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Abstract

A general framework is proposed for solving groupwise

pose normalization problems and is analyzed in detail un-

der different feature spaces. The analysis shows that using

principal component analysis for pose normalization is a

special case of using the proposed framework under a spe-

cial feature space. The experimental results on two cranio-

facial datasets show the proposed method achieved promis-

ing results for solving groupwise pose normalization prob-

lems for craniofacial applications.

1. Introduction

3D shape analysis is an important tool for both recog-

nition and retrieval of 3D shapes [19]. If two 3D shapes

are members of the same class of objects, their comparison

is simplified if they are both canonical views of their class.

For example, if the shapes being compared are human faces,

it is common and natural to have them both facing forward.

For other shape classes, such as kitchenware or furniture,

there may be no natural canonical pose, but it is possible

and desirable to define such a pose for purpose of analysis.

Given a 3D shape of a particular class, pose normalization

is the process of applying a 3D transformation to the shape

to transform it to a canonical pose for its shape class.

Most algorithms for pose normalization operate on a sin-

gle 3D shape or try to bring two shapes into alignment

[19][22][9][13]. Single-object pose normalization is used

in 3D object retrieval, in which all models are considered

separately since the group of an unseen object is unknown.

Two-object pose normalization is used for alignment tasks.

In some analysis tasks, particularly in the medical domain,

a set of 3D models of a single class is provided and the

analysis requires that all of those models be aligned in a

single canonical pose. The methodology proposed here is

for the last case and is motivated by our work on 3D cran-

iofacial image analysis. Our data are sets of 3D meshes of

children’s heads from a 3dMD R©12-camera stereo imaging

system. The children in the study have one or more cranio-

facial abnormalities such as midface flattening, cleft lip, or

cleft palate. Because many of them are infants or toddlers,

they cannot be expected to sit still for long or to be able to

keep their heads in a specified pose. In order to analyze the

abnormalities and compare individuals, we must first pose

normalize the meshes so that all the heads face in the same

direction.

Thus, the problem of interest in this paper is groupwise

pose normalization: how to jointly pose normalize a group

of 3D shape models of the same class. In this paper, the

groupwise pose normalization problem is formulated as an

optimization problem, and a gradient descent approach is

proposed solving the optimization problem.

There are three main contributions to our work. First,

the groupwise pose normalization problem is formally de-

fined. Second, a general framework for solving this prob-

lem is proposed and is analyzed to show that using principal

component analysis (PCA) for pose normalization [22] is a

special case of using the proposed framework under a par-

ticular feature space. Third, the framework is applied to the

problem of pose normalization of 3D meshes of children’s

heads and experimental results are given.

2. Related Work

We will discuss related work in pose normalization as

well as groupwise techniques for 3D data analysis.

2.1. Pose normalization

Let X = (V,E) denote a triangular mesh model of a 3D

shape, where V and E are the sets of vertices and edges in

the mesh model, respectively. Vranic and Saupe [22] pro-

posed to use principal components analysis (PCA), a com-

mon approach to modeling shape, for pose normalization.

Given the mesh X , PCA computes its scatter matrix S and

finds a projection axis b that maximizes btSb. Intuitively,

the total scatter of the projected samples is maximized after

the projection of the samples onto b. The optimal Q projec-

tion axes bq, q = 1, . . . , Q that maximize the above crite-

rion are the eigenvectors of S corresponding to the largest
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Q eigenvalues, {λq| q = 1, . . . , Q}. The three eigenvectors

are then chosen as the resultant x,y,z axes, respectively.

While PCA is a standard, easy-to-use approach, it is not

effective in general shape recognition and retrieval prob-

lems [19]. For this reason, several different PCA variants

[23][15][14][11] have been proposed to deal with the prob-

lems faced by basic PCA for pose normalization. Other

non-PCA approaches include a rectilinearity measure [10]

and a symmetry-based measure [1].

While most pose normalization algorithms operate on a

single 3D object, some methods have been proposed for

aligning two 3D models. Kazhdan [9] used a spherical func-

tion to represent a 3D shape model and minimized the L2-

distance between pairs shapes. Martinek and Grosso [13]

used an image-like representation to store depth informa-

tion from all perspectives for a 3D shape and a weighted

ratio of the intersection to the union of two images as a

similarity measure [13]. Specialized pose normalization ap-

proaches exist for specific 3D shape classes such as faces

and human bodies [20][7]. To the best of our knowledge,

groupwise pose normalization problems have neither been

formally defined nor solved.

2.2. Groupwise Techniques for 3D Data

Groupwise approaches have been applied to sev-

eral other 3D data analysis tasks including point

registration[4][24], point correspondence [5], image regis-

tration [12] and Procrustes analysis [16][6]. To avoid solv-

ing point correspondence problems, one class of groupwise

point-set registration approach [4][24] models point sets

as probability distributions and uses information theoretic

measures [4][24] to determine how similar a group of prob-

ability distributions are after transformation.

There are several important contrasts between group-

wise point-set registration and groupwise pose normaliza-

tion. First, groupwise point-set registration focuses on point

sets (2D/3D point clouds), while groupwise pose normal-

ization focuses on shape models (2D/3D meshes). Richer

information including oriented position, descriptors such as

the light field descriptor [2], and geometric properties such

as surface-normal angles and curvatures, can be taken into

consideration when working with 3D shape models.

Davies et al. [5] proposed an information theoretic

MDL-based objective function to quantize the quality of the

point correspondences. A simplified version G proposed by

Thodberg [21] as defined below is commonly-used.

G =
N
∑

k=1

Lk with Lk =

{

1 + log(λk/λcut), if λk ≥ λcut

λk/λcut, otherwise

(1)

In [5], given a set of computed point correspondences

among a set of shapes, PCA is computed on the set of point

correspondences, and the computed eigenvalues, {λk|k =

1, . . . , N}, are used to calculate G in (1). λcut is a pa-

rameter that determines the point at which to effectively

switch between the determinant-type term (the if-part in

(1)) and the trace-type term (the otherwise-part in (1)). The

determinant-type terms jointly measure the volume of the

training set after correspondence in shape space, which fa-

vors compactness. The trace-type terms jointly measure

similarity of each pair of the training shapes after correspon-

dence via Euclidean distance. The point correspondences of

the ith shape are assumed to be controlled by some parame-

ter vector βi, for which the individual parameters are given

by {βi,a|a = 1, . . . , A}. The gradient descent approach is

used to minimize G with respect to a parameter vector βi.

The Jacobian matrix for the gradient of the objective func-

tion is defined in [8]:

∂G

∂βi,a

=

N
∑

k=1

∂Lk

∂λk

∂λk

∂βi,a

(2)

It is easy to compute ∂Lk

∂λk
(see (1)) and so we focus on

∂λk

∂βi,a
in the following discussions. ∂λk

∂βi,a
can be computed

by using the following chain rule for derivatives.

∂λk

∂βi,a

=
∂λk

∂pi

∂pi
∂βi,a

(3)

where pi is a vector which contains the positions of corre-

sponding points on the i-th mesh.

While ∂pi

∂βi,a
is typically computed by using finite differ-

ences, the following analytic form for ∂λk

∂pi
exists:

∂λk

∂pi
= 2(1−

1

N
)ci,kbk. (4)

where ci,k is the projection coefficient of the i-th position

vector pi onto the k-th eigenvector bk.

Chen, Zheng and Shapiro [3] further generalized the

MDL framework [5] to feature spaces and proved that the

Davies framework is a special case of their proposed frame-

work. Although the MDL framework [5] and its generaliza-

tion [3] have been used in point correspondence and image

registration [12], to the best of our knowledge, this class of

framework has not been applied for solving groupwise pose

normalization problems.

3. Groupwise Pose Normalization

In this section we formulate the groupwise pose nor-

malization problem and both describe and analyze our ap-

proach.

3.1. Problem Formulation

Assume that Ψ is the space of all triangular mesh models

of 3D shapes. A group of 3D shape models of the same



class will be jointly pose normalized, so that the shapes can

be more effectively compared.

Let Γ be the space of all transformations T : Ψ → Ψ.

Let Ω be a feature space and φ : Ψ → Ω be a mapping from

a mesh to a feature representation. Let S = {Xi ∈ Ψ|i =
1, . . . , N} be a set of N 3D shape models of a particular

class. Let F : ΩN → R be a groupwise shape dissimilarity

function that measures the quality of pose normalization for

a set of models. The groupwise pose normalization problem

is to find the set of transformations T ∗ that minimize the

value of function F as defined below.

T ∗ = arg min
{Ti∈Γ|i=1,...,N}

F ({φ(Ti(Xi))|i = 1, . . . , N})

(5)

3.2. Proposed Method

To solve (5), we will adapt the general MDL framework

of [3] to groupwise pose normalization problems. We will

restrict Γ to be the space of rigid transformations in 3D

space. While the framework of [3] allowed an arbitrary re-

producing kernel Hilbert space (RKHS) Ω [18], in this work

we will consider Ω to be a space of sets of local features, in

which PCA and the framework of [3] cannot be applied di-

rectly. In other words, the function φ : Ψ → Ω will map a

mesh to a set of local features that belongs to Υ, the space

of local features vectors.

For the dissimilarity function F , we will adapt (1), which

was also used in [3], from the Davies et al. work [5]. Be-

cause PCA cannot be performed on Ω, the space of sets of

local features, it is instead performed on Υ, the space of lo-

cal features, so that the resultant eigenvalues can be used for

computing the value of F . To elaborate, PCA is performed

on ∆ = {f ∈ φ(Ti(Xi))|i = 1, . . . , N}, the union of the

sets, {φ(Ti(Xi))|i = 1, . . . , N} that is the input to (5).

The intuition is that the better the local features are rep-

resented by PCA on Υ, the better the resultant meshes are

pose normalized.

The proposed objective function is defined below.

F =
d

∑

k=1

Lk with Lk =

{

1 + log(λk/λcut), if λk ≥ λcut

λk/λcut, otherwise

(6)

where d is the minimum of N and the dimension of a local

feature vector in Υ and {λk|k = 1, . . . , d} are the eigenval-

ues obtained from PCA performed on ∆.

The set of local feature vectors of the ith model is as-

sumed to be controlled by some transformation parameter

vector αi, for which the individual parameters are given by

{αi,a|a = 1, . . . , A}. The gradient descent approach is pro-

posed to minimize F with respect to a parameter vector αi.

The Jacobian matrix for the gradient of the objective func-

tion is defined as

∂F

∂αi,a

=

d
∑

k=1

∂Lk

∂λk

∂λk

∂αi,a

(7)

In contrast with (3), ∂λk

∂αi,a
can be computed by using the

following chain rule for derivatives

∂λk

∂αi,a

=
∑

f∈φ(Ti(Xi))

∂λk

∂f

∂f

∂αi,a

(8)

While ∂f
∂αi,a

is typically computed by using finite differ-

ences, the following analytic form for ∂λk

∂f
exists:

∂λk

∂f
= 2(1−

1

M
)cbk. (9)

where c is the projection coefficient of f onto the k-th eigen-

vector bk and M is the cardinality of ∆.

Note that if Υ is a reproducing kernel Hilbert space

(RKHS), (6)-(9) can be generalized with Mercer kernels

[18] by using the techniques developed in [3]. In the fol-

lowing, two types of local features, positions and rotation

variant local features, are considered. Unlike using finite

differences to approximate the gradient ∂f
∂αi,a

, the analytic

formulas for computing the gradient ∂f
∂αi,a

can be derived

for these two types of local features.

3.2.1 Positions as Local Features:

Consider the 3D transformation T = {tx, ty, tz, q1, q2, q3}
where tx, ty, tz are the three translation parameters to rep-

resent a translation vector, t = [tx ty tz]
t, and q1, q2, q3 are

the classical Rodrigues parameters to represent a rotation

matrix, R (see (10)) [17]. Let x be a position vector before

application of the transformation T and x′ = R(x − t) be

the corresponding position vector after the transformation.

The analytic formulas for computing derivatives with

respect to translation and rotation are given in (11) to (15).

3.2.2 Rotation-Variant Local Features

Consider a feature map fm that maps each vertex in a mesh

to a feature vector. For example, fm might map each vertex

v to a vector nv , the normal to the tangent plane at v. As-

sume that feature vectors are invariant with respect to trans-

lation and scale and change via a rotation matrix with the

following rule, l′ = Rl, where l is a feature vector before

the transformation and l′ is the corresponding feature vec-

tor after the transformation. Then the analytic formulas for

computing gradients with respect to rotations are:



R =
1

1 + q21 + q22 + q23





1 + q21 − q22 − q23 2(q1q2 + q3) 2(q1q3 − q2)
2(q2q1 − q3) 1− q21 + q22 − q23 2(q2q3 + q1)
2(q3q1 + q2) 2(q3q2 − q1) 1− q21 − q22 + q23



 (10)

∂R

∂q1
=

1

1 + q21 + q22 + q23





2q1 2q2 2q3
2q2 −2q1 2
2q3 −2 −2q1



−
2q1

1 + q21 + q22 + q23
R (11)

∂R

∂q2
=

1

1 + q21 + q22 + q23





−2q2 2q1 −2
2q1 2q2 2q3
2 2q3 −2q2



−
2q2

1 + q21 + q22 + q23
R (12)

∂R

∂θz
=

1

1 + q21 + q22 + q23





−2q3 2 2q1
−2 −2q3 2q2
2q1 2q2 2q3



−
2q3

1 + q21 + q22 + q23
R (13)

∂x′

∂q1
=

∂R

∂q1
(x− t)

∂x′

∂q2
=

∂R

∂q2
(x− t)

∂x′

∂q3
=

∂R

∂q3
(x− t)

(14)

∂x′

∂tx
= R[−1 0 0]t

∂x′

∂ty
= R[0 − 1 0]t

∂x′

∂ty
= R[0 0 − 1]t

(15)

∂l′

∂θx
=

∂R

∂θx
l

∂l′

∂θy
=

∂R

∂θy
l

∂l′

∂θz
=

∂R

∂θz
l

(16)

3.2.3 Relation to PCA

If N = 1, φ(X) = V , Υ = R3, eqn. (6) is used as the ob-

jective function, and λcut is a number that is larger than the

largest eigenvalue from the PCA analysis on V , then eqn.

(5) degenerates to the original PCA problem. This relation

shows that the proposed objective function is a general ob-

jective function to minimize and (5) is a general framework.

3.3. Groupwise Pose Normalization by Example

If additional prior information about the shape class is

known, it is necessary to add this information to the group-

wise pose-normalization problems. For example, some

pose-normalized examples can be manually provided. In

that case, PCA can be replaced by weighted PCA and the

pose-normalized examples can be given more weight than

the remaining 3D models.

Consider Fw : ΩN × RN → R as an objective function

for groupwise pose normalization problems.

T ∗ = argminFw({φ(Ti(Xi)), κi|i = 1, . . . , N}) (17)

If (6) is used as the objective function to minimize, in



contrast with (8), the derivatives have the following form.

∂λk

∂αi,a

= κ2
i

∑

f∈φ(Ti(Xi))

∂λk

∂f

∂f

∂αi,a

(18)

In other words, the derivatives for the weighted version are

the corresponding ones in (8) multiplied by κ2
i .

4. Experimental Results and Discussions

Two separate sets of 3D craniofacial data for studying

craniofacial abnormalities were used in our pose normal-

ization tests. One set of 40 heads is for studying midface

flattening (M set) and the other set of 19 heads is for study-

ing cleft lip or cleft palate (C set). The heads in these two

sets have been interactively pose normalized and thus serve

as ground truth for our experiments. Some examples from

the two sets can be found in the first two rows in Figures 1

and 2, respectively1.

Given a set of heads, a random test set is created by

randomly rotating each head with respect to its mass cen-

ter. For each random test set, the proposed method is used

to solve the pose normalization problem and a result set is

generated. The errors between the ground truth set and the

result set are measured in terms of degrees of rotations. In

addition, the mean of the standard deviations along the three

resultant main axes is used for measuring how good the pose

normalization result is. A total of 4 random test sets is gen-

erated with different degrees of rotation and the means and

standard deviations of the errors are recorded for compar-

isons using a 5-fold cross validation-like method (i.e., the

examples in a fold are used as reference examples and the

remaining folds are used as a test set for pose normaliza-

tion).

The first experiment is to study how different features

and reference examples affect the performances of the pro-

posed method. Two different features, 3D positions and

normals, are compared and reference examples are selected

as pose-normalized heads that can be used to constrain the

groupwise pose normalization to force it to choose a stan-

dard pose for craniofacial analysis2. A standard PCA ap-

proach is also implemented for comparisons.

The last five rows in Figure 1 and 2 show examples of

the pose normalized results for the two sets with different

features. Table 1 shows the detailed error comparisons. The

figures and table show that the performances with normals

as features are better than those with positions as features,

and that the PCA performance is the worst. One reason for

the weak performance of the positions as features is that

1To follow the IRB protocol to ”deidentify” the images, the eyes were

blackened out.
2Total 4 combinations, positions with references (P/w), positions with-

out references (P/w.o), normals with references (N/w) and normals without

references (N/w.o) are tested.

the heads are not scaled, since scaling is not generally used

in craniofacial analysis. In addition, the performances with

the reference examples are generally better than those with-

out the reference examples, and the improvements are larger

with normal features than those with position features.

The second experiment is to investigate how the value

of λcut affects the pose normalization performance. A fold

selected from the random datasets (M1 and C1) is selected

as a reference set, and the remaining folds are used for pose

normalization. Different values of λcut are tested for both

features, and the experimental results are shown in Figure

3. The performance generally decreases with the values of

λcut for normal features, and the ranges that achieve the

best performance is [2−5 2−10]. In contrast, no clear trends

between the performance and the values of λcut are ob-

served for position features.

Although the two sets of experimental results show the

promising performances of the proposed method, there is

still room for improvement. One weakness is that the num-

ber of normal vectors of different heads may not be equal,

which results in a bias toward a head with a higher number

of normal vectors. How to select part of the normal vec-

tors of a head and weight them differently will be part of

our future work. From the experimental results, it is ob-

served that different sets of references examples can affect

the groupwise pose normalization performance since differ-

ent sets of examples can capture different prior information.

Hence, how to select (or construct) representative examples

for pose normalization will be an important future direction.

5. Conclusions and Future Work

Groupwise pose normalization problems are formally

formulated in this paper. A general framework is proposed

for solving groupwise pose normalization problems. It is

shown that using PCA for pose normalization is a special

case of using the proposed framework under a special fea-

ture space. From the experimental results, the proposed

method achieved better performances than the PCA ap-

proach to which it was compared.

In addition to how to select normal vectors differently

and how to select the representative examples, another im-

portant future direction is to customize the proposed method

for specific objects and to take different geometric and

shape information such as curvature and torsion into con-

sideration. In contrast with using the MDL-based objective

function, finding a better objective function also merits fu-

ture research.
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Table 1: Performance comparisons. The three numbers in each slot in order are the means and standard deviations of the

errors with respect to the ground truth set and the mean of the standard deviations along three resultant main axes.

Set P/w.o P/w N/w.o N/w PCA

M1 9.99(5.29),5.39 8.25(5.09),5.47 9.91(4.06),4.09 5.86(4.04),5.02 42.70(26.20),35.04

M2 11.12(7.40),9.13 10.14(7.39),9.42 10.64(5.99),7.02 6.52(5.73),7.60 43.61(29.33),47.53

C1 8.56(5.85),6.55 9.05(6.66),7.94 8.00(3.81),3.93 5.39(3.25),4.52 50.24(25.06),51.72

C2 15.64(8.53),9.91 15.30(8.83),10.78 14.67(6.40),7.01 9.50(6.05),8.26 50.46(22.54),49.73
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(a) Reference Set

(b) Ground Truth Examples

(c) Random Test Set

(d) Results from Positions without Examples

(e) Results from Positions with Examples

(f) Results from Normals without Examples

(g) Results from Normals with Examples

(h) PCA Results

Figure 1: Some examples of the pose normalized 3D heads

for the M set.

(a) Reference Set

(b) Ground Truth Examples

(c) Random Test Set

(d) Results from Positions without Examples

(e) Results from Positions with Examples

(f) Results from Normals without Examples

(g) Results from Normals with Examples

(h) PCA Results

Figure 2: Some examples of the pose normalized 3D heads

for the C set.
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Figure 3: The impact of λcut on the pose normalization re-

sults for position (a) and surface normal (b).


