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Abstract

This paper proposes a new supervised semantic edge
and gradient extraction approach, which allows the user
to roughly scribble over the desired region to extract
semantically-dominant and coherent edges in it. Our ap-
proach first extracts low-level edgelets (small edge clusters)
from the input image as primitives and build a graph upon
them, by jointly considering both the geometric and appear-
ance compatibility of edgelets. Given the characteristics of
the graph, it cannot be effectively optimized by commonly-
used energy minimization tools such as graph cuts. We thus
propose an efficient linear algorithm for precise graph op-
timization, by taking advantage of the special structure of
the graph. Objective evaluations show that the proposed
method significantly outperforms previous semantic edge
detection algorithms. Finally, we demonstrate the effective-
ness of the system in various image editing tasks.

1. Introduction
This work is motivated by gradient-domain image edit-

ing, which refers to the class of methods that achieve image
editing by directly manipulating the gradient filed of the im-
age. This requires transforming the image into the gradient
domain, applying the desired gradient filter, and finally re-
constructing the output image from the modified gradient
filed. Recent work [17, 5] demonstrate that this framework
is powerful and versatile enough for accomplishing various
editing tasks such as blending, saliency sharpening, relight-
ing, stylization, JPEG de-blocking, etc.

One major limitation of previous gradient-domain edit-
ing approaches is the lack of local user control for fine-level
editing. For instance, the GradientShop system [5] used
simple global criteria (such as the magnitude of the gradient
value) to select pixels that will be processed by a filter. This
often leads to artifacts when the desired and unwanted gra-
dients cannot easily be separated by the global criterion. In
the example shown in Figure 1, applying the global saliency
sharpening filter boosts all details in the image (Figure 1b).
However, bags under eyes are also enhanced, which may

not be desired.
To improve its controllability, it is natural to adopt an

interactive approach for local gradient editing. A straight-
forward approach is to ask the user to provide an accurate
operational mask to define the application range of the fil-
ter. However, for natural images the gradient field is usu-
ally too complicated for accurate manual segmentation. As
shown in the example in Figure 1d, it is tedious for the user
to draw an accurate mask to only cover the contour of the
eyelid without touching strong edges nearby. This is even
harder to achieve in modern touch-based devices.

In this paper we propose a dominant gradient selection
approach to solve the accurate gradient selection problem
for interactive gradient-domain editing. The specific goal
of our algorithm is the selection of a semantically domi-
nant subset of edge/gradient points from all pixels in a user-
marked area. There are two criteria for the selection:

• the selected pixels ensemble the semantically-
dominant edges/gradients under the scribble, even if
locally their gradient magnitudes are smaller than their
nearby edges;
• The selection is well-contained and coherent so that

applying filters to the selected pixels will not result in
discontinuities in the final result.

We propose a new, graph-based approach to meet these
criteria. We extract low-level edgelets (which are small
clusters of edges) as primitives for graph construction, and
jointly consider their geometric and appearance features in
formatting energy terms. Given the complexity of the en-
ergy terms, we show that the proposed MRF cannot be ef-
fectively solved by commonly-used approximation methods
such as graph cuts. Luckily, given the special structure of
our graph, we can turn the MRF into a triangulated graph
with limited maximum cliques, which is solvable in lin-
ear time. This leads to an efficient solution which gives
the user rapid feedback for interactive editing. Objective
evaluations show that our system significantly outperforms
previous approaches in terms of accuracy. We also show
how various image editing tasks, such as contour snapping,
saliency sharpening and image stylization can benefit from
using the proposed gradient selection method.
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Figure 1. An example of saliency sharpening. (a) input image; (b) global filtering result; (c) user scribbles for gradient selection; (d) all
edges in user selected region; (e) gradients selected by our approach; (f) locally filtering of the selected gradients. Note the color tone
change and the enhanced eye bags in (b).

2. Related Work

We briefly review a few approaches that are closest to our
work, in the area of contour extraction and gradient-domain
editing.

Contour extraction. Global probability boundary
(gPb) [13, 3] is the state-of-the-art on contour detection.
It combines multiple local cues, such as brightness, color
and texture, into a global optimization framework. How-
ever it is difficult to get long, clean, and coherent contour
lines directly from the probability map, as shown in Fig. 5.
In contrast our method is able to deliver contour lines with
those desired properties.

Active contour model [9, 23], or Snake, is also a clas-
sic and popular choice for object segmentation. In this set-
ting, the user specifies an initial contour close to the true ob-
ject boundary, and the algorithm seeks for a final curve that
minimizes an energy as a sum of both internal and external
energy terms. However, this approach often converges to
local minima that are far away from the desired selection,
especially when the local gradient field is complex. Our ap-
proach uses precise graph-based optimization with proper
energy formulations to avoid local minima.

Intelligent scissors [15] and magnetic lasso in photoshop
are classic edge snapping tools. The former requires the
user to select a few points accurately on image boundaries,
then employ an algorithm to complete the gaps between the
selected points. The latter selects image boundary by seek-
ing the edge that is nearest to the current location of the
mouse. Both methods require very precise user input for ac-
curate selection. In contrast, our system only requires rough
scribbles to cover the desired gradients, which is particu-
larly an advantage on tablet devices where accurate finger
input is impossible.

Beside curved-based tools, there are a large group of
region-based interactive image editing systems [12, 11].
These tools aim at a different goal of selecting smooth im-
age regions rather than gradients based on user scribbles.

Gradient-domain editing. There is a rich body of
work on gradient-domain image manipulation in both
vision and graphics field. Specifically, Orzan et al. [16]
converted photographs into abstract renditions that capture
their salient features. Zeng et al. [21] proposed a unified
variational image editing model for image editing, which
largely depends on gradient-domain adjustment. Agrawal
et al. [2] used a gradient projection technique for a class
of edge-suppressing operations. Other applications of
gradient-domain image editing include tone mapping,
image composition, image stitching, color interpolation,
etc.. We refer the readers to a recent review [1] for these
applications.

Our approach is largely motivated by the recent Gra-
dientShop system [5], which presented an optimization
framework for exploring gradient-domain operators for var-
ious image and video editing tasks. Our gradient selection
method can be integrated into this system to create an inter-
active and fully controllable gradient-domain image editing
workflow.

3. Dominant Gradient Extraction
In this section, we first illustrate our pipeline for gradient

extraction. Then, an energy minimization framework is pre-
sented, which captures the criteria for semantic dominancy
of user scribbled region. Last, a linear time optimizer is pro-
posed for minimizing the energy function, which is crucial
to real-time image editing tasks.

3.1. Algorithm Overview

As illustrated in Figure 2, our gradient extraction method
consists of four steps. Given the input image, we first ap-
ply a recent probabilistic edge detection method [13] to se-
lect a set of sparse edge points (local maxima in the edge
probability map) as atoms for processing. This is because
pixel gradients are affected by many factors such as noise
and shading, and we are only interested in semantically-
meaningful contours, i.e. edges separating different im-
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Figure 2. The pipeline of the proposed gradient selection approach: the system starts by extracting an edge map of the input image us-
ing [13]; and it deploys a low level clustering to group these edge points into small clusters (namely edgelets); then an energy minimization
framework is used to select from these edgelets the ones that are coherent with user interaction and semantically meaningful; last, a gradient
mask is created by diffusing the selected edge points.

age regions, which can be effectively extracted by the de-
tection method. We then employ a low-level clustering
method to group edge points into small clusters, which we
call edgelets, as shown in Figure 2c. These two steps are
done once as preprocessing for each input image.

For online processing, given a new user scribble, we
identify all edgelets that are covered by it, and build a graph
by treating each cluster as a node, and defining affinities
among them based on their geometric and appearance fea-
tures. An efficient method is proposed to solve the graph
labeling problem to provide the edgelets that belong to the
semantically-dominant contour (Figure 2d). Finally, we dif-
fuse the selected edge points to create the final gradient
mask (Figure 2e).

The main reason we use edgelets instead of raw edge
pixels for graph construction is that since each cluster repre-
sents a local edge segment, they are semantically meaning-
ful, allowing us to embed high level semantical constraints
into the graph. An additional benefit is the greatly reduced
graph size which leads to high computational efficiency.

3.2. Pre-Clustering

We first identify all edge points using the detection
method [13]. Features are extracted for each edge point,
including its spatial location, gradient magnitude, gradient
direction, and its appearance features (including color and
texture cues [7]) of the local image patches around the point.
For appearance feature we compute two means, one from
the 3 × 3 patch along the gradient direction, whose cen-
ter is 3 pixel away from the edge point, and the other from
the patch on the opposite direction. Once features are ex-
tracted, the Mean Shift algorithm [8] is used to cluster the
edge points into small clusters, denoted as {e1, e2, ..., en}.
We call each cluster an edgelet, as it represents a small piece
of coherent edge.

3.3. Energy Minimization for Edgelet Labeling

For extracting dominant gradients, we seek for a binary
labeling functionL(i) for the ith edgelet ei, whereL(i) = 1
means that ei belongs to the dominant gradient, and L(i) =

0 if ei is not part of it. An energy minimization framework
is adopted to represent the objectives of the edgelet labeling
problem. Specifically, the total energy of a label assignment
E(L) is composed of a data energy Ed and a neighborhood
energy Er as:

E(L) =
∑
i

Ed(i, L(i)) + λ
∑
i,j

Er(i, j, L(i), L(j)). (1)

Data energy. For assigning the data energy Ed(i, L(i)),
two factors are considered: 1) the strength of the edgelet,
and 2) its consistency with the user scribble. The data en-
ergy thus can be decomposed into two terms:

Ed(i, L(i)) = Esd(i, L(i)) + µEud (i, L(i)), (2)

whereEsd(i, L(i)) is the energy reflecting the strength of the
edgelet:

Esd(i, L(i)) =

{
1−∆ p : L(i) = 1

∆p : L(i) = 0
, (3)

where ∆p is the average edge probability (gPb [13]) of all
pixels in ei:

∆p =
∑
P∈ei

Pb(P )/‖ei‖. (4)

Eud (i, L(j)) measures how consistent the edgelet is with
the user-specified scribble. The idea behind this term is il-
lustrated in Figure 3a. When the user overlays a scribble
on a semantic contour, the two edges of the scribble usually
have different appearances, denoted as c̄l and c̄r, as they in-
tersect with different objects. If the current edgelet belongs
to the dominant contour inside the scribble, it is expected
to separate the same two objects, thus the average appear-
ance feature of local image patches on the two sides of the
edgelet, denoted as c̄il and c̄ir, should be consistent with the
c̄l and c̄r. On the contrary, if (c̄l, c̄r) is not consistent with
(c̄il, c̄

i
r), then the edgelet probably belongs to the texture in-

side one of the objects, thus it should not be selected, even
if it is a strong edge. Here, kernel descriptors [7] are used
as appearance features.
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Figure 3. ∆f and ∆θ in the energy terms. (a) comparing two
edgelets ei and ej (the green curves) using appearance features;
(b) and (c) illustration of ∆θ in defining Eg

r (i, j, L(i), L(j)).

We compute (c̄l, c̄r) and (c̄il, c̄
i
r) for each edgelet from

their local image patches, and define Eud (i, L(j)) as:

Eud (i, L(i)) =

{
1−∆ f : L(i) = 1

∆f : L(i) = 0
, (5)

where

∆f = 1− (‖c̄l − c̄il‖+ ‖c̄r − c̄ir‖)/2. (6)

Neighborhood energy. In order to formulate the neigh-
borhood energy Er(i, j, L(i), L(j)), we first need to define
the spatial distance between two edgelets. In this work it
is defined as the closest distance between any points from
these two edgelets, i.e., if ∃P ∈ ei, Q ∈ ej , |PQ| < r,
then d(i, j) < r. If d(i, j) > tr, a pre-defined threshold,
then ei and ei are considered not in the same neighborhood
(Er(i, j) = 0). Otherwise the energy is defined as:

Er(i, j, L(i), L(j)) = Egr (i, j, L(i), L(j))+νEcr(i, j, L(i), L(j)),
(7)

where Egr measures the geometric compatibility of the two
edgelets, andEcr measures the appearance compatibility be-
tween them. To define Egr , we first identify the pair of
points P ∈ ei, Q ∈ ej that has the minimal distance d(i, j),
and then measure the local curve direction at both points as
θi and θj , as shown in Figure 3b and Figure 3c. We also
compute the angle of the line PQ as θij . Egr is then defined
as:

Egr (i, j, L(i), L(j)) =

 ∆θ if L(i)L(j) = 1
−∆θ if L(i) + L(j) = 1
0 otherwise

, (8)

where

∆θ =
|θij − θi|+ |θij − θj |

π/2
− 1. (9)

The angle difference |θij − θi| is from 0 to π
2 , thus ∆θ is

normalized to [−1, 1]. The idea behind Egr is illustrated
in Figure 3. If two edgelets belong to the same contour,
then the angle differences will be small (Figure 3b), thus

∆θ is close to -1, and Egr encourages both edgelets to be
selected. On the other hand, if they do not belong to the
same contour, such as being parallel as shown in Figure 3c,
then ∆θ is close to 1, and Egr penalizes selecting both of
them and only allows one to be selected.

The appearance energyEcr(i, j, L(i), L(j)) penalizes the
dissimilarity of the appearance features of two neighboring
edgelets, if both are selected. It is defined as:

Ecr(i, j, L(i), L(j)) = L(i)L(j)(1−∆ fi,j), (10)

where ∆fi,j measures the appearance difference between
(c̄il, c̄

i
r) and (c̄jl , c̄

j
r) by replacing (c̄l, c̄r) with (c̄jl , c̄

j
r) in

Eq. 6.

3.4. Optimization

Despite that many optimization algorithms have been de-
veloped for energy minimization [20], the exact solution to
the general MRF is NP-hard. Graph cuts is a commonly
used approach, but it has strict requirements on the energy
terms, such as the inequality E(i, j, 0, 0) + E(i, j, 1, 1) ≤
E(i, j, 0, 1)+E(i, j, 1, 0) should be satisfied for any pair of
nodes [10]. Our energy function violates the requirements
with the negative term in Equation 8. Other approxima-
tion algorithms exist, such as ICM [6], loopy belief prop-
agation [6], etc. The solutions they provide however are
intractable compared to exact optimization. The variable
elimination [22] and the junction tree algorithm [6] are usu-
ally used for exact optimization of a graphical model. How-
ever they are computationally expensive, as both finding
perfect elimination order and building a junction tree with
minimal cluster size are NP-hard [4].

3.4.1 Our procedure.

Luckily, the graph structure of our model are characterized
by an upper bound on the size of the maximal cliques of its
triangulated graph. In our model, all edgelets are extracted
from the image region under a user scribble which has lim-
ited bandwidth, and the nodes are connected based on the
spatial distance between two edgelets. Our graph thus has
a semi-chain shaped structure, as shown in Figure 4. (If
the scribble forms a loop, the algorithm ignores the neigh-
borhood energy between edgelets that is caused by scribble
intersection.) Optimization of our model remains tractable,
and we design an algorithm to find a variable elimination or-
der and then use the variable elimination algorithm [22] for
the exact optimal solution. The elimination order we find
ensures that the variable elimination algorithm performs ef-
ficient (in linear time). This is critical for an image editing
system that gives real-time feedback.

To better explain our algorithm, we introduce two defi-
nitions first. Defining a direction for a user scribble, for any
two edge points P and Q in its brush mask, find the points
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Figure 4. Illustration of the graph processing algorithm. Left: the
original graph, where the region between the green curves is the
scribble region, the red arrow represents the direction of the scrib-
ble. Right: the processed graph (triangulation and resultant elimi-
nation order).

that are closest to them on the scribble: Ps and Qs. Follow-
ing the direction of the stroke, if Ps is ahead of Qs, we say
that P ≺ Q (or Q � P ).

Similarly, for any two nodes vs and vt in our graph (rep-
resenting two edgelets), if ∀P ∈ vs, ∀Q ∈ vt, P ≺ Q, we
have vs ≺ vt (or vt � vs). vs � vt means that vs � vt does
not hold. This relationship is transmissive.

It can be proven that for any two vertices vs and vt in
our graph, if there is no edge between them, vs ≺ vt or
vt ≺ vs; if there is an edge between them, ∃P ∈ vs, Q ∈ vt,
|PQ| < tr (tr is the threshold used in defining neighbor-
hood energy Er in Equation 7). We propose an algorithm
that starts with a semi-chain shaped graph as shown in Fig-
ure 4 (left), triangulates it with edges whose lengths have
an upper bound, and eliminates all vertices in an order that
does not involves new edges, as shown in Figure 4 (right).
The algorithm is formally defined as:

In the graphG′ constructed in Algorithm 1, the distances
of all node pairs are within

√
t2r + b2 where b is the width

of the user scribble area. (proved in the supplementary ma-
terial). The size of its largest clique in G′, which means all
edgelets are closer than

√
t2r + b2 to each other, is a limited

number K because of the sparsity of detected edge points
in an image. The elimination scheme used in Algorithm
1 guarantees that no additional edge is added (also proved
in the supplementary material). After the graph is trans-
formed, we use the variable elimination algorithm to solve
the labeling problem. The computational cost of variable
elimination is bounded by O(2Kn) (K is the largest clique
size of the graph, which is a limited small number in our
problem; n is the number of edgelets).

3.5. Gradient Mask Generation

The output of the optimization procedure described
above is a set of edgelets which together form the
semantically-dominant contour in the scribbled area. Each
edgelet is composed of edge points which are local maxima
in the gradient map. To create the final gradient mask, we
expand each edgelet based on the width of the local gra-
dient. To estimate the local gradient width, starting from
an edge point, we move along the gradient direction until
the gradient magnitude is lower than a small threshold. We
then move along the opposite direction to find the other end
point, and compute the local gradient width as the distance

Algorithm 1 Find variable elimination order of the semi
chain-structured graph
input A undirected graph G
output An elimination order {v1, v2, ..., vt}

Construct a triangulated graph G′, initiate G′ ← G
for any k-circle (k > 3) in G′: V = {v1, v2, ..., vt} do

find a node vi, ∀j∈{1,2,..t},j 6=i±1vi ≺ vj ; compare
vi−1 and vi+1 (if j > t, vj = vj−t):
if vi−1 ≺ vi+1 then

consider vi−2, vi−1, vi, vi+1, we have vi ≺ vi−2

find P0 ∈ vi, P ′1 ∈ vi+1 that has |P0P
′
1| < tr

find P1 ∈ vi−1, P2 ∈ vi−2 that has |P1P2| < tr
if |P0P2| < |P1P

′
1| then add an edge vivi−2 to G′

else add an edge vi−1vi+1 to G′

else consider vi−1, vi, vi+1, vi+2, similar as when
vi−1 ≺ vi+1

end for
Eliminate all vertices in V
for G′ 6= ∅ do

find all vi ∈ V , ∀vj ∈ V, i 6= j, vi � vj ; select from
them vk with the least neighbors
eliminate vk, and remove it and all its edges in G′

end for

between the two end points. The widths of nearby edge
points are averaged to remove noise, and finally a mask is
created by expanding the selected edgelets based on their
widths.

4. Experiments
We evaluate the edge selection accuracy of our ap-

proach on a benchmark based on the Berkeley segmentation
dataset [14]. The experiments suggest that, for the problem
of supervised edge selection, our method outperforms the
state-of-art algorithms used for edge detection and contour
extraction.

4.1. Benchmark

Our benchmark dataset contains 100 images that
were randomly chosen from the Berkeley segmentation
dataset [14]. For each image, we manually drew a scribble
over a dominant edge of the object, which overlays with the
corresponding edge marked by human in the segmentation
dataset. The human marked edges are treated as ground-
truth. The proposed algorithm contains a few important pa-
rameters. Particularly, in Equation 1, 2 and 7, there are three
weighting parameters λ, µ and ν which balance between
different energy terms. We used Gaussian processes regres-
sion [18] to learn the best parameter setting. (Assume that
the three weighting parameters (variables x), and the aver-
age edge detection accuracy on the training data (the fidelity
value f(x)), are drawn from a GP distribution. By estimat-



Figure 5. Edge selection results compared with gPb thresholded by different values. The first image in each row is the original image with
an overlay of user scribble; the second image is the edge probability map extracted by gPb; the third and fourth images are the results of
directly using the output of gPb within the mask region, using different thresholds; the fifth image is the output of our method; and the last
one is the groundtruth. While using gPb directly, the result may either include noises that are not coherent with the overall line, or leave out
edge points that cause discontinuity of the line. Our results overcome the problem by formalizing the coherent relationship of the edgelets.

Table 1. Comparisons of edge extraction accuracy on the dataset.

Methods gPb Active contour Graph-cut Ours
F-measure 0.69 0.67 0.63 0.75

ing and sampling the GP model, the parameter setting with
the highest responses is selected as our system parameter
setting.) The parameters we found are: λ = 1.02, µ = 0.78,
ν = 0.23.

4.2. Evaluation

We conducted an objective evaluation of the proposed
approach using the dataset. Our results are compared
against the active contour algorithm [9] and the Berkeley
edge detection results (gPb) [13] by thresholding the edge
points by their probability. We also compare against using
the graph cuts algorithm to minimize our energy function
(discarding the energy term that violates the triangular con-
straint for graph cuts).

Table 1 and Figure 5 shows the results. F-measure [19]
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(the weighted harmonic mean of precision P and recall R)
is used to evaluate the results. Table 1 clearly suggests
that the proposed approach outperforms previous methods
in terms of F-measure. Specifically, since the geometric
compatibility term in our energy function is critical in find-



Cluster 
generation 

Cluster 
selection 

Gradient 
propagation 

(a)

Cluster 
generation 

Cluster 
selection 

Gradient 
propagation 

(b)

Cluster 
generation 

Cluster 
selection 

Gradient 
propagation 

(c)

Cluster 
generation 

Cluster 
selection 

Gradient 
propagation 

(d)

Cluster 
generation 

Cluster 
selection 

Gradient 
propagation 

(e)

Cluster 
generation 

Cluster 
selection 

Gradient 
propagation 

(f)

Cluster 
generation 

Cluster 
selection 

Gradient 
propagation 

(g)

Cluster 
generation 

Cluster 
selection 

Gradient 
propagation 

(h)

Figure 6. Edge snapping results. (a) input image; (b) user scribble overlayed; (c) original edge map; (d) and (e) are selected edges by
thresholding gPb using different values; (f) selected edgelets by our approach; (g) our edge snapping results (red is the initial curve, and
green is the output); (h) edge snapping results using active contour.

ing non-conflicting edgelets, discarding this term results in
a poor behavior using the graph cuts algorithm. The ac-
tive contour has the problem of easily being stuck at lo-
cal minima. gPb has the best results of all the three meth-
ods. However, it focuses only on the pixel level edge de-
tection task. Relationship between the user scribble and
edge points, as well as relationship among the selected edge
points, is not well considered. Our approach significantly
outperforms the result of thresholding gPb outputs, no mat-
ter what threshold is used (as in Figure 5). (Note that the
score of gPb here is different from the score over the whole
BSD dataset ([14],[13]). This is because the benchmark
we created here evaluates edge detection results only in the
masked regions of the images.)

Figure 7 shows the precision-recall curve of both our al-
gorithm and gPb. We vary our algorithm in two ways: con-
sidering only data energy terms (λ = 0); and considering
both data energy and neighborhood energy. When neigh-
borhood energy is not taken into consideration, our algo-
rithm behaves more close to thresholding gPb, especially
when the recall is high, (meaning more edges are selected
and constraints by user scribble is less weighted). The best
result is achieved when all our energy terms are used. The
neighborhood energy ensures that selected edge points are
compatible with each other, thus have a better chance of
laying on the same semantic contour.

It is also worth mentioning that our algorithm is very
efficient, because optimization of the energy function can
be done in linear time. It takes on average 2 ∼ 3 seconds
to select gradients for each user scribble. In our system, the
time between user interaction and results rendering is within
5 seconds, which differs a little for different applications.

4.3. Applications

Our algorithm can be used in various gradient-domain
image editing tasks, including edge snapping, salient sharp-
ening, non-photorealistic rendering, etc. Here we demon-
strate the results on some them.

Edge snapping. Edge snapping tools, such as the classic
magnetic lasso tool in photoshop, are popular choices for in-
teractive object selection from images. However traditional
methods seek for local minima of their energy functions,
thus can be easily distracted by strong edges nearby the tar-
geted contour. Our gradient selection method can be used
the improve the performance of edge snapping, but forcing
the final curve to snap to the selected gradients. Since our
gradient selection procedure only picks out the dominant
contour, the snapping result is more likely to be globally
optimal, as shown in the examples in Figure 6.

Saliency sharpening. Sharpening is a natural applica-
tion for gradient-domain editing, which is done globally
in previous approaches [5]. Our system allows the user to
mark specific contours to be sharpened, as in Figure 8. Sys-
tems like [5] can not perform such tasks without our gradi-
ent selection component.

Image stylization. The goal of stylizing an image is to
abstract away the non-salient details in the image and only
emphasize on salient contours. In gradient domain, this is
typically done by suppressing small gradient values while
magnifying large gradient values [5]. We provide a render-
ing interface that allows the user to control which gradient
to magnify or suppress, thus provides a greater degree of
freedom for artistic expression. Some examples are shown
in Figure 9.



Figure 8. Saliency sharpening. For each example we show two
sets of user scribbles and their corresponding results.

Figure 9. Stylization results. In each example, from left to right:
input image; user scribbles; stylization result without gradient se-
lection; our result (with gradient selection).

5. Conclusion
We propose a graph-based energy minimization ap-

proach for selecting semantically-dominant gradients in
user-scribbled area. The graph is constructed by using low-
level edgelets as nodes, and defining their affinities using
both geometric and appearance features. The way we de-
fine them well considers various aspects of semantical dom-
inancy of image edges, as well as the information from in-
teractive user input. Furthermore, we show how to effec-
tively transform the graph and find its precise optimal solu-
tion, thus the geometric and appearance features of selected
gradients are ensured. The effectiveness of the proposed ap-
proach is objectively evaluated and demonstrated through
various image editing applications. As future work we plan
to explore its applications in other areas, such as video edit-
ing, making convenient annotation tool, etc.
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A. Proof for Algorithm 1
Proposition 1. In Algorithm 1 when the triangulated graph
G′ is constructed, if |P0P2| < |P1P

′
1|, |P0P2| <

√
t2r + b2.

(tr is the threshold of neighborhood energy Er in Equa-
tion 7; b is the width of the user scribble.)

Proof of Proposition 1. In Algorithm 1, when
vi−2, vi−1, vi, vi+1 are considered, vi ≺ vi−2 ⇒ P0 ≺ P2;
vi−1 ≺ vi+1 ⇒ P1 ≺ P ′1. At the same time, we
have |P0P1| < tr, |P0P

′
1| < tr, |P1P2| < tr and

|P0P2| < |P1P
′
1|. Projecting the four points P0, P1,

P ′1, P2 onto the central line of user scribble, it’s easy to
identify that the distance of the projections of P0 and
P2 are < tr. Since the width of the user scribble is b,
|P0P2| <

√
t2r + b2.

With Proposition 1, in the output graph G′ of Algorithm
1, the distances of all node pairs are within

√
t2r + b2.

Proposition 2. In Algorithm 1 when a vertex vk is elimi-
nated, all the neighbors of vk are connected in G′.

Proof of Proposition 2. If that the proposition is not valid,
∃vk picked for elimination, there is no edge between its
neighbors vi and vj . We will prove that this contradicts
with the assumption based on which vk is selected.

Since there is no edge between vi and vj , then vi ≺ vj
or vi ≺ vj . Assume that vi ≺ vj . Based on the assumption
on which vk is chosen, vk has no more neighbors than vi.
Meanwhile, vj is a neighbor of vk but not of vi, so ∃vt,
which is a neighbor of vi but not of vk. Again, based on the
assumption on which vk is chosen, vk ≺ vt.

Now consider the four vertices vk vi vj vt: if vt and
vj are connected, the four vertices form a circle in G′, in
contradict with the fact that G′ is triangulated. If vt and vj
are not connected, vt ≺ vj or vj ≺ vt. Consider the first
case, we have vk ≺ vt, vt ≺ vj ⇒ vk ≺ vj , in contradict
with that vj is vk’s neighbor. Likewise consider the latter
case vj ≺ vt, we have vi ≺ vj , vj ≺ vt ⇒ vi ≺ vt, in
contradict with that vi and vt are connected.

Similarly, the assumption that Proposition 2 is not valid
would fail assuming vj ≺ vi.

Proposition 2 guarantees that computational cost of vari-
able elimination is bounded by largest clique size of the tri-
angulated graph G′.

B. More Edge Selection Results (Fig 13)

C. More Application Results
C.1. Edge Snapping (Fig 10)

C.2. Saliency Sharpening (Fig 11)

C.3. Image Stylization (Fig 12)
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Figure 10. More edge snapping results. (a) input image; (b) user
scribble overlayed; (c) our edge snapping results (red is the initial
curve, and green is the output); (d) edge snapping results using
active contour.
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Figure 11. More saliency sharpening results. First line: (a) input
image with user scribble overlayed; (b) gradients selected by our
approach; (c) results of locally filtering of the selected gradients
(our approach); (d) global filtering result. Second line: we show
two sets of user scribbles and their corresponding results.

Figure 12. More stylization results. From left to right: input im-
age; user scribbles; our result using gradient selection.
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Figure 13. More edge selection results compared with gPb thresholded by different values. (a) is the original image with an overlay of user
scribble; (b) is the edge probability map extracted by gPb; (c) and (d) are the results of directly using the output of gPb within the mask
region, using different thresholds; (e) is the output of our method; (f) is the groundtruth.


