairs with the highest simi-
larity that are geometrically consistent. The authors of [9]
showed that the method described above must be modified
in order to extend surface matching using spin images to
object recognition in complex scenes. Finding correspon-
dences using the correlation coefficient is computationally
expensive [9], and therefore, a different way of managing
the information conveyed by the spin images is needed. In
order to make the process of matching efficient, dimension-
ality reduction was achieved by projecting spin images rep-
resented as n-tuples to a space of dimension d < n, using
principal component analysis (PCA). This compressed rep-
resentation allows a significant improvement in computa-
tional efficiency that justifies an acceptable reduction of the
recogition performance.

In the compressed spin-images representation, corre-
spondences are found by using an efficient closest-point
search structure that looks for the best-matching model spin
image to a given scene spin image in a search space of given
dimensions and shape. Thus, finding closest tuples in a
subspace of Rd replaces correlating spin images [9]. One
drawback of this compressed representation is that the mag-
nitude of the d-tuples becomes dependent on the resolution
of the mesh. In principle it is possible to control the res-
olution by using resampling algorithms, but in some cases
data cannot be set to a specific resolution without losing im-
portant information related to their geometrical properties.
In the sections that follow we show that the spherical spin
image solves this problem and improves the overall perfor-
mance of the spin-image representation in the context of
object recognition/localization tasks.



3. Spherical Spin Images (SSI)

Like spin images, spherical spin images are signatures
associated with the vertices of a polygonal mesh of a
given resolution that approximates the surface of an object.
Spherical spin images are points of the unit sphere in Rn

that identify the equivalence classes of spin images induced
by the equivalence relation derived from the linear correla-
tion coefficient; a pair of spin images is equivalent if their
correlation coefficient equals one or, in practice, are highly
correlated. Figure 2 illustrates the relationship between spin
images represented as vectors in Rn and spherical spin im-
ages on the unit sphere Sn�1 and shows several examples of
spherical spin images for selected points of a surface mesh.
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Figure 2. Spherical spin images for four oriented points
(3-D points plus normal vectors) A, B, C and D on the
polygonal mesh of a model. They are obtained from spin
images via the mapping 
 defined in Section 3.1. The cor-
relation coefficient is calculated as the cosine of the angle
between spherical spin images. The angle � for the elements
labeled as A and B on the sphere is small indicating that
the spherical spin images are highly correlated. The angle
between points A and C (D) is large, indicating lack of pos-
itive correlation. Spherical spin images are n-dimensional
unit vectors that can be represented as images of n pixels,
as shown in the figure.

The mathematical tools needed for creating spherical
spin images are described in this section and summarized in
Figure 3. There are three main geometric spaces involved
and three mappings that relate each space to the others. The
function 
 assigns spin images to spherical spin images.
The function g maps equivalence classes of spin images to
spherical spin images, and the function e maps each spin
image to its equivalence class. These functions are related
by the equation 
 = g Æ e, where Æ denotes function com-

position. We start by introducing our notation.
Throughout this paper we let Rn denote the set of all or-

dered sets of n-tuples of real numbers. If x is an element
of Rn the coordinates of x will be denoted by x i; hence,
x = (x1; : : : ; xn). The letter o denotes the origin (0; : : : ; 0)
of Rn. We treat Rn as a vector-space structure with com-
ponentwise addition and scalar multiplication. That is, the
n-tuples are also considered to be vectors of n components.
If u; v 2 Rn we let u � v denote the inner product, and
j u j the Euclidean norm. We let Sn�1 denote the unit
sphere centered at o, that is Sn�1 = fx = (x1; � � � ; xn) j
x21 + � � �+ x2n = 1g.

We let � denote the linear correlation coefficient, which
measures the degree of linear relationship between pairs of
n-tuples in Rn. This means that for two elements x and y
of Rn, �(x; y) = 1 if and only if all (xi; yi) pairs lie on a
straight line with positive slope, and �(x; y) = �1 if and
only if all (xi; yi) pairs lie on a straight line with negative
slope.

There is a well-known geometrical interpretation of the
linear correlation coefficient, as the cosine of the angle be-
tween two unit vectors, that is most convenient for our
purposes. To introduce this notion and simplify our no-
tation, we need to define two mappings: � and �. The
function � maps elements of Rn to n-tuples of the form
(m(x); � � � ;m(x)), where m(x) = 1

n

Pn

i=1 xi: Therefore,
�(x) is an n-dimensional vector, all of whose elements are
the mean of the n components of x. We let � denote the
function defined as

�(x) =
x� �(x)

j x� �(x) j
: (1)

The function � produces an n-tuple (the unit difference
vector) �(x) whose ith component is the normalized differ-
ence between the ith component of x and the mean of the
components of x. The range of � denoted by �n�1 consists
of points that lie on Sn�1. This map allows us to write the
correlation coefficient as

�(x; y) =
nX

i=1

xi �m(x)

j x� �(x) j
�

yi �m(y)

j y � �(y) j

= �(x) � �(y) = cos ��(x)�(y);

the cosine of the angle between the unit vectors �(x) and
�(y). Notice that �(x; y) = 1 if and only if � maps x and
y to the same unit vector; that is, if and only if y = ax +
(b; � � � ; b), a; b 2 R and a > 0. Also note that the elements
in the domain of � belong to the complement of the set

N = fx j x 2 Rn; j x� �(x) j= 0g:

The collection of spin images represented as n-tuples can
be defined as the set �n � N c . It consists of elements of



N c that have non-negative components. This means that

�n = fx j x 2 N c ; xi � 0;8i = 1; � � � ; ng: (2)

This definition is consistent with the original spin image
formulation of Johnson. The elements of �n produce well-
defined values for the correlation coefficient, and they have
nonnegative components, since they are histograms.

3.1 Equivalence Classes of Spin Images.

In this section we construct the set of spherical spin im-
ages in two steps. First we define the set of equivalence
classes of spin images induced by the equivalence relation
given by the linear correlation coefficient. Then, we de-
fine the function 
 that induces the same equivalence re-
lation and allows us to define the spherical spin images as
the elements of its range and the function g that allows us
to identify the spherical spin images as “labels” attached to
the equivalence classes.

The linear correlation coefficient defines an equivalence
relation on the set of spin images. Two spin images x, y are
equivalent if and only if their correlation coefficient equals
one. This equivalence relation partitions the set of spin im-
ages into equivalence classes that constitute the set �n=E;
the equivalence class under E of any element x 2 �n is
formally defined as

[x] = fy j y 2 �n and xEyg;

and the set of all possible equivalence classes (or quotient
set) of E, as

�n=E = fC j C � �n and C = [x] for some x 2 �ng:

Here the notation xEy indicates that the spin images x and
y are equivalent.

A standard theorem in algebra shows that given the
equivalence relation E on �n and a function 
 : �n 7!
�n�1 such that xEy implies 
(x) = 
(y), there exists ex-
actly one function g : �n=E 7! �n�1 for which 
 = g Æ e,
with e(x) = [x] for each x 2 �n. Furthermore, if 
 is a
surjection (1-1), then g is a bijection (1-1 and onto). The
equivalence relation E is called the equivalence kernel of

.

The key points of the theorem are: 1) the function 
 de-
fined on �n implies the same equivalence relationE defined
by the correlation coefficient; and 2) for surjective 
 the
function g is bijective, so the elements of �n�1 “label” the
set of equivalence classes. We define the surjective function

 such that E is its equivalence kernel; that is, 
 is a restric-
tion of the unit-difference-function � : N c 7! �n�1 such
that 
(x) = �(x) for each x 2 �n, with �n � N c and
�n�1 � �n�1. (See Figure 3).
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Figure 3. Commutative diagram that shows the relation
between the sets of spin images �n, the set of equivalence
classes of spin images �n=E and the set of spherical spin
images �n�1

� Sn�1.

Definition 1 Spherical spin images are elements of the set
�n�1 � Sn�1, which label the elements of the quotient set
of spin images induced by the equivalence kernel of 
.

Some remarks are of importance. 1) Spherical spin im-
ages are points on the unit sphere, but since we are assum-
ing a vector space structure in Rn, spherical spin images
can also be defined as vectors of unit length. In what fol-
lows we refer to spherical spin images as elements of Sn�1

or vectors of unit length, interchangeably. 2) The value
of the linear correlation coefficient between spin images
equals the cosine of the angle between the corresponding
spherical spin images. That is, for each pair x; y 2 �n

�(x; y) = cos �
(x)
(y). 3) The angle between spherical
spin images u and v is related to the Euclidean distance
between them by the formula j u � v j= 2 sin(�uv=2).
This means that j u� v j= 2 sin(cos�1(�(u; v))=2), where
�(u; v) = cos�uv. �n�1 is a metric space. 4) Spin im-
ages and spherical spin images are characterized by four
parameters when represented as square matrices: bin size,
image width, support width and support angle. See [9] for
details. 5) The approach used here for representing shape in
terms of equivalence classes generalizes to any kind of sur-
face signatures that can be discriminated by the correlation
coefficient.

3.2 Compressing Spherical Spin Images

Compression of spherical spin images is achieved by
means of a random projection technique which offers a
nice distance preservation property [7] and does not depend
on the data set to be compressed. It consists of project-
ing a given point in Rn to a random d-dimensional hy-
perplane spanned by an orthonormal set of column vec-
tors U1; U2; � � � ; Ud, whose joint distribution is invari-
ant to rotations of the coordinate system. More pre-
cisely, U1; U2; � � � ; Ud have the same joint distribution as
GU1; GU2; � � � ; GUd for every orthogonal linear transform
G which leaves the origin fixed. The following algorithm



generates a random projection matrix U = [U1U2 � � �Ud].
First, each entry of a n� d matrix is set to an i.i.d. N(0; 1)
value. Then the d columns of the matrix are made orthog-
onal by using the Gram-Schmidt algorithm. Finally, the
rows are normalized to unit length. This takes O(d2n) time
overall compared with the PCA, which takes O(n3). Com-
pressed spherical spin images are obtained from a fixed ma-
trix U , generated with the algorithm just described, as fol-
lows. For each 
(x) 2 �n�1, x 2 �n�1, the corresponding
compressed instance is 
(xTU) 2 �d�1 a d-dimensional
unit vector. (Notice the abuse of notation in this expres-
sion in which we use the same symbol 
 to denote different
functions.) This compressed representation is independent
of the resolution of the surface mesh of the models as op-
posed to the PCA representation.

Principal component analysis is an extremely important
tool for data analysis and dimensionality reduction, how-
ever a recent comparative study between PCA and the ran-
dom projection technique has shown that random projec-
tions guarantee a certain level of performance regardless
of the individual data set, while the usefulness of the PCA
varies from data set to data set [3]. We observed this phe-
nomenon in the comparative study presented in Section 5.
Our proposed algorithm for recognizing and locating 3-D
objects in complex scenes based on random projections out-
performs in terms of (offline and online) speed and accuracy
an algorithm based on PCA.

4. Object Recognition with SSI

Recognizing and locating objects in complex 3-D scenes
using spherical spin images consist of finding matches from
a set of candidate correspondences between surface scene
points and surface model points, that allow us to calculate
a rigid transformation that best aligns both surfaces. Fig-
ure 4 illustrates the idea of finding correspondences for the
scene point labeled A using the spherical-spin-image repre-
sentation. Points lying inside the spherical cap are potential
correspondences for the query point A, since the respective
spherical spin images are similar (highly correlated). This
means that finding correspondences consists of finding clos-
est points to the query on a subset of Sn�1.

Finding closest spherical spin images is implemented by
using a modified version of the closest-point search algo-
rithm proposed in [11], which has complexity that is lin-
ear in the number of points for structured data [11]. In
order to account for the noise present in the scene, our
algorithm searches for a group of neighboring points lo-
cated on the surface of the sphere within distance " =
2 sin(cos�1(�")=2) from the query point; �� is a user-
supplied parameter that determines the largest angle al-
lowed between query vector and potential candidate vec-
tors. Let �max be the highest correlation coefficient of all
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Figure 4. Finding potential matches for the scene point
A consists of searching for model spherical spin images ly-
ing on a spherical cap of geodesic radius �" and pole lo-
cated at A. The radius determines the minimum expected
level of linear correlation �" for the potential matches, since
�" = cos �"; the smaller the radius the more correlated the
model spherical spin images inside the cap will be to the
scene query point. The spherical spin image labeled as B is
an example of a matching point. Notice that the geodesic
distance between two points on the unit sphere equals the
angle between the unit vectors associated with the points.

neighbors in the group. The neighbors that have a corre-
lation value above ��max (0 < � < 1) are kept as the
candidate correspondences for the query. Details of the ge-
ometry of our algorithm and its relationship to the approach
presented in [11] are depicted in Figure 5.

The idea of searching for closest-points for matching is
not new. It can be found in the work of Murase and Nayar
[10] and Johnson [9]. Our contribution consists of redefin-
ing the geometry of the search space in order to utilize the
correlation coefficient as a similarity measure in an efficient
fashion.

Surface matching using spherical spin images proceeds
by storing (offline) the model spherical spin images (unit
vectors of dimension n = 400) in a closest point search
structure and randomly selecting (online) a percentage of
the points from the scene, which are compared individually
to the model in two steps. First, a scene point’s spherical
spin image is created using the model’s spherical spin im-
age parameters and the scene data; and second, the scene
point is used as a query point to the closest-point search al-
gorithm described above, which returns a list of candidate
correspondences for the query. The procedure is repeated
for various points of the scene, in order to obtain a list of
geometrically consistent correspondences, which generates
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Figure 5. Geometric details of the search space (shaded
area) used to find correspondences with the spherical-spin-
image representation. The point labeled as B is considered
a potential match to the query point A. Point C’s spheri-
cal spin image is dissimilar to the query’s point signature.
The square box in the figure shows the geometry of the al-
gorithm described in [11] for finding closest points. The
geometry of our algorithm is related to the geometry of that
algorithm by the geodesic radius �", since the side of the
cube is set to 4 sin(�"=2).

a set of potential matches that are scrutinized in a verifica-
tion process resulting in rigid transformations that register
the surfaces. The best transformation is selected as the one
that generates the greatest overlap between surfaces.

5. Comparative Study

We developed an experimental protocol to compare the
performance of four recognition and localization algorithms
in complex 3-D scenes. They are 1) standard spin images
(SI), 2) standard spin images with compression using PCA
(SIC), 3) spherical spin images (SSI), and 4)spherical spin
images with compression using random projection (SSIC).
SI and SIC are Johnson’s algorithms, while SSI and SSIC
are our new algorithms.

A model library of 5 objects was used in the study. Mod-
els were constructed by registering and integrating multiple
range views of the objects, and enforcing a uniform distri-
bution of the vertices using the algorithm described in [8].
The spherical spin images of the models were created us-
ing the same generation parameters: bin size of 1 (mm),
image width 20 and support angle 60Æ. The dimension of
the uncompressed (compressed) tuples was set to 400 (40)
respectively. Our test database consisted of 138 samples
created by placing, without any systematic method, four or
five models in the 3-D scene by hand. The resolution of all
the surfaces in the study was set to 1 mm, �� was set to 0:96,
and � to 0:98.

For each of the 138 scenes and for each model present in
the scene, the algorithms were executed one at a time. The
resulting recognition state after running was classified as
true positive if the model was recognized by the algorithm;
as false positive if the algorithm placed the model in an in-
correct position; and false negative if the model was not
recognized. The true negative states did not apply in our ex-
periments, since the models being sought in the scene were
always present. For all the trials with true positive recog-
nition state, the localization state was also determined. A
localization state was classified as true localization if the
position of the model in the scene was determined accu-
rately (mean square error mse < 0:01); otherwise it was
called false localization.

e)

d)

a) b)

c)

f)

Figure 6. Recognition/localization result for five mod-
els in a typical 3-D scene. a) Color image. b) Three-
dimensional raw data. c) Surface mesh of the 3-D scene,
21,340 vertices (front view). d) Three-dimensional scene
with recognized models (front view). e) Surface mesh of
the 3-D scene (side view). f) Three-dimensional scene with
recognized models (side view). The five models, unicorn,
bunny, deer, santa and snowman in the scene had varying
levels of occlusion (75:54%, 65:7%, 73:6%, 58:6% and
72:21%, respectively) and varying levels of clutter (25:4%,
94:53%, 91:9%, 56:6% and 24:4%, respectively).

The effect of clutter and occlusion on recognition and
localization, was measured by means of a graphical inter-



face. The occlusion of a model is defined as the percent of
the total area of the model that is not visible in the scene.
The clutter is defined as the percentage of oriented points
of the model, that are visible in the scene, whose spherical
spin images have been corrupted by points in the scene that
do not belong to the model. The localization state was de-
termined by calculating the average distance error between
the model and the matched segment of the scene and also by
visually inspecting the alignment. Figure 6 shows a quali-
tative result obtained with the SSI algorithm for a typical
scene in our database in which the five models are present.

Data were analyzed by estimating the experimental
recognition/localization rates as a function of the scene clut-
ter and occlusion by using average shift histograms (ASHs)
on the population of recognition (localization) states. This
technique prevented problems inherent to the binning of
the data [12]. Confidence intervals for the resulting rates
were calculated for each algorithm by using standard boot-
strap techniques [5]. More specifically, the population of
recognition states for each algorithm was randomly sam-
pled with replacement. The resulting sample was 75% the
size of the original population. Then, the recognition (lo-
calization) rate versus occlusion (or clutter) was obtained
from the sample by means of the ASH technique. The same
procedure was repeated for 10; 000 different samples. The
mean and the standard deviation were then calculated from
the samples to obtain the final empirical rate.

The performance of the algorithms SSI and SSIC is il-
lustrated in Figure 7, which shows that: 1) The empirical
recognition/localization rates versus occlusion are mono-
tonically decreasing functions. 2) The recognition rate is
about 90% for values of occlusion smaller than 70%, and
the localization rate is about 95% for values of occlusion
below 80%; this suggests that if about 30% of the area of
the object is visible, it will be recognized and located with
high probability. 3) The recognition/localization rates seem
to be relatively uniform across the levels of clutter below
70%, showing that spherical spin images are robust to clut-
ter. The variations observed are most likely related to the
non-uniform sampling of the scene data. Johnson observed
similar trends for the spin images in [9].

We used the paired t-test and the Wilcoxon matched pairs
test analysis to detect significant differences in the match-
ing times between the four algorithms tested, and significant
correlation and linear regression analysis to study the rela-
tionship among the matching times of all four algorithms.
Our proposed algorithms are faster than the other two as
suggested by the results shown in Table 1 where the average
matching times are statistically different with a significance
level of p = :0001. The times were measured using a real-
time clock on a dedicated Silicon Graphics O2 workstation
(194MHz).

The recognition/localization performance of all four
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Figure 7. Recognition/localization rates for uncom-
pressed spherical spin images (SSI) (four plots at the top),
and compressed spherical spin images (SSIC) (four plots
at the bottom). The left column illustrates the recognition
rates versus occlusion, and the right column, versus clutter.

tested algorithms is illustrated in Figure 8. A summary of
the improvements achieved with the proposed algorithms
is shown in Table 2. The algorithms SSI and SSIC signif-
icantly improve the performance of the SI and SIC algo-
rithms, respectively; our SSI and SSIC algorithms are faster
and more accurate.

6. Summary and Conclusions

We have presented a general representation of shape that
allows efficient and effective recognition and pose estima-



tion for 3-D objects in complex 3-D scenes. Spherical spin
images are simple yet rich descriptors of shape that are very
robust to clutter and occlusion, thus widely applicable in
practical situations. We have shown that they can be com-
pressed using a random projection method without signif-
icant loss of descriptive power and robustness. We have
experimentally validated the effectiveness and efficiency of
our representation in a comparative study that suggests that
the overall performance of our proposed algorithms is better
than the performance of the two original spin-image algo-
rithms. Finally we note that the representation scheme in
terms of equivalence classes can be adapted to any kind of
signatures that can be discriminated by the linear correlation
coefficient.

Algorithm Matching Time
SSI 1879:1 � 592:6
SI 7866:8 � 3159:4

SSIC 1686 � 700:4
SIC 2009:9 � 758:5

Table 1. Average time per match in (ms).
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Figure 8. Recognition/localization rates versus occlusion
(top) and clutter (bottom) for the algorithms tested.

Algorithm RO RC LO LC T
SSI vs SI 3:36 4:24 4:74 6:68 76:11

SSIC vs SIC 32 25:41 22:2 33:13 16:12

Table 2. Average improvement (%) of the proposed al-
gorithms with respect to the recognition rate (R) and lo-
calization rate (L) versus occlusion (O) and clutter (C); the
matching time (T) improvement is also shown.
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