
Effective Gradient Domain Object Editing on
Mobile Devices

Yingen Xiong∗, Dingding Liu∗†, Kari Pulli∗
∗Nokia Research Center, Palo Alto, CA, USA

Email: {yingen.xiong, dingding.liu, kari.pulli}@nokia.com
† University of Washington, Seattle, WA, USA

Email: liudd@u.washington.edu

Abstract— We present a gradient domain object editing ap-
proach and its implementation for mobile devices. It can be used
for creating a new composite image by removing, adding, and
moving objects in an image. The approach can be divided into
two parts: creation and editing of a new gradient vector field, and
recovery of a new composite image from the new gradient vector
field. In the first part, a new gradient vector field is created from
the gradients of the source image, and then updated by inserting
the new object gradients, by removing object gradients and filling
removed areas with the gradients of best-fit patches found in
other parts of the source image, or by combining these two
processes when moving objects. In the second part, a divergence
vector field is computed from the gradient vector field and used
for a guidance vector to construct a Poisson equation. The new
composite image is recovered from the gradient vector field by
solving the Poisson equation with boundary conditions.

Our approach can merge all regions in the picture seamlessly
with smooth color transition for the whole picture. It can be
used for large object removal and for filling the background
of the removed object. The final composite image is a globally
optimal solution. The approach is implemented and runs with
good performance on mobile camera phones.

I. INTRODUCTION

A. Background

As computational power and memory of mobile devices
increase, and larger touch screens are introduced, editing
images directly on the same device as the image was taken
becomes feasible and interesting. In this paper, we are inter-
ested in editing and producing high-quality images on camera
phones. Users can insert other images into their pictures and
remove any part which they do not want. A simple copying
and pasting produces visible artificial edges in the seams
between images, due to differences in camera responses or
environmental illumination. Even in one image, different parts
often have such differences. Efficient tools are needed to merge
all regions together and create a high-quality composite image.

We present an object editing approach which we have
implemented on camera phones. It can be used for adding
objects into an image seamlessly, removing objects from an
image and recovering the removed areas as if the image
were captured without those objects, and moving objects to
new positions. The editing operations are performed in the
gradient domain. Comparing with operations in the pixel color
domain, the approach can merge all parts together by reducing
color differences between the merged parts, making seams

minimally visible. This approach can be used for producing
high-quality composite images.

B. Related Work

Our approach is related to two kinds of work: image
blending and image hole filling. When we add objects into
the source image, we need to blend the object image and
the source image together and make the seams between these
images minimally visible, which is related to image blending.
When we remove objects, we empty the areas of removed
objects in the source image, and then we need to recover these
areas with reasonable visual quality, which is related to image
hole filling or inpainting.

Image blending is used for merging images together and
making seams between the images minimally visible. Current
image blending approaches can be divided into two main
classes: transition smoothing [1] and optimal seam finding [2]
algorithms. Our work is more related to the previous.

Transition smoothing algorithms reduce the color differ-
ences between images to make seams invisible. Recently, gra-
dient domain image blending algorithms [1] have been widely
used in image blending and editing. In these algorithms, source
images are merged in the gradient domain, yielding a gradient
vector field. A composite image can be recovered from the
gradient vector field by solving a Poisson equation. The second
part of our approach belongs to this category. After object
editing, we need to blend all regions together by reducing the
color differences and hiding the seams between the regions.

Current algorithms for image hole filling in the literature
can also be categorized into two main classes: inpainting and
texture synthesis algorithms.

Image inpainting algorithms [3], [4] address the hole filling
problems as image restoration. Image holes are filled by prop-
agating linear structures into the target region via diffusion.
Such algorithms are good for filling small image gaps. The
main disadvantage of this category is that the diffusion process
introduces blur, and it does not work well for filling large
regions.

Texture synthesis algorithms [5], [6] seek to replicate texture
given a small source sample of pure texture to fill large image
regions. In this kind of algorithms, exemplar-based approaches
[7], [8] are more interesting. They generate a new texture map
by sampling and copying color values from the source image.

Start

C di fi ld (G G) h di (G G) f h

Load or capture a source image or download one from website.
Step 1

Add objects. Remove objects. Move objects. Add objects to

Create a new gradient vector field (Gx, Gy), compute the gradients (Gsx, Gsy) of the
source image, initialize (Gx, Gy) with (Gsx, Gsy), and select a task.

j j j j
the library.

Select the objects which
need to be added.

Select the objects
which need to be

removed.

Select the objects which need to change
the position or orientation.

C t bj t di t (G G)

select objects.

Compute the gradients
(Gox, Goy) of the objects.

Perform exemplar based
i fill h

Compute object gradients (Gox, Goy).

Update the gradient vector field (Gx, Gy) by
inserting the object gradients (Gox, Goy) into

given positions.

segment objects.

Create icons for
the objects.

operation to fill the
regions of the objects in
the gradient vector field

(Gx, Gy) with gradients of
the exemplar patches.

Update the gradient
vector field (Gx, Gy) by

inserting the object
gradients (Gox, Goy) into a

i iti

Perform exemplar based operation to fill the
regions of the objects in the gradient vector

field (Gx, Gy) with gradients of the
l t h

g p j

Store them in to
the library.

p pgiven position. exemplar patches.

Compute a divergence vector field div(G) with the new gradient vector field (Gx, Gy).

S l h P i i b i i i2 stop
Step 2

Solve the Poisson equation to obtain a new composite image.)(2 GdivI stop

Fig. 1. Work flow of the gradient domain object editing approach.

The main advantage is that generating a new texture is quite
cheap. The main problem is that the boundaries between image
regions may still be visible after region filling. We address that
problem by working in the gradient domain.

We combine these two kinds of hole filling algorithms in
our work, so that we can use their advantages and avoid
disadvantages. In order to fill large object regions, we use
exemplar-based operations to find best-fit texture in the other
parts of the source image. In order to solve the boundary
problems, we fill the object regions not only in the pixel
color domain but also in the gradient domain. Once the best-fit
texture patches are found, we copy the pixel color values to
fill the source image and the gradients to update the gradient
vector field. A new composite image can be recovered from
the gradient vector field by solving a Poisson equation, and
we get a faster convergence in our iterative Poisson solver
by using the filled source image as an initial estimation. We
use the recovered composite image as our final result. In the
following sections, we will describe the approach in detail.

II. SUMMARY OF THE APPROACH

Figure 1 shows the work flow of the approach. It includes
two steps. The first step is to create a new gradient vector field
with the gradients of the source image and update it according
to different editing operations. The second step is to recover
a new composite image from the new gradient vector field.

The first step starts with getting a source image S which
needs to be edited into memory. The image can be loaded
from a disk, or captured with a camera, or downloaded from

a website. We create a new gradient vector field (Gx, Gy) for
a new composite image Ic. After computing the gradients of
the source image (Gsx, Gsy), we initialize the new gradient
vector field using the gradients of the source image. Then,
we update the new gradient vector field wuth different editing
operations.

For adding objects, we first select the objects to be added.
The objects can be in the source image or in other images
or in an object library. Then we compute the gradients of the
objects (Gox, Goy). The new gradient vector field (Gx, Gy)
can be updated by inserting the gradients of objects into given
positions.

For removing objects, the regions Ω0,Ω1, . . . ,Ωn of objects
to be removed are determined by manual selection or using
image segmentation algorithms. First we remove the gradients
in these regions from the initial gradient vector field (Gx, Gy).
Then each removed region Ωi(i = 0, 1, ..., n) is filled with the
gradients of exemplar patches found by the exemplar-based
operation which is detailed in latter sections. Once all regions
are filled, the update of the gradient vector field is completed.

For moving objects, we need to insert the objects into new
areas and replace the original areas with best-fit texture found
in the other parts of the source image. In order to do this,
we combine object removal and object adding operations.
Once the objects which need to be moved are selected,
we specify the regions Ω0,Ω1, . . . ,Ωn of these objects and
compute their gradients. We insert them into the gradient
vector field (Gx, Gy) with given positions for adding these
objects into new areas. We also remove the gradients in the

Indicate regions (objects) which
need to be filled (removed). Compute priority with the confidence map.

Extract initial border of the regions
and set initial confidence map C(p).

Find a patch with the maximum priority.

Find an exemplar patch which is most

Fill border empty?

Identify the fill border.
Find an exemplar patch which is most

similar to this patch.

no Copy the color values and gradients
f th l t h t th t h

p y

Obtain the gradient field with the
regions of removed objects filled. Update confidence map C(p).

yes
from the exemplar patch to the patch

which needs to be filled.

Fig. 2. Region filling operation.

specified regions. Each removed region is filled with gradients
of exemplar patches found by the exemplar based operation.
After all regions are filled, we obtain the updated gradient
vector field (Gx, Gy).

After the new gradient vector field (Gx, Gy) is updated,
the second step is to obtain the new composite image from the
gradient vector field. We create a divergence field div(G) from
the gradient vector field and use it as guidance to construct a
Poisson equation ∇2I = div(G). The new composite image
Ic can be recovered from the gradient vector field (Gx, Gy)
by solving the Poisson equation with boundary conditions.

Finally, users can segment objects from images and put them
into an object library. During object editing, users can select
objects from the library and add them into their pictures.

III. OBJECT EDITING IN GRADIENT DOMAIN

As mentioned above, the approach includes two parts,
creating a new gradient vector field according to different
editing operations and recovering a new composite image from
the gradient vector field.

A. Create a New Gradient Vector Field

The object editing operations are performed in the gradient
domain. We edit the gradients of the source image (Gsx, Gsy)
with the gradients of the objects (Gox, Goy) to create a new
gradient vector field (Gx, Gy). From the new gradient vector
field, we can obtain a new composite image which is the result
of object editing.

In order to do this, we first initialize the new gradient vector
field with the gradients of the source image. Then we update
it using different procedures according to different editing
operations.

1) Object Removal: In object removal operation, the re-
gions of objects are emptied after the objects are removed.
We need to fill them to make them look “reasonable” to the
human eye. The challenge is that we do not have ground-truth
images for these regions. In order to solve this problem, we
apply exemplar-based inpainting techniques in the pixel color
and gradient domains to fill these regions.

Figure 2 shows the region filling operation. It proceeds as
follows. For each pixel at the border of the region, we define
a patch centered at the pixel and compute a priority value
with the pixel information. A priority map can be created by

the priority values of all pixels on the border. For the patch
which has the maximum priority value, we search for a best-
fit patch in the other parts of the image and fill all the empty
pixels covered by the patch in the pixel color domain with
the corresponding pixel values of the best-fit patch and in the
gradient vector field with the corresponding gradients in the
best-fit patch. After that, we extract a new border of the region
in the updated image and repeat this process until the whole
region is filled in both pixel colors and gradients. After all
empty regions are filled, we can obtain a completed image
and an updated gradient vector field. The details are described
below.

Suppose that SA is the whole image area, Ω is the region
which needs to be filled (the empty region), Φ is other part
of the image except Ω, i.e., Φ = SA − Ω, δΩ is the border
of region Ω. We assign a confidence value C(p) to each pixel
for computing filling priority. The confidence value C(p) is
initialize to zero if the pixel is in the empty region, otherwise,
it is assigned to one.

As described above, for a pixel p on δΩ, we define a patch
Ψp centered at the pixel and compute its priority value P (p)
with

P (p) = R(p)F (p), (1)

where

R(p) is the confidence at pixel p;
F (p) is feature information around pixel p.

The confidence R(p) is related to the confidence values of
all pixels in its patch Ψp. The more pixels in the footprint
of this patch are already filled, the larger the confidence is at
this pixel. F (p) measures features around pixel p. The more
features can be detected around pixel p, the larger is the value
of F (p).

We compute a priority value P (p) for each pixel p on the
border δΩ and create a priority map with the priority values of
all pixels on the border. We search for a pixel pm and its patch
Ψpm

which has the maximum filling priority value Pmax(pm).
Once the pixel is found, we select its patch as the candidate
for filling.

Once the pixel pm with patch Ψpm
has been determined,

we search for a patch Ψq ∈ Φ which is most similar to patch
Ψpm

:

Ψq = arg min
Ψi∈Φ

S(Ψpm
,Ψi), (2)

where S(Ψpm
,Ψi) is a similarity measure, in our case the

summed squared difference between two patches.
When all empty regions are processed, we obtain a filled

image Sf and an updated gradient vector field (Gx, Gy).
2) Object Adding: For object adding, we need to update

the gradient vector field (Gx, Gy) with the gradients of objects
(Gox, Goy) which need to be added.

The objects can be selected from the source image or
from other images captured with cameras, loaded from disks,
or downloaded from websites. The object regions can be
segmented with segmentation algorithms or by manually.

Once we obtain the object image So, we compute its gradi-
ents (Gox, Goy) and update the gradient vector field (Gx, Gy)
by inserting the object gradients into a given position. As
above, suppose that SA is the whole area of the source
image, Ω is the object region, and Φ is the rest of the image
(Φ = SA − Ω). We have

Gx =
{

Gsx,∀p ∈ Φ
Gox,∀p ∈ Ω , Gy =

{
Gsy,∀p ∈ Φ
Goy,∀p ∈ Ω (3)

In the pixel color domain, we can also update the filled
image Sf with the color values of the object image So.

Sf =
{

S, ∀p ∈ Φ
So, ∀p ∈ Ω (4)

For each object to be added into the source image, we
update the gradient vector field (Gx, Gy) and the source image
Sf , until all objects are done.

3) Object moving: For object moving, the position of the
object changes from one place to another in the image. In
this case, we need to put the object to the new place, delete
the original one, and recover the deleted region. We combine
object removal and object adding operations to update the
gradient vector field (Gx, Gy) and the filled image Sf

Once the object to be moved is selected, its region Ωo can
be segmented. We compute the gradients (Gox, Goy) of So

and update the gradient vector field (Gx, Gy) by inserting the
object gradients (Gox, Goy) into the new position Ω1. The
filled image is updated with equation 4.

The next step is to fill the original region Ωo of the object.
We empty the region by removing the object. After specifying
the region border δΩo, we compute priority P (p) and patch
Ψp for each pixel p on the border. We search in the other parts
of the image for a patch Ψb which is the most similar to this
patch. Then we update color values for the empty part of the
patch in the source image and gradient values for the empty
part of the patch in the gradient vector field (Gx, Gy).

For each object, we repeat this process. Finally, we obtain
an updated image Sf and an updated gradient vector field
(Gx, Gy).

These object editing operations can be used all together or
separately for a source image. After the editing operations, we
can obtain a final updated image Sf and a final updated gra-
dient vector field (Gx, Gy). They will be used for recovering
a new composite image Ic in the next step.

B. Recovering a New Composite Image

Once the new gradient vector field (Gx, Gy) is created, the
next step is to recover a new composite image Ic from the
gradient vector field. In order to do this, we need to create
a divergence field and construct a Poisson equation using
the divergence field as guidance. After solving the Poisson
equation, we can recover the new composite image. We
could solve the Poisson equation directly from the divergence
field calculated from the gradients, but we get much faster
convergence by using the color values filled from the patches
and copied by pasting the insterted object as a starting point.

1) Poisson Equation Construction: In order to construct a
Poisson equation, we compute divergence field div(G) from
the gradient vector field (Gx, Gy). Suppose I(x, y) is our
composite image. We use the divergence as a guidance field
to construct the Poisson equation as

∇2I(x, y) = div(G), (5)

where

∇2 is the Laplacian operator,
∇2I(x, y) = ∂2I(x,y)

∂x2 + ∂2I(x,y)
∂y2 ;

div is the divergence operator;
div(G) is the divergence field ∂Gx

∂x + ∂Gy

∂y .

2) Using Boundary Conditions: Equation 5 is a linear
partial differential equation. In order solve this equation, we
must first specify boundary conditions. We use the Dirichlet
boundary condition [1].

Finally, the new composite image Ic can be recovered from
the gradient vector field (Gx, Gy) by solving the Poisson
equation 5 with boundary conditions. We use the result as
our final composite image.

IV. APPLICATIONS AND RESULT ANALYSIS

The gradient domain object editing approach is imple-
mented on camera phones. It has been tested and applied to ob-
ject editing for different kinds of pictures. Good performance
has been obtained. In this section, we present some example
applications and results which are obtained by running the
approach on a Nokia N900 phone with an ARM Cortex-A8
600 MHz processor, 256 MB RAM, 768 MB virtual memory,
and a 3.5 inch touch-sensitive widescreen display. It can also
be run on other mobile devices. The results are satisfying.

In order to simplify object editing on mobile phones, we
have designed a simple interactive user interface for object
selection. The user first specifies a region that contains an
object to be edited by clicking on the top-left and bottom-right
corners of the bounding box for that object. Then the object
will be cut out automatically and is ready for editing opera-
tions. During the cut-out process, the pixels in the bounding
box are first oversegmented by the meanshift algorithm, which
can better preserve the edge information than other low-level
segmentation algorithms, such as watershed or superpixels.
Then these small regions are clustered according to similarity
measures. When the background is complex, users need to
further specify the foreground by strokes. Our algorithm avoids
the expensive global optimization and requires less user input.
With the interface, users can select the editing objects very
conveniently, especially on touch screens.

Figure 3 shows an application of the approach to a picture
captured in a swimming pool scene. The top left shows the
source image. In object editing, we can move the selected
object from one place to another. The result is shown on the
top right of Figure 3. We move the object at the bottom from
right to left and recover the original area. Everything matches
very well. We remove two selected objects at the bottom left
and bottom right of the source image and recover the two

Fig. 3. Applications of object editing in a swimming pool scene.

Fig. 4. Applications for adding objects from other pictures.

original areas. The result is shown on the bottom left of Figure
3. Finally, we add more objects selected in the picture and the
result is shown at the bottom right of Figure 3. Again the
objects match the scene very well.

Figure 4 shows applications of the approach for adding
objects from other pictures. The first row of the figure shows
the process of adding an airplane into a picture captured in
outdoor scene. The left, middle, and right of this row shows
the source image, the object image, and the result, respectively.
From the result we can see that the approach can merge all
regions seamlessly and the color matches perfectly. The second
row shows the process of adding a large object from another
picture. From left to right of this row, it shows the source
image, the object image, and the result respectively. From the
result we can see that the approach works well.

Figure 5 shows more applications of the approach to differ-
ent scenes. The first row shows that the approach can be used
for duplicating the tower and putting it to a given position. The
second row shows that the approach can be used to remove
the walking person in the scene and recover the removed area.
The results are satisfying.

V. CONCLUSIONS AND DISCUSSION

We presented an approach for object editing in the gradient
domain and its implementation on mobile devices. The method
can be used for adding objects into a picture, deleting objects

Fig. 5. Applications to other scenes for adding and removing objects.

from a picture and recovering the deleted areas with best-fit
scenes in the picture, and moving objects from one place to
another inside the picture.

We implemented the method on mobile devices and tested
it with different images captured in different scenes. From
the application of the swimming pool picture we can see that
the approach can be used for adding, removing, and moving
objects inside a picture and the matches between objects and
the source image work very well. The removed areas can be
fully recovered. From the applications of adding objects from
other pictures we can see that the approach can also merge
and blend the outside objects with the source image well. The
result images can retain similar colors as the source images
and have good color transitions. From the applications to other
scenes we can see that the approach can be used for different
kinds of pictures and good results can be obtained.

REFERENCES

[1] Patrick Pérez, Michel Gangnet, and Andrew Blake, “Poisson image
editing,” ACM Trans. Graph., vol. 22, no. 3, pp. 313–318, 2003.

[2] Aseem Agarwala, Mira Dontcheva, Maneesh Agrawala, Steven Drucker,
Alex Colburn, Brian Curless, David Salesin, and Michael Cohen, “In-
teractive digital photomontage,” ACM Trans. Graph, vol. 23, no. 3, pp.
294–302, 2004.

[3] Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles, and Coloma
Ballester, “Image inpainting,” in SIGGRAPH ’00: Proceedings of the
27th annual conference on Computer graphics and interactive techniques,
pp. 417–424, 2000.

[4] Timothy K. Shih and Rong-Chi Chang, “Digital inpainting - survey
and multilayer image inpainting algorithms,” in Proceedings of Third
International Conference on Information Technology and Applications
ICITA 2005. pp. 15–24, 2005.

[5] Alexei A. Efros and William T. Freeman, “Image quilting for texture
synthesis and transfer,” in SIGGRAPH ’01: Proceedings of the 28th
annual conference on Computer graphics and interactive techniques, pp.
341-346, 2001.

[6] Michael Ashikhmin, “Synthesizing natural textures,” in I3D ’01:
Proceedings of the 2001 symposium on Interactive 3D graphics, pp. 217–
226, 2001.

[7] Jason C. Hung, Chun-Hong Hwang, Yi-Chun Liao, Nick C. Tang, and
Ta-Jen Chen, “Exemplar-based image inpainting base on structure
construction,” JOURNAL OF SOFTWARE, vol. 3, no. 8, pp. 57–64, 2008.

[8] Antonio Criminisi, Patrick Pérez, and Kentaro Toyama, “Object removal
by exemplar-based inpainting,” Computer Vision and Pattern Recognition,
IEEE Computer Society Conference on, vol. 2, pp. 721–728, 2003.

