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a b s t r a c t 

Diagnostic disagreements among pathologists occur throughout the spectrum of benign to malignant le- 

sions. A computer-aided diagnostic system capable of reducing uncertainties would have important clin- 

ical impact. To develop a computer-aided diagnosis method for classifying breast biopsy images into a 

range of diagnostic categories (benign, atypia, ductal carcinoma in situ, and invasive breast cancer), we in- 

troduce a transformer-based hollistic attention network called HATNet. Unlike state-of-the-art histopatho- 

logical image classification systems that use a two pronged approach, i.e., they first learn local representa- 

tions using a multi-instance learning framework and then combine these local representations to produce 

image-level decisions, HATNet streamlines the histopathological image classification pipeline and shows 

how to learn representations from gigapixel size images end-to-end. HATNet extends the bag-of-words 

approach and uses self-attention to encode global information, allowing it to learn representations from 

clinically relevant tissue structures without any explicit supervision. It outperforms the previous best net- 

work Y-Net, which uses supervision in the form of tissue-level segmentation masks, by 8%. Importantly, 

our analysis reveals that HATNet learns representations from clinically relevant structures, and it matches 

the classification accuracy of 87 U.S. pathologists for this challenging test set. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Breast cancer is the most common non-skin cancer in women 

ccounting for approximately 25% of all cancer instances world- 

ide ( Makki, 2015; DeSantis et al., 2019 ). The “gold standard”

or diagnosis of breast biopsy specimens relies on a pathologist’s 

isual assessment of tissue sections and cognitive processing of 

earned cytologic and morphological criteria, including architec- 

ural and cellular changes in the tissue, alterations of the tumor 

icroenvironment, and immune-mediated host response. Assess- 

ent of these morphological criteria is subjective and can be chal- 

enging for some cases, especially those in the middle of the breast 

iagnostic spectrum. Pathologists, even expert pathologists, can- 

ot always reach consensus on diagnostically challenging cases; 

iagnostic disagreement occurs throughout the spectrum of be- 

ign to malignant lesions ( Wells et al., 1998; Della Mea et al., 

997; Allison et al., 2014; Elmore et al., 2015 ). Diagnostic vari- 
∗ Corresponding author at: Paul G. Allen School of Computer Science and Engi- 

eering, University of Washington, Seattle, WA, 98195, USA 
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bility is a serious problem, as misclassifying breast cancer as be- 

ign may lead to delay and fatal progression of disease, while di- 

gnosing a benign lesion as malignant may result in significant 

orbidity including overtreatment, unnecessary emotional strain, 

nxiety, and increased cost of care. Misdiagnosis of breast cancer 

as been a leading cause for malpractice claims for decades ( Kern, 

001; Reisch et al., 2015 ). A computer-aided diagnostic system that 

ould support pathologists by reducing classification uncertainties 

ould have positive clinical impact. 

This paper introduces a self-attention-based network called 

 olistic AT tention Net work (HATNet) for classifying breast biopsy 

mages in an end-to-end manner. HATNet extends the self- 

ttention network of Vaswani et al. (2017) . The core principle is 

o factorize the input biopsy image into words (or patches) using a 

ag-of-words approach and then encode inter-word and inter-bag 

elationships in a hierarchical manner using self-attention. Self- 

ttention enables interaction between inputs (bags or words), al- 

owing the encoding of global information in an end-to-end fash- 

on. This helps the network learn representations from clinically 

elevant tissue structures without any supervision, as shown in 

ig. 1 . 

HATNet outperforms previous methods; it is 8% more accu- 

ate and about 2 × faster than the previous best network, Y-Net 

https://doi.org/10.1016/j.media.2022.102466
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2022.102466&domain=pdf
mailto:shapiro@cs.washington.edu
https://doi.org/10.1016/j.media.2022.102466
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Fig. 1. HATNet learns representations from clinically relevant biomarkers, allowing it to deliver similar performance to that of practicing pathologists. (a) HATNet for can- 

cer diagnosis and interpretability, (b) performance comparison with HATNet and 87 U.S. pathologists, and (c) agreement rate of salient regions with clinical biomarker 

annotations from experts. 
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 Mehta et al., 2018b ), and also matches the classification perfor- 

ance of participant pathologists on the test set. Our analysis fur- 

her suggests that HATNet pays attention to important biomark- 

rs (stromal tissue and ducts) in the diagnosis and classification 

f breast tissue, suggesting that there is clinical relevance to the 

ethod. To the best of our knowledge, this is the first work that 

1) uses transformers to classify histopathological images in an 

nd-to-end fashion and (2) correlates model decisions with clin- 

cally relevant structures. Our source code is available at https: 

/github.com/sacmehta/HATNet . 

. Related work 

Histopathological image classification Convolutional neural net- 

orks (CNNs) are state-of-the-art networks for image classification 

e.g., ResNet of He et al., 2016 ), including histopathological im- 

ge analysis ( Cire ̧s an et al., 2013; Cruz-Roa et al., 2014; Xu et al.,

015; Hou et al., 2016; Gecer et al., 2018; Mehta et al., 2018b ).

istopathological image classification methods often follow a bag- 

f-words model for learning representations, wherein a whole slide 

mage is treated as a bag, while image patches are treated as words 

or instances). 

Given the bag-of-words model, a first line of research fo- 

uses on extracting word-level representations using CNNs, which 

re then aggregated to produce image-level decisions. Feature 

election-based aggregation methods allows identification of rele- 

ant features in these word representations ( Cruz-Roa et al., 2014; 

u et al., 2015; Sun et al., 2019 ). However, such methods fail to

apture the heterogeneity of diagnosis categories. To address the 

imitations of these methods, multi-instance learning (MIL) based 

ethods have been proposed ( Hou et al., 2016; Mercan et al., 2017; 

ecer et al., 2018; Ilse et al., 2018; Wang et al., 2019b; Campanella 

t al., 2019; Lu et al., 2021a ). In a MIL framework ( Maron and

ozano-Pérez, 1998 ), a WSI is divided into words (or instances) and 

he same slide-level diagnostic label is assigned to all words within 

 particular slide. Because a slide-level label casts a weak label on 

ll words in a given slide, these approaches are also categorized as 

eakly supervised. In general, these approaches are two pronged. 

hey first generate word-level representations using a CNN and 

hen combine these representations using different methods to 

roduce a WSI-level decision. For instance, Hou et al. (2016) stud- 

es different approaches (e.g., thresholding, averaging, and major- 

ty voting) to combine word-level representations and produce a 

SI-level diagnostic decision. Campanella et al. (2019) uses re- 

urrent neural networks to combine word-level representations. 

u et al. (2021a) clusters word-level representations into positive 

nd negative categories, and then weighs positive word-level rep- 
2 
esentations by their relative scores to produce a WSI-level deci- 

ion. Because some of these approaches also identify salient re- 

ions before fusion (e.g., Hou et al., 2016; Lu et al., 2021a ), they 

re also known as saliency-based methods. 

A second line of research considers tissue type, size, and dis- 

ribution to produce image-level decisions ( Lu and Mandal, 2015; 

ehta et al., 2018a; Mercan et al., 2019 ). These approaches extend 

IL-based approaches to tissue-level. These approaches produce 

ord-level (or instance-level) segmentation masks, which are then 

ombined to produce image-level segmentation masks. Tissue-level 

tructural information (e.g., size and distribution) extracted from 

hese masks is then used to produce diagnosis categories. 

A third line of research integrates both saliency- and 

egmentation-based approaches ( Mehta et al., 2018b; Thome et al., 

019; Heker and Greenspan, 2020; Hou et al., 2020; Wang et al., 

021 ). These approaches simultaneously produce saliency maps 

nd segmentation masks, which are then combined to extract 

tructural information about tissues and to produce image-level 

ecisions. 

Though these methods are effective in classifying histopatho- 

ogical images, the context-capturing ability of saliency-based 

ethods is limited to words and are not able to encode spatial 

elationships between words. Also, some of these methods require 

anual threshold selection to identify salient regions. The latter 

egmentation-based methods address these limitations; however, 

cquiring tissue-level segmentation labels at a large scale is dif- 

cult, because experts are required for annotating images. This 

ork introduces a transformer-based method, HATNet, to address 

he limitations of existing methods. Similar to previous work, HAT- 

et is based on the bag-of-words model. However, unlike existing 

ethods, it hierarchically aggregates information at different levels 

f the model using self-attention, which allows learning of spatial 

elationships between words and bags. HATNet outperforms exist- 

ng methods (saliency-based or segmentation-based or their com- 

ination) by a significant margin. Moreover, this network learns 

epresentations from clinically relevant and variably-sized struc- 

ures. 

Spatial attention in vision models The most widely studied at- 

ention mechanism in visual recognition tasks (image classification, 

egmentation and object detection) is the spatial attention mech- 

nism ( Zhou et al., 2016; Selvaraju et al., 2017 ), which weighs the 

ctivation maps (or spatial planes) to identify regions of interest. 

nitially introduced to provide explanations for CNN outputs, vari- 

nts of this mechanism, including supervised ( Yang et al., 2019; 

ao and Gong, 2020 ) and unsupervised ( Hu et al., 2018; Xu et al.,

018; Huang et al., 2019; Wang et al., 2020 ) methods, have been 

ncorporated in CNNs to improve the performance across different 

https://github.com/sacmehta/HATNet
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isual recognition tasks ( Howard et al., 2019; Woo et al., 2018 ), in-

luding medical imaging ( Oktay et al., 2018; Abraham and Khan, 

019; Schlemper et al., 2019; Rundo et al., 2019; Tomita et al., 

019 ). In general, these networks introduce a spatial or channel- 

ise attention module within a CNN. For example, Attention U-Net 

 Oktay et al., 2018 ) incorporated an additive gating unit (similar to 

he squeeze-and-excitation unit of Hu et al. (2018) ) between the 

ncoder and the decoder blocks in the U-Net network to learn bet- 

er representations. Identifying salient regions in histopathological 

mages using spatial attention is difficult because of their large size 

usually of the order of gigapixels). This paper introduces an end- 

o-end transformer-based network for classifying histopathological 

mages. 

Vision transformers Recent work (e.g., Dosovitskiy et al., 

021; Touvron et al., 2021 ) has extended the transformers of 

aswani et al. (2017) (described in Section 3 ) for vision tasks. 

hough these approaches are effective in learning global represen- 

ations, they exhibit sub-standard optimizability (i.e., they require 

 large amount of training data and heavy regularization). This is 

ikely because vision transformers lack image-specific inductive bi- 

ses ( Xiao et al., 2021; Dai et al., 2021 ). Moreover, extending these

pproaches to histopathological images is challenging primarily be- 

ause of their large size (e.g., images in our dataset are 2 , 0 0 0 ×
arger than the ImageNet dataset of Russakovsky et al. (2015) ). 

his work extends transformers using bag-of-words model to clas- 

ify breast biopsy images in an end-to-end fashion. Specifically, 

e introduce a bottom-up decoding method that allows us to hi- 

rarchically encode the information from words to bags to im- 

ges and produce diagnostic categories. Because the spatial or- 

er of bags and words in each bag is preserved in HATNet’s top- 

own and bottom-up approach, HATNet implicitly incorporates in- 

uctive biases, similar to CNNs. We believe that this property, 

long with HATNet’s ability to encode global information, allows 

ATNet to learn representations from clinically relevant structures 

ithout any explicit supervision, and deliver better performance 

han CNN-based methods ( Section 5.5 ). We note that our obser- 

ation is consistent with recent parallel work on the ImageNet 

ataset ( Russakovsky et al., 2015 ), which also shows that vision 

ransformers benefit from spatial inductive biases (e.g., Xiao et al., 

021; Dai et al., 2021; Graham et al., 2021 ). 

. Background: Transformers 

Transformers ( Vaswani et al., 2017 ) allow inputs to interact with 

ach other, so that the model can automatically find important in- 

uts on which to focus. The transformer module consists of two 

arts: (1) multi-head attention (MHA) that models relationships 

etween inputs, and (2) a feed forward network (FFN) that learns 

ider representations. For an input X ∈ R 

N×d with N d-dimensional 

nstances (words and bags in our case), transformers learn the rep- 

esentations as: 

 = Transformer ( X ) = FFN ( MHA ( X Q = X , X K = X , X V = X ) ) (1) 

here X Q , X K , and X V are the inputs to the query, key, and value

ranches in the multi-head attention, respectively. For simplicity, 

esidual connections are not shown in Eq. (1) . 

Because of large spatial dimensions of histopathological images 

e.g., 11k × 10k in our dataset), learning visual representations of 

SIs with transformers is challenging. On an average, the vision 

ransformer of Dosovitskiy et al. (2021) will have about N = 430 k 

ords for a WSI in our dataset. Because of the quadratic compu- 

ational cost of MHA (i.e., O(N 

2 d) ), applying transfomers to WSIs 

s computationally intractable. This work extends the vision trans- 

ormers using the bag-of-words model for learning global repre- 

entations from very large images in an end-to-end fashion. 
3 
. HATNet: Holistic attention network 

State-of-the-art CNN-based classification networks stack con- 

olutional layers and down-sampling layers to learn representa- 

ions at multiple scales ( Simonyan and Zisserman, 2014; He et al., 

016 ). These networks are difficult to apply to histopathological 

mages, primarily because the resolution of these medical im- 

ges (e.g., 11k × 10k) are much larger than images used in stan- 

ard image classification tasks (e.g., 224 × 224 in the ImageNet 

ataset Russakovsky et al., 2015 ). To address this resolution chal- 

enge, a standard approach is to learn word-wise (or patch-wise) 

epresentations using a sliding window method ( Hou et al., 2016; 

ehta et al., 2018b; Gecer et al., 2018; Iizuka et al., 2020 ). Though

hese approaches are effective for histopathological image analysis, 

he context-capturing ability of such approaches is still limited to 

ord-level, and it is difficult to train such systems in an end-to- 

nd manner. 

This paper unifies the separate components of histopathologi- 

al image analysis (i.e., first learn the word-wise representations 

ndependently and then fuse these local representations to produce 

mage-level decisions) into a single neural network. Our network, 

 Holistic ATtention Network (HATNet), uses representations from 

he entire image at once to produce the diagnostic decision. This 

eans that HATNet reasons globally about the entire input im- 

ge and all variably-sized structures in the image. The HATNet de- 

ign enables end-to-end training and inference while delivering 

athologist-level performance. 

HATNet extends the transformer architecture using a bag-of- 

ords approach and is shown in Fig. 2 (a). We call our model a 

olistic ATtention Network (HATNet) because of its ability to learn 

nter-word and inter-bag representations in an end-to-end fashion. 

ith attention , we emphasize the progressive hierarchical refining 

rom words to bags to image to produce the classification output. 

riefly, HATNet first encodes inter-word representations using self- 

ttention ( Section 4.1 ). These representations are then combined to 

roduce bag-level representations ( Section 4.2 ). The inter-bag rep- 

esentations ( Section 4.3 ) are encoded and then combined to pro- 

uce image-level representations ( Section 4.4 ). These representa- 

ions are classified to produce the diagnosis category ( Section 4.5 ). 

ecause of the bottom-up decoding (words → bags → image), rep- 

esentations learned using HATNet are expressive and allow the 

dentification of important words and bags corresponding to clini- 

ally relevant structures in an image. We believe that this will help 

s build tools to annotate clinically important words and explain 

iagnosis decisions. 

.1. Word-to-word attention 

The word-to-word attention module, shown in Fig. 2 (b), is com- 

rised of a transformer unit ( Section 3 ) with multi-head attention 

nd a feed-forward network, allowing us to model the interactions 

etween words and identify important words in the whole slide 

mage. 

The input image I ∈ R 

w ×h with width w and height h is first

ivided into n non-overlapping bags I = 

(
B 

1 , · · · , B 

n 
)

∈ R 

w √ 
n 

× h √ 
n , 

here B 

i represents the i th bag. Each bag B 

i is then divided into m

on-overlapping words B 

i = 

(
W 

i 
1 
, · · · , W 

i 
m 

)
∈ R 

w √ 
nm 

× h √ 
nm , where W 

i 
j 

epresents the jth word in the i th bag. Following previous works 

e.g., Hou et al., 2016; Mehta et al., 2018b; Lu et al., 2021a ), the

ords W 

i 
j 

inside each bag B 

i are fed to a CNN to produce word- 

evel representations for each bag: B 

i 
cnn = ( ̂  W 

i 
1 
, · · · , ̂  W 

i 
m 

) ∈ R 

d . The

epresentations from the CNN does not encode inter-word relation- 

hips. Inter-word relationships in each bag B 

i 
cnn are encoded using 

he transformer unit ( Section 3 ) to produce contextualized word 
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Fig. 2. (a) HATNet: Our end-to-end holistic attention network for classifying breast biopsy images models the relationships between bags and words in a hierarchical manner 

using self attention. (b-d) Word-to-word, word-to-bag, and bag-to-bag attention modules are visualized; they allow the learning of relationships between bags and words 

using a bottom-up method. Note that the word-to-bag attention module for processing B cnn and the bag-to-image attention module for processing B b2 b are similar to (c) and 

therefore, we do not visualize them here. 
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mbeddings (CWEs) B 

i 
w 2 w 

∈ R 

m ×d as: 

 

i 
w 2 w 

= FFN 

(
MHA (X Q = B 

i 
cnn , X K = B 

i 
cnn , X V = B 

i 
cnn ) 

)
(2) 

he multi-head attention (MHA) enables the encoding of inter- 

ord relationships, and the feed forward network (FFN) allows the 

ystem to learn wider representations. 

.2. Word-to-bag attention 

The word-to-word attention produces CWEs for each bag. These 

ord-level representations are aggregated to produce bag-level 

epresentations (see Fig. 2 (c)) by linearly combining the words in- 

ide each bag B 

i 
w 2 w 

. Specifically, each word in B 

i 
w 2 w 

is mapped 

rom R 

d to R 

1 using a projection function � . Since each bag has 

 words, this projection function � produces a vector of length 

 . A linear transformation βw 2 b ∈ R 

m ×m and softmax functions are 

hen applied to produce m coefficients, which are then used to lin- 

arly combine words in B 

i 
w 2 w 

to produce bag-level representations 

 

i 

w 2 b ∈ R 

d as: 

 

i 

w 2 b = softmax 

(
�(B 

i 
w 2 w 

) βw 2 b 

)
B 

i 
w 2 w 

, 1 ≤ i ≤ n (3) 

Similarly, the word-level representations obtained from the 

NN for each bag B 

i 
cnn are also combined using � , linear trans- 

ormation 

̂ βw 2 b ∈ R 

m ×m , and the softmax function to produce bag- 

evel representations, ̂  B 

i 
w 2 b 

∈ R 

d . 

 

 

i 
w 2 b = softmax 

(
�(B 

i 
cnn ) 

̂ βw 2 b 

)
B 

i 
cnn , 1 ≤ i ≤ n (4) 

.3. Bag-to-bag attention 

The representation in B w 2 b encodes global information about 

ll words in a bag using multi-headed self-attention, while the 

epresentation in 

̂ B w 2 b encodes local information (obtained using 

he CNN) about all words in a bag to produce bag-level repre- 

entations. However, these bag-level representations do not en- 

ode information about surrounding bags. To encode inter-bag re- 

ationships, bag-to-bag attention (see Fig. 2 (d)) is applied. The bag- 

o-bag attention module is similar to the word-to-word attention 

odule ( Section 4.1 ), except that ̂ B w 2 b ( Eq. (4) ) is used as context
4 
o B w 2 b ( Eq. (3) ). With this attention, we are able to encode lo- 

al and global information in the input effectively. We note that 

his attention also mimics the typical skip-connection mechanism 

n neural networks ( He et al., 2016; Ronneberger et al., 2015 ) and

elps improve the performance. 

Multi-head attention is first applied to ̂  B w 2 b to encode inter-bag 

epresentations and produce ̂  B b2 b ∈ R 

n ×d as: 

 

 b2 b = MHA (X Q = ̂

 B w 2 b , X K = ̂

 B w 2 b , X V = ̂

 B w 2 b ) (5) 

o allow every bag ̂  B b2 b obtained from a CNN to attend over every 

ag B w 2 b obtained after word-level self-attention, another multi- 

ead attention in which ̂

 B b2 b serves as a query and B w 2 b serves as 

eys and values is applied to produce contextualized bag embed- 

ings (CBEs) B b2 b ∈ R 

n ×d . Mathematically, the bag-to-bag attention 

peration is defined as: 

 b2 b = FFN 

(
MHA (X Q = ̂

 B b2 b , X K = B w 2 b , X V = B w 2 b ) 
)

(6) 

.4. Bag-to-image attention 

The inter-bag representations encoded in B b2 b ∈ R 

n ×d are ag- 

regated to produce image-level representations. Similar to word- 

o-bag attention ( Section 4.2 ), these bag-level representations are 

ombined using a function � and linear transformation βb2 i ∈ 

 

n ×n to produce image-level representations I b2 i ∈ R 

d . 

 b2 i = softmax 
(
�(B b2 b ) βb2 i 

)
B b2 b (7) 

ecause of the bottom-up decoding (words to bags to image), these 

epresentations are expressive and allows the system to identify 

mportant words and bags in an image ( Fig. 3 ). 

.5. Classification and loss 

HATNet classifies I b2 i ∈ R 

d into C-diagnosis classes using a linear 

lassifier with weights βcls ∈ R 

d×C as: 

ˆ 
 = softmax 

(
I b2 i βcls 

)
(8) 

o train HATNet, the cross-entropy loss L between the ground 

ruth y and prediction ˆ y is minimized. During evaluation, the in- 

ex that has the highest confidence score in ˆ y is chosen as the 

redicted class label. 
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Fig. 3. Example results of bags and words identified using HATNet across different diagnostic categories. HATNet aggregates information from different parts of the image 

and different textures. Here, each sub-figure of the breast biopsy image is shown on the left of each panel with the top-30% bags (top-4 in green , the rest in blue ) identified 

using HATNet overlayed on the image. The upper right in each panel shows the top-4 bags, and the bottom right in each panel shows the top-4 words in each bag. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Statistics of breast biopsy whole slide image dataset. (a) shows the distribution of ROIs for training, validation, and test set while 

(b) shows the slide-wise distribution for training + validation and test set. The 206 ROIs corresponding to 121 slides in the training 

+ validation set are split randomly in 80:20 ratio to obtain training (164) and validation (42) ROIs. 

Diagnostic Number of ROIs Average ROI size 

Category Training Validation Test Total (in pixels) 

Benign 48 13 64 125 6,731 × 5,839 

Atypia 40 8 54 102 10,668 × 8,967 

DCIS 60 17 84 161 10,778 × 9,547 

Invasive 16 4 14 34 23,866 × 21,402 

Total 164 42 216 422 10,880 × 9,558 

Diagnostic Number of whole slide images 

Category Training + Validation Test Total 

Benign 39 39 79 

Atypia 32 30 62 

DCIS 39 39 79 

Invasive 11 11 22 

Total 121 119 240 
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. Experimental results 

.1. Dataset and evaluation 

Breast biopsy dataset and ground truth consensus reference The 

reast biopsy dataset consists of 240 whole slide images with 

aematoxylin and eosin (H&E) staining ( Elmore et al., 2015 ). The 

mage dataset was designed to include a higher prevalence of 

ases from diagnostic categories that have lower prevalence in 

he general population, providing a robust and challenging image 

ataset. A group of three expert pathologists independently in- 

erpreted these cases and then met to discuss the cases using a 

odified Delphi method to provide a reference consensus label 

er slide ( Custer et al., 1999 ). The pathologists’ assessments were 

rouped into 4 diagnostic categories: (1) benign without atypia 

including non-proliferative and proliferative without atypia), (2) 

typia, (3) ductal carcinoma in situ (DCIS), and (4) invasive car- 

inoma. The consensus labels are our ground truth diagnoses. The 

xpert pathologists also marked 422 regions of interest (ROIs) that 

est supported the diagnoses. Following previous studies on this 

ataset that aims to build directed computer-aided second opinion 

ystems ( Mercan et al., 2017; Mehta et al., 2018a; 2018b; Mercan 

t al., 2019; Gecer et al., 2018 ), we use these ROIs to train and eval-

ate our method, randomly splitting the dataset into 164 training, 
5 
2 validation, and 216 test ROIs (see Table 1 ). Note that clinically, 

ach slide can have multiple ROIs. Therefore, we ensured that all 

OIs corresponding to a slide are in the same set (training + vali- 

ation or test). 

Outcome metrics The following metrics were used to evaluate 

he performance of HATNet ( Tharwat, 2018 ) 

• Classification (or Top-1) accuracy counts the number of times 

the predicted label is the same as the ground truth label and is 

defined as: 

Accuracy = 

TP 

TP + FP + TN + FN 

where TP, FP, TN, and FN denotes the true positive, false posi- 

tive, true negative, and false negatives respectively. 
• F1-score is a harmonic mean of precision P and recall R and is 

defined as: 

F1-score = 

2 P R 

P + R 

where P = 

TP 
TP + FP 

and R = 

TP 
TP + FN 

. 
• Sensitivity measures the proportion of ROIs from positive cases 

that are correctly classified and is defined as: 

Sensitivity = 

TP 

TP + FN 
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• Specificity measures the proportion of ROIs from negative cases 

that are correctly classified and is defined as: 

Specificity = 

TN 

TN + FP 

• Area under receiver operating characteristics curve (ROC-AUC) 

is a graph that is obtained by varying the threshold for diagnos- 

tic decision, illustrating the discrimination ability of the classi- 

fier. 

The values of these metrics range between zero and one, and 

igher values of these metrics mean better performance. 

Accuracy data from U.S. pathologists To compare the results from 

ATNet with the interpretations of practicing U.S. pathologists, we 

sed data from a prior clinical study of 87 pathologists who inter- 

reted these same cases ( Allison et al., 2014; Elmore et al., 2015; 

lmore et al., 2017 ). Each pathologist interpreted a random subset 

f 60 cases and their diagnoses were classified into the same four 

iagnostic categories. This resulted in 22 independent diagnostic 

abels (on average) per slide and gave us a way to compare human 

athologist results to HATNet. 

Structure-level annotations for saliency-annotation agreement The 

ottom-up decoding (word to bag to image embedding) approach 

s expressive and allows HATNet to identify important words 

nd bags in a ROI. We rank the CWEs ( Section 4.1 ) and CBEs

 Section 4.3 ) based on their self-attention score obtained using the 

ransformer unit to identify the top- k words and bags respectively, 

here k is a variable used in our experiments. To determine if 

hese top-k words and bags are clinically relevant, we study the 

greement between these salient regions (bags and words) and 

linical biomarkers (stromal tissue and ductal regions) for which 

e have annotations from expert pathologists at the ROI-level as 

round truth ( Mehta et al., 2018a; Li et al., 2020 ). The Dice score is

sed as a quantitative metric to assess the agreement rate between 

he ground truth and the salient regions. Mathematically, the Dice 

core is equal to twice the area of overlap between the ground 

ruth and salient region divided by the total number of pixels in 

he ground truth and the salient region. The value of k is varied 

rom 10% to 60%. 

.2. Architecture 

The ROIs are split into non-overlapping bags with a spa- 

ial dimension of 1792 × 1792 . Each bag is then split into non- 

verlapping words with a spatial dimension of 256 × 256 , result- 

ng in m = 49 non-overlapping words. These words are fed to off- 

he-shelf CNNs to extract word-level representations. In our ex- 

eriments, three state-of-the-art light-weight CNNs pretrained on 

he ImageNet dataset ( Russakovsky et al., 2015 ) were studied: (1) 

SPNetv2 ( Mehta et al., 2019 ), (2) MobileNetv2 ( Sandler et al., 

018 ), and (3) MNASNet ( Tan et al., 2019 ). ESPNetv2 follows an

nception-style design ( Szegedy et al., 2015 ) and uses four simulta- 

eous 3 × 3 depth-wise convolutions with different dilation rates, 

llowing to learn multi-scale representations. MobileNetv2 follows 

 ResNet-style design ( He et al., 2016 ). To improve the computa- 

ional efficiency, MobileNetv2 uses 3 × 3 depth-wise convolutions 

nstead of 3 × 3 standard convolutions. MNASNet uses the same 

asic building block as MobileNetv2; however, it uses neural ar- 

hitecture search ( Zoph et al., 2018 ) to identify the optimal model 

onfiguration, which provides best trade-off between different pa- 

ameters. The proposed network is generic and any off-the-shelf 

eavy-weight CNNs can be used to extract word-level representa- 

ions. Heavy-weight networks, such as VGG ( Simonyan and Zisser- 

an, 2014 ) and ResNet ( He et al., 2016 ), were not explored because

f resource constraints. 
6 
The dimensionality of word-level representations varies from 

NN to CNN. Therefore, the output of a CNN is linearly projected to 

 256-dimensional space ( d = 256 ). To encode the inter-word and 

nter-bag representations, 4 heads were used in multi-head atten- 

ion. The function � was used to aggregate word-level representa- 

ions into bag-level representations ( Section 4.2 ) and bag-level rep- 

esentations into image-level representations ( Section 4.4 ). In our 

xperiments, three different functions were studied: (1) Euclidean 

istance (or L2 norm), (2) Manhattan distance (or L1 norm), and 

3) mean of a vector. 

.3. Training 

HATNet is trained end-to-end using the ADAM optimizer of 

ingma and Ba (2014) with a learning rate warm-up strategy. The 

earning rate is first warmed up from 10 −7 to 10 −4 in 600 itera- 

ions, and then the model is trained for the next 50 epochs with 

 learning rate of 10 −4 . After that, the learning rate is decayed by 

alf, and the model is trained for another 50 epochs. Our model 

akes about 36 h for training on two NVIDIA GeForce GTX 1080 

PUs, each with a memory of 8 GB. Gradients are accumulated 

or 8 iterations before the weights are updated, yielding an effec- 

ive batch size of 8 ROIs per update. Training data is augmented 

y randomly resizing ( 192 × 192 , 224 × 224 , 256 × 256 , 288 × 288 ,

20 × 320 ), flipping, and rotating (angle: −10 ◦ to 10 ◦) the words. 

or evaluation, a single model is obtained by averaging the best 5 

alidation checkpoints. Compared to the best model on the valida- 

ion set, averaged models delivered 1 to 1.5 points higher accuracy. 

.4. Baseline networks 

We compare our method with the following methods: 

1. Bag-of-words model with hand-crafted features ( Gecer et al., 

2018 ): This method follows a multi-instance learning (MIL) 

framework and splits an input image (bag) into words. Fol- 

lowing Basavanhally et al. (2013) , LAB and LBP histogram fea- 

tures are extracted from these words. These word-level features 

are concatenated and then classified using logistic regression 

into diagnostic categories with and without saliency. Similar 

to a standard practice in MIL-based saliency approaches ( Hou 

et al., 2016; Wang et al., 2018 ), the class with majority voting 

in saliency maps is selected as a diagnostic category. The re- 

sults of these approaches are summarized in rows R2 and R3 of 

Table 2 . 

2. Bag-of-words model with deep features ( Gecer et al., 2018 ): 

This method extends the MIL framework with CNNs. Specifi- 

cally, word-level representations are obtained using a deep con- 

volutional neural network, FCN (with VGG as a backbone) of 

Long et al. (2015) . These representations are used to identify 

discriminative or salient regions. In addition to majority voting- 

based method, a learned fusion method of Hou et al. (2016) is 

also tried to model the relationships between words. The re- 

sults of these approaches are summarized in rows R4-R7 of 

Table 2 . 

3. Multi-resolution segmentation network (MRSegNet) 

( Mehta et al., 2018a ): MRSegNet has two stages: (1) tissue-level 

segmentation and (2) diagnostic classification. The first stage is 

a multi-resolution encoder-decoder network which combines 

the outputs of many words (or patches) at different resolutions 

to reduce segmentation errors. In the second stage, histogram 

and co-occurrence features are extracted from tissue-level seg- 

mentation masks, which are then classified using a multi-layer 

perceptron into different diagnostic classes. The results of this 

method are given in row R8 of Table 2 . 
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Table 2 

Comparison with state-of-the-art networks. HATNet outperforms existing methods by a significant margin. Network parameters are reported for single models 

only. We use majority voting for ensembling the models. † These works split the dataset (240 slides) into training (180 slides) and validation (60 slides) sets, and 

reports the performance on validation set. For completeness, we only report the accuracy of these methods. Note that the performance of networks in R8-R14 is on 

the same independent test set of 119 slides (training+validation/test slides: 121/119; Table 1 ). 

Row Model Parameters Evaluation metrics 

No. CNN Attn. Accuracy F1-score Sensitivity Specificity ROC-AUC 

R1 Pathologists (avg. of 87 practicing pathologists) 0.70 0.71 0.70 0.90 

R2 † LAB & LBP hand-crafted features (w/o saliency) 0.28 

R3 † LAB & LBP hand-crafted features (w/ saliency) 0.45 

R4 † Bag-of-word (majority voting w/o saliency) 0.23 

R5 † Bag-of-word (majority voting w/ saliency) 0.55 

R6 † Bag-of-word (learned fusion w/o saliency) 0.38 

R7 † Bag-of-word (learned fusion w/ saliency) 0.55 

R8 MRSegNet with histogram and co-occurence features 26.03 M NA 0.55 0.56 0.55 0.85 

R9 MRSegNet with structural features 26.03 M NA 0.56 0.57 0.56 0.85 

R10 Y-Net 3.91 M NA 0.62 0.62 0.62 0.87 

R11 HATNet (w/ ESPNetv2) 2.21 M 2.37 M 0.67 0.64 0.67 0.89 0.89 

R12 HATNet (w/ MobileNetv2) 2.22 M 2.37 M 0.66 0.65 0.66 0.89 0.88 

R13 HATNet (w/ MNASNet) 3.10 M 2.37 M 0.70 0.70 0.70 0.90 0.90 

R14 HATNet (Ensemble) NA NA 0.71 0.70 0.71 0.90 0.90 
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Table 3 

Comparison with Y-Net in terms of accuracy and inference time . HATNet is fast 

and accurate compared to previous best model (Y-Net). The two-tailed p-value be- 

tween HATNet and Y-Net is less than 0.0 0 01. Inference time is measured on a ma- 

chine with a single NVIDIA GTX 1080 Ti GPU, and is an average across 100 trails on 

the validation set. The accuracy is an average of three models trained with different 

random seeds (0, 100, and 10 0 0). The training time for HATNet and Y-Net is about 

1.5 days. The machine used for measuring inference time has four NVIDIA GTX 1080 

Ti GPU, 64 GB RAM, and 64 core Intel®Xeon®CPU. For inference time, we used 

only one GPU and disabled the other three GPUs by using CUDA_VISIBLE_DEVICES = 0 

command. 

Model Accuracy Inference time 

Y-Net 0.62 ± 0.0074 3 . 93 s ± 20 ms 

HATNet (w/ ESPNetv2) 0.67 ± 0.0021 2 . 63 s ± 19 ms 

HATNet (w/ MobileNetv2) 0.66 ± 0.0032 2 . 17 s ± 10 ms 

HATNet (w/ MNASNet) 0.70 ± 0.0024 2 . 13 s ± 12 ms 
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4. Structural features ( Mercan et al., 2019 ): This method extracts 

structural features from tissue-level segmentation masks pro- 

duced using MRSegNet. These features allows capturing struc- 

tural changes in ductal regions, an important biomarker for 

cancer diagnosis in the breast ( Kinne et al., 1989; Page and 

Jensen, 1996; Zhang et al., 2012; Shah et al., 2016 ). The results 

are summarized in row R9 of Table 2 . 

5. Y-Net ( Mehta et al., 2018b ): CNNs with multi-scale field of view 

yield better performance across different vision tasks (e.g., He 

et al., 2015; Chen et al., 2017; Zhao et al., 2017; Mehta et al., 

2019; Wang et al., 2019a ). These methods re-sample either 

the feature maps at different spatial resolutions (e.g., SPPNet 

He et al., 2015 and PSPNet Zhao et al., 2017 ) or the weights of a

convolutional kernel using dilated convolutions (e.g., DeepLabv3 

Chen et al., 2017 and ESPNetv2 Mehta et al., 2019 ) to learn 

multi-scale representations. Y-Net uses these multi-scale view 

approaches to learn better representations. It also general- 

izes the U-Net architecture of Ronneberger et al. (2015) and 

adds a classification branch, which allows it to jointly predict 

the tissue-level segmentation mask and the saliecy map. The 

saliency map is then combined with the tissue-level segmenta- 

tion mask to produce a discriminative segmentation mask. Sim- 

ilar to MRSegNet, Y-Net extracts histogram and co-occurrence 

features, which are then used for classifying diagnostic classes. 

The results are summarized in row R10 of Table 2 . 

.5. Main results 

Comparison with existing methods Table 2 shows that HAT- 

et outperforms state-of-the-art methods significantly. For exam- 

le, HATNet (R13) improves the performance of the best saliency- 

or MIL-) based models (R5, R7) by about 15%. When compared to 

pproaches that use tissue-level segmentation masks (R8-R10) to 

apture the structural changes in biopsies, HATNet delivers better 

erformance. In particular, HATNet improves the F1-score of the 

revious best segmentation-based approach (R10) by 8%. Overall, 

hese results shows that HATNet is effective. We note that ensem- 

ling the three HATNet models (R14) further improves the accuracy 

nd senstivity by 1%. 

Furthermore, Table 3 shows that HATNet is fast. HATNet with 

NASNet is about 1 . 8 × faster and 8% more accurate than the pre-

iously best reported network, i.e., Y-Net. The two-tailed p-value 

etween HATNet and Y-Net is less than 0.0 0 01, which indicates 

hat the accuracy improvement of 8% is statistically significant. 

lso, HATNet is a stable network because run-to-run variation with 
7 
hree different random seeds (0, 100, and 10 0 0) is low (about 

.2%). 

Comparison with pathologists HATNet achieves similar perfor- 

ance to practicing U.S. pathologists who interpreted these same 

ases in all quantitative metrics (HATNet (R13) vs. practicing 

athologists (R1): 0.70 vs. 0.70 (accuracy), 0.70 vs. 0.71 (F1-score), 

.70 vs. 0.70 (sensitivity) and 0.90 vs. 0.90 (specificity)). We further 

nalyze the misclassifications of HATNet and pathologists. For each 

ase i , we obtain a pathologist score p i , where p i is the percentage

f pathologists who misdiagnosed the case. The average over all 

he p i ’s for all these cases was 0.61. So, we can say that on an av-

rage if HATNet misdiagnoses a case, 61% of the pathologists who 

iagnosed the same case also got it wrong. Therefore, we believe 

hat HATNet can act as a directed second opinion system. For more 

etails, see our work ( Lu et al., 2021b ) that uses HATNet to under-

tand the visual similarities between diagnosed and misdiagnosed 

ases. 

Saliency-annotation agreement analysis Several clinical studies 

ave shown that ductal regions and stromal tissue are important 

io-markers for diagnosing breast cancer ( Kinne et al., 1989; Page 

nd Jensen, 1996; Arendt et al., 2010; Zhang et al., 2012; Conklin 

nd Keely, 2012; Mao et al., 2013; Shah et al., 2016; Plava et al., 

019; DeSantis et al., 2019 ). Briefly, ducts are thin tubes in the 

reast and are responsible for carrying milk from lobules (milk 

lands) to the nipples. These regions are useful in identifying can- 

ers that began in milk ducts, for example, DCIS ( Kinne et al., 1989;

age and Jensen, 1996; Shah et al., 2016 ). On the other hand, the 

troma is part of the breast tissue with a structural and develop- 
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Fig. 4. HATNet identifies ducts of variable size and texture as an important structure. In (a–f), ductal regions (marked by pathologists) are shown in red, while the top-50% 

bags predicted by HATNet are shown in blue. In (g), the dice score is plotted between ductal regions and top-k bag predictions (k varies from 10% to 60%) for different 

diagnostic classes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

m

g

s

t

a

i

A  

t

t

 

u

w

s

w

H

s

r

r

s

fi

5

d

E

1

t

E

D

l

o

s

f

a

c

t  

o

t

(

t

T

b

p

n

ental role and may be involved in tumor promotion and pro- 

ression. Many clinical studies have underlined the importance of 

troma in tumor progression along with its contribution to risk fac- 

ors that determines tumor formation ( Arendt et al., 2010; Conklin 

nd Keely, 2012 ). 

Table 2 shows that HATNet learns better representations, result- 

ng in significant performance gains compared to existing methods. 

 closer analysis in Figs. 4 and 5 reveals that our model pays at-

ention to these important bio-markers, which helps it to achieve 

hese gains. 

• Ductal regions: To evaluate if our model pays attention to duc- 

tal regions or not, we compute the overlap between ductal re- 

gions (marked by experts) and top- k bag predictions of our 

model using dice score. 3 We use bags for saliency-annotation 

agreement with ductal regions because these variably-sized re- 

gions are large in size. Fig. 4 g shows the results. When consid- 

ering top-50% bag predictions, HATNet achieves a dice score of 

0.68. Furthermore, Fig. 4 a–f shows that HATNet is able to differ- 

entiate between ducts of variable size and texture. This shows 

that HATNet identifies ductal regions as an important structure. 
• Stromal tissue: We compute the overlap between pixel-level 

annotations of stromal tissue and top- k words predicted by our 

model to determine whether our model pays attention to stro- 

mal tissue. We use the dice score to measure the overlap and 

vary k from 10% to 60%. Figure 5 g shows that HATNet achieves a

dice score of about 0.75 when the top-50% word predictions are 

considered. This indicates that HATNet also identifies stroma as 

an important tissue. This is further strengthened by visualiza- 

tions in Fig. 5 b–f, which shows that the majority of the top-50% 

words lie in stromal tissue. 

The ability of HATNet to learn representations at different gran- 

larities (bags and words) allowed us to correlate model decisions 

ith structurally different clinical entities, demonstrating that 
3 We are interested in evaluating if our model pays attention to ductal regions or 

troma region. Therefore, we only use the top- k bags or words inside these regions 

hile computing the dice score. 

n

o

i

w

8 
ATNet is effective in modeling inter-bag and inter-word relation- 

hips. Though HATNet’s model decisions correlate with clinically- 

elevant structures, we want to note that it learns content-aware 

epresentations and pays attention to regions other than ducts and 

tromal tissue. For example, in Fig. 3 a, the most important identi- 

ed bags and words do not belong to ducts or stromal tissue. 

.6. Model ablations 

Effect of function � Table 4 compares the performance of three 

ifferent � functions with ESPNetv2 as a base feature extractor. 

uclidean distance delivers the best performance. The model has 

% higher accuracy, sensitivity, and specificity values compared to 

he other two functions. In the rest of the experiments, we use 

uclidean distance as a � function. 

HATNet with words only Standard vision transformers (e.g., 

osovitskiy et al., 2021; Touvron et al., 2021 ) uses only words for 

earning visual representations. To understand the effectiveness of 

ur hierarchical approach, we trained HATNet with words only. Re- 

ults in Table 5 shows that hierarchical approach improves the per- 

ormance over word-only model significantly. These observations 

re consistent with concurrent works that also shows that hierar- 

hical approaches help vision transformers learn better representa- 

ions (e.g., Liu et al., 2021; Mehta and Rastegari, 2022 ). In the rest

f our experiments, we use both bags and words. 

Effect of positional encoding Positional embeddings are used in 

ransformer-based models to incorporate positional information 

 Vaswani et al., 2017; Dosovitskiy et al., 2021 ). We found that 

he HATNet is insensitive to positional embeddings (see Table 5 ). 

his is likely because the top-down (image to bags to words) and 

ottom-up (words to bags to image) approach in the HATNet im- 

licitly encodes the position of words and bags. As a result, it does 

ot require any explicit positional information. Therefore, we do 

ot use positional embeddings in the rest of our experiments. 

Effect of bag and word sizes Table 6 compares the performance 

f our model with three different bag-word size configurations us- 

ng ESPNetv2 as a base feature extractor. The bag size of 1792 and 

ord size of 256 delivered slightly better performance than the 
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Fig. 5. HATNet identifies stroma as an important tissue. In (a-e), each sub-figure is organized from left to right as: breast biopsy image, stroma tissue labeled by pathologists, 

and the top-50% words (words that belong to stroma tissue are shown in pink while the remaining words are shown in blue ) identified using our model. The remaining 

50% words are shown in white. In (f), we plot the dice score between stromal tissue and top-k word predictions (k varies from 10% to 60%) for different diagnostic classes. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 

Effect of different � functions. 

Function � Accuracy F1-score Senstivity Specificity ROC-AUC 

Euclidean distance 0.67 0.64 0.67 0.89 0.89 

Manhattan distance 0.66 0.64 0.66 0.88 0.89 

Mean 0.66 0.64 0.66 0.88 0.89 

Table 5 

Effect of hierarchical learning and positional embeddings (PE). 

Model Accuracy F1-score Senstivity Specificity ROC-AUC 

HATNet (words) 0.50 0.50 0.50 0.83 0.79 

HATNet (words + bags) 0.67 0.64 0.67 0.89 0.89 

HATNet (words + bags + PE) 0.65 0.65 0.65 0.87 0.88 

Table 6 

Effect of different bag and word sizes. Note the number of words in each configuration are the 

same (i.e. 49). 

Bag size Word size Accuracy F1-score Senstivity Specificity ROC-AUC 

1792 × 1792 256 × 256 0.67 0.64 0.67 0.89 0.89 

2016 × 2016 288 × 288 0.67 0.64 0.67 0.89 0.88 

2240 × 2240 320 × 320 0.66 0.64 0.66 0.88 0.89 
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thers. In the rest of the experiments, we use this bag-word size 

onfiguration. 

Effect of ̂ B w 2 b We noted in Section 4.3 that ̂ B w 2 b aggregates lo- 

al information and mimics skip-connections. To study its impor- 

ance, we replaced X Q = ̂

 B b2 b (which was derived from 

̂ B w 2 b in 

q. (5) ) with X Q = B w 2 b in Eq. (6) . As a result, the accuracy of
9 
ATNet dropped by 2% (0.67 to 0.65). This shows that informa- 

ion encoded via this skip-connection helps learn better represen- 

ations. Our findings are consistent with recent (and parallel) work 

n vision transformers on the ImageNet dataset ( Russakovsky et al., 

015 ), which also shows that vision transformer-based networks 

eliver better performance when both local and global information 



S. Mehta, X. Lu, W. Wu et al. Medical Image Analysis 79 (2022) 102466 

Fig. 6. Class-wise performance comparison of HATNet with different CNN architectures. Overall, the models with MNASNet as a base feature extractor performs a little better 

than the other two networks across different metrics. However, MNASNet has a low sensitivity score for Invasive Cancer, while MobileNetv2 does much better in this regard. 

Fig. 7. Receiver operating characteristic (ROC) curves of HATNet with different CNN architectures. The models with MNASNet as a base feature extractor has slightly higher 

area under curve (AUC) than the other two. 
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re encoded in contrast to global information only (e.g., Xiao et al., 

021; Dai et al., 2021 ). Therefore, we leave Eq. (6) as is and use

 Q = ̂

 B w 2 b in the rest of our experiments. 

Effect of different base feature extractors Figure 6 compares the 

lass-wise performance of HATNet with three different base feature 

xtractors. HATNet with MNASNet delivers similar or better class- 

ise F1-score, sensitivity, and specificity values, except for the in- 

asive case where MobileNetv2 has a higher sensitivity value. 

Figure 7 plots the overall and class-wise receiver operating 

haracteristics of HATNet with different base feature extractors. We 

bserve that HATNet with MNASNet delivers the best performance 

higher ROC-AUC) compared to the other two networks. Similarly, 

n Table 2 (R11-R13), HATNet delivers the best overall performance 

ith MNASNet across different evaluation metrics. HATNet with 

NASNet has 6% and 5% higher F1-score than with ESPNetv2 and 

obileNetv2, respectively. 

. Discussion 

This paper introduces a novel deep learning approach, HATNet, 

or classifying regions of interest (ROIs) of breast biopsy whole 

lide H&E images. Our experimental results showed that HATNet is 

ble to achieve a pathologists-level performance on a challenging 

ataset that includes the full spectrum of diagnostic cases. Impor- 

antly, HATNet pays attention to ductal regions and stromal tissue, 

wo important clinical biomarkers in breast cancer diagnosis. 

Earlier studies on diagnosing breast cancer using machine 

earning have focused on binary classification tasks, i.e., be- 

ign vs. malignant or DCIS vs. non-DCIS ( Spanhol et al., 2015; 

ruz-Roa et al., 2017; Bolhasani et al., 2020 ). For example, 

panhol et al. (2015) introduced BreakHis dataset and studied 

he binary classification (benign vs. malignant) using CNNs. Each 

istopathological sample in the dataset has a spatial dimension 

f 700 × 460 pixels. Because the full spectrum of breast cancer 
10 
iagnosis is more complex then the binary classification tasks 

nd the spatial resolution of samples in clinical settings is an or- 

er of magnitudes larger than the ones in the BreakHis dataset, 

resta et al. (2019) introduced the BACH dataset that provides 

ulti-class diagnostic annotations (benign, DCIS, and invasive) for 

0 variably-sized whole slide images (training set: 30; validation 

et: 10). The dataset also provides the performance of two pathol- 

gists as a reference. Similar to the BACH dataset, we introduced 

 breast biopsy dataset in our previous studies that provide multi- 

lass diagnostic annotations (benign, atypia, DCIS, and invasive) for 

40 variably-sized whole slide images, including an independent 

est set of 119 whole slide images. Unlike the BACH dataset, the 

mages in our dataset were interpreted by 87 U.S. pathologists in 

n independent study; allowing us to compare the performance of 

ATNet with pathologists while accounting for the variability in 

iagnostic decisions among pathologists. 

Most of the histopathological image classification networks 

or different tissue types (e.g., lung Hou et al., 2016 and colon 

aczkowski et al., 2019 cancer) are multi-stage. Similar to these 

etworks, the baseline networks in our study also have multiple 

tages. For example, Y-Net of Mehta et al. (2018b) has two stages. 

uch approaches are hindered in learning global representations. 

he HATNet brings these different stages under one umbrella and 

nables learning local (word-wise) and global (across words and 

ags) representations in a hierarchical and end-to-end fashion. This 

bility of aggregating information hierarchically at different levels 

image, bags, and words) allows HATNet to learn representations 

rom clinically relevant areas. 

Previous work on this dataset used features extracted from 

issue-level segmentation masks for diagnostic decisions. The ROI- 

evel classification system of Mercan et al. (2019) used structural 

eatures extracted from tissue-level segmentation masks to predict 

he diagnosis. Using the same 4-classes as the current study, their 

ystem achieved an overall accuracy of 0.56 (R9 in Table 2 ). Y- 



S. Mehta, X. Lu, W. Wu et al. Medical Image Analysis 79 (2022) 102466 

N

a

i

o

p

o

s

f

s

t

o

t

(  

w

c  

m

m

C

s

e

s

s

c

w

a

t

t

t

s

D

c

2

f

c

p

o

a

(

d

n

o

a

(

H

p

n

c

a

d

7

h

i

E

p

a

d

w

t

r

i

t

d

t

c

c

D

c

i

C

i

&

e

v

m

i

r

A

t

R

A

A

A

A

B

B

C

C

C

C

C

C

C

D

et of Mehta et al. (2018b) allowed for simultaneous classification 

nd segmentation, and achieved a 4-class accuracy of 0.62 (R10 

n Table 2 ). HATNet achieves a classification accuracy of 0.70 and 

utperforms these prior methods by a significant margin. Besides 

erformance improvement, HATNet is 1 . 8 × faster than the previ- 

us best model, Y-Net. 

Unlike previous work, HATNet identifies important duct and 

tromal image areas of each ROI. HATNet uses self-attention at dif- 

erent levels (bags and words) to identify the salient areas. We 

tudied the agreement between these salient areas and the annota- 

ions of clinical biomarkers (ducts and stroma) from expert pathol- 

gists. The fact that many of the bags that HATNet found impor- 

ant belonged to ductal regions also correlates with clinical studies 

 Kinne et al., 1989; Page and Jensen, 1996; Shah et al., 2016 ) as

ell as our previous analysis of the importance of ducts in breast 

ancer diagnosis ( Mercan et al., 2016; Li et al., 2020 ). The fact that

any of the words that HATNet found important belonged to stro- 

al tissue also correlates with clinical studies ( Arendt et al., 2010; 

onklin and Keely, 2012 ) and our previous analyses of stromal tis- 

ue in diagnostic classification ( Mehta et al., 2018a; 2018b; Mercan 

t al., 2019 ). We emphasize that unlike our previous studies that 

upervised CNNs with the information about ducts and stromal tis- 

ue, HATNet figured out the importance of these regions (ductal ar- 

hitecture and stromal organization) in the diagnostic classification 

ithout explicit supervision about these biomarkers. How stroma 

nd ducts may be architecturally important for classification is a 

opic for further study. 

Strengths and limitations This study introduces a novel diagnos- 

ic system using self-attention that allows the learning of represen- 

ations in an end-to-end manner. One strength of this work is its 

tudy of the full clinical range of breast pathology (benign, atypia, 

CIS, and Invasive) on an independent test set, not just a binary 

lassification of tissue (e.g., invasive vs. non-invasive Spanhol et al., 

015 , DCIS or non-DCIS Bolhasani et al., 2020 ). Another distinctive 

eature of our study is the ability to compare the classification de- 

isions of our system with the data from multiple practicing U.S. 

athologists who independently interpreted the same cases. 

Despite the great promise of deep learning methods in pathol- 

gy, we recognize the limitations of our study. HATNet was trained 

nd validated on 204 ROIs (or 121 cases) and tested on 216 ROIs 

or 119 cases). HATNet should be tested on a different indepen- 

ent set of breast biopsy cases to study its unbiased effective- 

ess. Also, this work only studies breast tissue. It should be tested 

n different tissue types to study its generalizability. Addition- 

lly, similar to previous work on this dataset and other datasets 

e.g., BreakHis Spanhol et al., 2015 and BACH Aresta et al., 2019 ), 

ATNet was designed as a directed second opinion system wherein 

athologists mark a region that they want to study carefully for fi- 

al diagnosis. However, HATNet is generic and we believe that it 

an be extended to entire whole slide images either directly using 

 transformer-based bag-of-words approach ( Fig. 2 ) or using a ROI 

etection system ( Mercan et al., 2016; Gecer et al., 2018 ). 

. Conclusion 

A diagnosis of cancer and pre-invasive risk lesions relies on 

uman pathologists, and yet these diagnoses can be challeng- 

ng, with marked intra- and inter-observer variability reported 

lmore et al. (2015) . With whole slide digital imaging now ap- 

roved by the FDA, we will see growth in available data to develop 

nd validate machine learning tools to help support pathologists in 

ifficult cases. We introduced an end-to-end attention-based net- 

ork, HATNet, for classifying breast biopsy images. HATNet ex- 

ends bag-of-words models using Transformers to learn global rep- 

esentations. Our approach effectively aggregates inter-word and 

nter-bag representations, allowing HATNet to learn representa- 
11
ions from clinically relevant areas and helping us explain its pre- 

ictions. We believe that this ability to point out areas impor- 

ant to its diagnosis will facilitate improved interactions between 

omputer-aided diagnostic tools and clinicians, helping to reduce 

lassification uncertainties. 
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