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A B S T R A C T   

Background: Amorphous calcifications noted on mammograms (i.e., small and indistinct calcifications that are 
difficult to characterize) are associated with high diagnostic uncertainty, often leading to biopsies. Yet, only 20% 
of biopsied amorphous calcifications are cancer. We present a quantitative approach for distinguishing between 
benign and actionable (high-risk and malignant) amorphous calcifications using a combination of local textures, 
global spatial relationships, and interpretable handcrafted expert features. 
Method: Our approach was trained and validated on a set of 168 2D full-field digital mammography exams (248 
images) from 168 patients. Within these 248 images, we identified 276 image regions with segmented amor
phous calcifications and a biopsy-confirmed diagnosis. A set of local (radiomic and region measurements) and 
global features (distribution and expert-defined) were extracted from each image. Local features were grouped 
using an unsupervised k-means clustering algorithm. All global features were concatenated with clustered local 
features and used to train a LightGBM classifier to distinguish benign from actionable cases. 
Results: On the held-out test set of 60 images, our approach achieved a sensitivity of 100%, specificity of 35%, 
and a positive predictive value of 38% when the decision threshold was set to 0.4. Given that all of the images in 
our test set resulted in a recommendation of a biopsy, the use of our algorithm would have identified 15 images 
(25%) that were benign, potentially reducing the number of breast biopsies. 
Conclusions: Quantitative analysis of full-field digital mammograms can extract subtle shape, texture, and dis
tribution features that may help to distinguish between benign and actionable amorphous calcifications.   

1. Introduction 

Calcifications are a common mammographic finding. Radiologists 
use Breast Imaging, Reporting & Data Systems (BI-RADS) to report 
standardized qualitative descriptors of shape (e.g., popcorn-like, rod- 
like, round) and distribution (e.g., diffuse, segmental) to determine 
which calcifications are suspicious for malignancy. This risk stratifica
tion guides management decisions such as whom to recommend short- 
term imaging follow-up or biopsy. Calcifications that are too small 
and indistinct to assign a distinct shape are considered amorphous [1]. 
Prior studies have reported that the malignancy rate of biopsied amor
phous calcifications is 20% [2]. 

While millions of women are encouraged to undergo mammography 
screening each year, radiologists continue to be challenged in evaluating 
and deciding which calcifications to biopsy. Unnecessary callbacks and 
biopsies lead to increased medical costs, patient anxiety, and potential 
morbidity. Studies have suggested that multiple descriptors for amor
phous calcifications can lead to a higher positive predictive value (PPV) 
of malignancy [3]. However, the dependence on qualitative descriptors 
given by the radiologists is a limitation, given that many calcifications 
do not fit clearly into one morphologic or distribution category and 
manifest as a combination of descriptors [4]. Moreover, there is known 
inter and intraobserver variability in analyzing these calcifications [5]. 

Machine learning (ML) algorithms can potentially help overcome 
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these limitations. Prior work on processing 2D full-field digital 
mammography (FFDM) has shown that calcifications can be detected 
and segmented with high sensitivity and accuracy [6–8]. A number of 
quantitative (radiomic) features can be calculated from these segmented 
calcifications to characterize the morphology, distribution, and texture 
of the calcifications and their surrounding regions. Radiomic features 
are defined using explicit formulas and are computed consistently across 
different images. Moreover, these features capture the subtle patterns 
that are difficult to assess visually by radiologists. Previous work has 
established that subtle differences in texture (e.g., differences in breast 
density) correlate with increased cancer risk [9]. Given this existing 
work, we present an AI/ML approach for utilizing radiomic features to 
predict their malignancy risk and inform whether further diagnostic 
workup is warranted. We use a combination of radiomic and 
graph-theoretic features to distinguish between amorphous calcifica
tions that are either benign (e.g., usually requiring only imaging 
follow-up) or actionable (e.g., requiring consideration of surgical 
intervention given the likelihood of having a high-risk/malignant 
lesion). We hypothesize that using more quantitative and precise de
scriptors of amorphous calcifications and the surrounding tissue can 
improve the PPV of identifying actionable (high-risk/malignant) lesions. 
Our contributions include 1) the characterization of amorphous calci
fications using local textures, global spatial relationships, and other 
interpretable features; and 2) the use of unsupervised clustering to 
obtain a consistent set of local features independent of the number of 
calcifications across all images. We demonstrate how quantitative fea
tures generated from amorphous calcifications and their surrounding 
regions on 2D FFDM can help distinguish between women with benign 
findings versus those who require further workup (e.g., high-risk or 
malignant findings). 

2. Materials and methods 

2.1. Data collection 

Following an Institutional Review Board-approved protocol, we 
collected a retrospective dataset with 1462 2D FFDM diagnostic exams 
performed at UCLA between 2017 and 2019. All cases had identified 
calcifications noted on the mammogram and underwent core breast 
biopsy. The presence of calcifications was identified using our breast 
screening registry (MagView, Fulton, MD). From this list, we selected 
the 359 exams with “amorphous calcification” findings mentioned in the 
radiology report and retrieved their corresponding images (n = 2137) 
from our picture archive and communications system (PACS). A diag
nostic exam may consist of images corresponding to different views (e. 
g., craniocaudal, mediolateral, exaggerated views). For this analysis, 
magnification views and images acquired using digital breast tomo
synthesis were excluded, reducing the dataset by 71 exams. 87 exams 
with multiple pathology results (e.g., a case with malignant and high- 
risk lesions in the same breast) or non-amorphous calcifications upon 
re-review were omitted. After applying the exclusion criteria, a dataset 
with 178 diagnostic exams was generated consisting of 261 images with 
amorphous calcifications. Using the final radiology report, a trained 
researcher (CM), under the supervision of a fellowship-trained radiolo
gist (BL), specified regions of interest (ROIs) on the FFDM pertaining to 
where the grouped amorphous calcifications were identified and ulti
mately biopsied. In total, 290 ROIs were annotated and matched with 
core-needle biopsy results. The breakdown of regions is as follows: 207 
benign, 42 high-risk, 41 malignant. All images were acquired using a 
Hologic Selenia device at 0.07 mm per pixel resolution and 12-bit 
grayscale, with ~8.5 million pixels in each image. 

2.2. Data preparation 

The input to our classification algorithm is a suspicious ROI showing 
amorphous microcalcifications that have been segmented. We executed 

the Hessian Difference of Gaussians Regression (HDoGReg) method to 
segment individual microcalcifications, a technique developed by Mar
asinou et al. [10], on the entire 2D FFDM. The method consists of two 
stages: (1) bright candidate objects were delineated using 
difference-of-Gaussians blob detection with Hessian analysis for shape 
extraction, and (2) a convolutional regression model was applied to 
choose the candidate objects corresponding to microcalcifications. The 
resulting segmentation mask was used for classification analysis. 14 
ROIs (13 images, 10 exams) did not overlap with any segmented calci
fications and were omitted from our analysis. In total, 276 ROIs (248 
images, 168 exams) were utilized for classification analysis. We split 
exams into two parts: 75% were assigned for training and 25% for 
testing. Fig. 1 summarizes the process for selecting and excluding exams. 
A breakdown of the dataset used to train and test our classifier is pre
sented in Table 1. 

2.3. Overall approach 

An overview of the classification pipeline is shown in Fig. 2. Three 
types of binary masks were generated using the inputted ROIs with 
segmented microcalcifications: foreground, background, and dilated 
foreground, as explained below. From each of these masks, local and 
global features were extracted. Local features quantify the shape and 
texture of individual microcalcifications and their immediate sur
rounding regions. These local features are then aggregated using a k- 
means clustering algorithm to create a fixed-dimensional feature vector 
per image to characterize their distributions. 

Global (distribution and expert-defined) features, calculated from 
the foreground and dilated foreground masks, characterize the overall 
distribution of the microcalcifications within an ROI. All global features 
were concatenated with clustered local features and utilized to train a 
LightGBM classifier to distinguish benign from actionable cases. The 
model was tuned to achieve high sensitivity given the clinical impor
tance of catching all potential high-risk and malignant lesions. Classi
fication metrics of the final model were reported. 

2.4. Mask generation 

We applied the microcalcification segmentation algorithm [10] to 
generate three different types of segmentation masks, resulting in 10 
masks per ROI:  

● 1 x foreground mask, individual microcalcifications are identified 
in the foreground mask. An example is shown in Fig. 3(b). 

● 1 x background mask, a 25-pixel band surrounding each micro
calcification to capture the surrounding tissue. Fig. 3(c) provides an 
example. The thickness of the layer was determined based on feed
back from expert radiologists on the relevance of surrounding breast 
tissue in informing the diagnosis.  

● 65x dilated foreground masks, a morphological dilation of the 
foreground mask at eight different scales (e.g., 1x-65x). Dilated mask 
examples at two different scales are shown in Fig. 4. These dilated 
masks are used to determine the spatial relationships among groups 
of calcifications when computing the topological features. 

2.5. Local features 

Using the generated foreground and background masks, radiomic 
features (e.g., intensity, shape, texture) and region properties (e.g., area, 
intensity) of each labeled region were then extracted to create three sets 
of features, which are enumerated in the Supplementary Materials. 
From the foreground mask, which consists of individually segmented 
microcalcifications, 90 radiomic features (using pyradiomics [11]) and 
13 region measurements (using regionprops module of scikit-image 
[12]) were generated. From the background mask, which corresponds 
to the breast parenchyma immediately surrounding the calcification 
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group, 87 radiomic features (using pyradiomics [11]) were computed. 

2.6. Global features 

Region-level features were extracted using the foreground mask and 
the eight dilated foreground masks. The features characterize the 

distribution of microcalcifications and their topological structure. In 
total, 67 global features per ROI were extracted as described below. 

Multiscale topological features: Following the work of Chen et al. 
[13], we computed eight features describing the distribution of micro
calcifications at 65 different scales, dilation factors zero to 64, resulting 
in a total of 520 features. Using feature importance, 122 features were 
selected. Next, connectivity graphs between individual calcifications 
were constructed. Each calcification in the foreground mask represented 
a node in the graph. For each of the dilated foreground masks, over
lapping objects due to the dilation operation were considered connected, 
and a graph vertex was drawn between them, leading to the generation 
of 8 graphs per ROI. Then, for each graph, eight topological features 
were extracted: 1) number of subgraphs, 2) average vertex degree, 3) 
maximum vertex degree, 4) average vertex eccentricity, 5) diameter, 6) 
average clustering coefficient, 7) giant connected component ratio, and 
8) the percentage of isolated points. The formulae for computing these 
features are given in the Supplementary Materials. 

Handcrafted features: Based on input from a fellowship-trained 

Fig. 1. Cohort selection.  

Table 1 
Breakdown in the training and testing set reported as # of ROIs (# of images).  

Labels – (pathology outcome from breast 
biopsy) 

Train 
# ROIs (# 
images) 

Test 
# ROIs (# 
images) 

Benign 154 (131 
images) 

46 (43 images) 

Actionable (High-risk/DCIS/invasive) 57 (57 images) 19 (17 images) 
Total 211 (188 

images) 
65 (60 images)  

Fig. 2. Classification pipeline.  

Fig. 3. (a) An example ROI, (b) the foreground mask, and (c) the background mask.  
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breast radiologist (BL) and comparison with deep learning-based feature 
extractors, we considered three additional types of features: 

1. Standard Deviation of Area: the microcalcifications that vary in 
size and shape tend to be considered highly suspicious for malig
nancy [14]. To quantify the variability, we calculate the standard 
deviation of the areas of individual microcalcifications within ROIs 
of each image. 
2. Correlation Coefficient: the microcalcifications’ patterns are 
crucial in determining whether they are suspicious or not. Since most 
malignancies are ductal, the linear distribution patterns of micro
calcifications suggest that the patient needs further follow-up [15]. 
Therefore, we calculated the correlation coefficient of the x and y 
coordinates of the centroids of microcalcifications from ROIs of each 
image to quantify the extent of their linear distribution. 
3. Pairwise distances: calcifications that are spread over a large 
volume or over the entire breast are more likely to be benign [14]. To 
quantify the spread, we computed the pairwise mean distance of the 
microcalcifications in ROIs. 

2.7. Clustering and concatenation 

The three local feature sets (foreground radiomics, foreground re
gion properties, and background radiomics) are used as inputs into the 
classifier but are proportional to the number of objects (micro
calcifications and background regions) in each image, which varies. To 
obtain a consistent set of features for each image, we applied an unsu
pervised approach for aggregating local features in each feature set to 
represent their distribution as a fixed-dimensional vector. An unsuper
vised K-means clustering was utilized to group individual micro
calcifications or background regions with similar characteristics. All 
objects within an ROI were labeled using an integer representing their K- 
means cluster for each image. After counting the number of micro
calcifications and background regions in each cluster, a K-dimensional 
feature vector was then constructed where each element represented the 

percentage of objects belonging to a particular cluster. This process was 
carried out for each of the three local feature sets. The K-means clus
tering model was fitted the training data. As an alternative to K-means 
clustering, we represented the distribution of local features by 
computing the mean and standard deviation of each feature value across 
all objects. 

The three vectors representing local feature sets were then concate
nated with the global features (distribution and handcrafted features) to 
form an image’s final feature vector. An illustration of the aggregation 
method of one feature set is shown in Fig. 5. 

2.8. Model training and evaluation 

The LightGBM classifier [15] was used to perform a grid search with 
five-fold cross-validation on the training data to identify the best 
hyperparameters for this classification task. To address the issue of class 
imbalance, SMOTE + Edited Nearest Neighbor resampling technique 
was used before training [16]. Along with the hyperparameters (regu
larization, number of trees, learning rate, number of leaves, max depth), 
the probability threshold, and the optimal number of clusters, K was also 
tuned on the training set to obtain the best possible sensitivity to ensure 
that we do not miss any cancerous cases. The optimal number of clusters, 
K, was determined using five-fold cross-validation to maximize the 
classification sensitivity, yielding K = 15 and a decision threshold of 0.4. 
The model was retrained using the chosen hyperparameters on the 
entire training set, and the images in the test set were classified. Metrics 
such as accuracy, sensitivity, specificity, F1, PPV, and receiver operating 
characteristic (ROC) curve area under the curve (AUC) are reported. 

We also compared our radiomics-based clustering approach against 
three alternatives: 1) transfer learning by fine-tuning a ResNet-50 model 
pre-trained using ImageNet with weighted cross-entropy loss; 2) a 
LightGBM classifier with features extracted from the fine-tuned ResNet- 
50 model, and 3) a radiomic feature-based approach with statistical 
features (i.e., mean and standard deviation) computed across all 
microcalcifications instead of clustering. 

Fig. 4. Visualizations of dilated foreground masks at two representative scales.  

Fig. 5. K means clustering-based feature aggregation pipeline. During training, we generated clusters using the features extracted from the objects of training ROIs. 
During testing, we utilized the clusters created during the training phase to predict the clusters of the objects from the testing ROIs. The process was repeated to 
generate three local feature sets followed by their concatenation with global features. 
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For fine-tuning the ResNet-50 pre-trained with ImageNet, we split 
the training exams into 80% training and 20% validation. The model 
that gave the best F-1 on the validation data was used for evaluation. To 
address the problem of class imbalance, we used weighted cross-entropy 
loss as an objective function and data augmentations to avoid 
overfitting. 

To estimate an unbiased generalization performance of our algo
rithm, we performed nested cross-validation on the entire dataset. The 
outer loop of the nested cross-validation estimates the model perfor
mance, while the inner loop is used for hyperparameter tuning using 
grid search. For the outer loop, in addition to the results of the single 
75% training-25% testing split reported previously, we re-ran our entire 
analysis on the remaining three stratified splits. For the inner loop, the 
training data was further divided into five stratified folds (80% training, 
20% testing), out of which one fold was used for validation, and the rest 
of the folds were used for training. The best parameters obtained from 
the grid search were then used to train the final model on the training 
data and then evaluated on the test data. This procedure was carried out 
on all four splits, and the averaged results were calculated, assessing 
whether the clustering approach consistently outperforms the alterna
tive methods. 

3. Results 

3.1. Sensitivity and specificity 

On the held-out test set of 60 images, we obtained 100% sensitivity 
when the decision threshold was 0.4 (Table 2). The PPV was 38% due to 
the high number of false positives. Specificity can be improved by 
increasing the decision threshold. The values of accuracy, f1, and 
specificity for alternative decision thresholds are shown in Supple
mental Materials. Compared to using the mean and standard deviation 
of the amorphous calcification features, the clustering approach is su
perior, though both methods achieve a sensitivity of 100%. 

3.2. ROC analysis 

Evaluating using the independent test set, the area under the ROC 
curve (shown in Fig. 6) is 0.73 classifying an ROI as either benign or 
actionable using the clustering approach. The clustering approach out
performed the approach using local features’ mean and standard devi
ation to create global features (ROC AUC = 0.55). 

Recent advances in machine learning have yielded deep feature ex
tractors capable of automatically learning informative features from the 
data rather than handcrafted features. To compare the performance of a 
model using deep features, we conducted three experiments in which we 
ran our classification pipeline using (a) our local and global features and 
(b) the 2048 features from the last layer of the fine-tuned ResNet-50 
model. (c) the 4096 features from the last layer of the fine-tuned VGG-16 
model. While the specificity of the ResNet-50-based approach was 
comparable to our clustering approach (0.35 for the clustering approach 
versus 0.37 for the fine-tuned ResNet), the sensitivity (1.0) and ROC 
AUC (0.73) achieved by our clustering approach were superior 

compared to the sensitivity (0.89) and ROC AUC (0.58) that was ob
tained using fine-tuned ResNet-50 features at the probability threshold 
of 0.4. We note that the ResNet model was overfitted during training and 
performed poorly during testing, even with data augmentation, early 
stopping, and other regularization methods like weight decay having 
been applied. The VGG-16-based features also followed a similar pattern 
and achieved a sensitivity of 0.95 and ROC AUC of 0.52, which is lower 
than our clustering approach. The specificity of 0.12 compared to 0.35 
(achieved using our clustering approach). These observations demon
strated that despite the use of data augmentations, the ResNet-50/VGG- 
16-based models were overfitted to our training data and failed to 
perform well in a data-scarce scenario such as this. 

3.3. Confusion matrix 

The confusion matrices are shown in Table 3, comparing the clus
tering and mean and standard deviation approaches. For the clustering 
approach, all 17 images were correctly classified as actionable and 15 
classified as benign for probability threshold = 0.4 with our clustering 
approach. We chose a threshold that emphasized higher sensitivity (e.g., 
not missing any potential cancers) at the cost of an increased number of 
false positives (e.g., obtaining biopsies on benign findings). 

3.4. Generalization performance of our approach 

Reporting results from the full nested cross-validation, our clustering 
approach remained the best performing approach, a mean ROC AUC of 
0.71 ± 0.12 compared to: 1) a pre-trained VGG-16 (not fine-tuned) +
LightGBM approach, resulting in an ROC AUC of 0.54 ± 0.1, 2) a Table 2 

Classification results - Clustering approach versus using mean and standard 
deviation.   

Clustering Approach (K = 15 
and probability threshold =
0.4) 

Approach using Mean and Standard 
Deviation of amorphous calcification 
features (Probability threshold = 0.4) 

Accuracy 0.53 0.31 
Sensitivity 1.0 1.0 
Specificity 0.35 0.04 
F1 0.51 0.08 
PPV 0.38 0.29 
ROC AUC 0.73 0.55  

Fig. 6. ROC curve of the classification using (a) K-means clustering-based ag
gregation of local textural features and global features with LightGBM classifier 
(b) Features extracted from fine-tuned VGG-16 using weighted cross-entropy 
loss + LightGBM classifier (c) Features extracted from fine-tuned ResNet-50 
using weighted cross-entropy loss + LightGBM classifier (d) Mean and standard 
deviation aggregation of local features + LightGBM classifier. 

Table 3 
Confusion matrix for clustering approach and probability threshold of 0.4 and 
approach using mean and standard deviation.   

Clustering approach Approach using Mean and 
standard deviation 

Benign 
(Predicted) 

Actionable 
(Predicted) 

Benign 
(Predicted) 

Actionable 
(Predicted) 

Benign 15 28 2 41 
Actionable 0 17 0 17  
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finetuned VGG-16 model resulting in an ROC AUC of 0.48 ± 0.04, 3) a 
finetuned VGG-16 + LightGBM approach 0.52 ± 0.03 4) a pre-trained 
ResNet-50 (not fine-tuned) + LightGBM approach resulting in an ROC 
AUC of 0.47 ± 0.07, 5) a fine-tuned ResNet-50 model, resulting in an 
ROC AUC of 0.42 ± 0.07, 6) a ResNet-50 + LightGBM approach, 
resulting in an ROC AUC of 0.48 ± 0.07, and 7) a radiomic feature-based 
approach with statistical features, resulting in an ROC AUC of 0.53 ±
0.06. 

4. Discussion 

Amorphous microcalcifications on mammography images are chal
lenging for radiologists to assess and lead to a high number of biopsies of 
benign findings. Quantitative analysis of the morphology and distribu
tion of amorphous microcalcifications has the potential to better 
distinguish between benign and actionable findings. In this analysis, we 
demonstrated that in a challenging subset of cases that were all referred 
for biopsy, the algorithm correctly identified 15/60 (25%) benign im
ages, potentially saving these women from undergoing unnecessary 
breast biopsies. Moreover, the algorithm using unsupervised clustering 
achieved a 38% PPV compared to a PPV of 28% that radiologists ach
ieved on these images. In our test set, perfect sensitivity was achieved in 
identifying all actionable findings, but at the continued cost of many 
false positives despite the improvement in PPV. 

Several related studies on classifying different calcifications have 
been previously published, but none focused on developing and testing 
algorithms for challenging amorphous calcifications. Fanizzi et al. [17] 
utilized SURF (Speeded Up Robust Features) to detect a range of calci
fications and extract wavelet decomposition features from the sur
rounding regions on screening digital mammograms. Trained on 130 
ROIs (75 benign, 55 malignant) and tested on another 130 ROIs, they 
reported 0.92 ROC AUC, 88% accuracy, 87% sensitivity, and 88% 
specificity to classify microcalcifications that are associated with 
benign/malignant lesions. Karahaliou et al. [18] utilized 85 full-field 
digitized screen-film images originating from the Digital Database for 
Screening Mammography (DDSM) and extracted 128 × 128 ROIs 
centered around detected microcalcification clusters. They reported a 
ROC AUC of 0.84, and given a threshold that optimizes sensitivity, they 
achieved 94.4% sensitivity but with a high false positive rate (20% 
specificity). We achieve a similar sensitivity but much higher specificity 
in our work on the subset of more challenging smaller amorphous 
microcalcifications. Finally, Stelzer et al. [19] manually segmented 
various calcifications from magnification views of diagnostic FFDMs and 
extracted 249 features from 235 cases with stereotactic biopsy-proven 
diagnoses. They showed that 37–46% of biopsies could be avoided per 
reader at the cost of one false-negative. Focusing on the clinically 
challenging amorphous calcifications, our method could avoid bio
psying 25% of the images with no false negatives. 

To identify the most informative features for this classification task, 
we examined the most represented features in the trees used to build the 
classifier. These features include 1) region property distributions of 
foreground regions (i.e., area, perimeter, axes lengths, the solidity of the 
microcalcification regions); 2) graph-based feature clusters (i.e., calci
fication distribution); 3) pairwise mean distance (i.e., the spread of the 
microcalcifications); and 4) standard deviation of calcification size (i.e., 
variation in the calcification size). 

Several limitations of our work are noted. First, the input dataset 
consists of 261 annotated images, which is limited but similar to pre
viously reported studies [17–19]. The number of images is also con
strained due to our focus on amorphous calcifications. This subset of 
calcifications is associated with the greatest diagnostic uncertainty and a 
high false positive rate of breast biopsies. Second, our analysis only 
included cases where the segmentation algorithm generated a result: 
images in which the segmentation algorithm detected no objects or only 
outputted a single object were excluded. This assumption may introduce 
a source of bias. Third, given the small and hazy nature of amorphous 

calcifications, the segmentation algorithm could identify false positive 
objects that may have impacted the accuracy of the classifier. Further 
analysis involving a larger number of images and data from external 
institutions and mammography devices is needed to investigate the 
robustness and generalizability of the pipeline. Fourth, the pre-trained 
VGG-16 and fine-tuned ResNet-50-based models’ performance was 
suboptimal due to overfitting. While a more diverse training set could 
improve their performance, our clustering approach achieves consis
tently better performance despite the limited sample size. 

In summary, this work provides initial evidence that a quantitative 
approach to characterizing amorphous microcalcifications noted on 
mammography examinations, generating information about the shape 
and distribution of each calcification, can improve the ability to 
distinguish between benign and actionable findings. Our algorithm 
identified as benign 25% of microcalcifications that were originally 
deemed suspicious by the radiologists (and leading to a breast biopsy), 
potentially decreasing the number of false positive biopsies. 
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