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6.1	Introduction
Medical	imaging	creates	visual	representations	of	the	human	body,	including	organs	and	tissues,	to	aid	in	diagnosis	and	treatment.	These	visual	representations	are	effective	in	a	variety	of	medical	settings	and

have	become	integral	in	clinical	decision	making.	A	common	example	is	X-ray-based	radiography	examinations	that	are	used	to	capture	visual	representations	of	the	interior	structure	of	the	body.	Other	examples

include	PAP	smear	analysis	for	cervical	cancer	screening	and	whole	slide	biopsy	analysis	for	multiple	kinds	of	cancer,	including	breast	cancer	and	melanoma.	Today’s	human	physician	is	no	longer	able	to	interpret	the

vast	amount	of	information	now	available	in	medical	imaging.	For	example,	there	are	hundreds	of	thousands	of	cells	on	some	of	the	whole	slide	images	(WSIs)	of	a	biopsy.

Machine	learning	is	an	effective	tool	that	enables	machines	(or	computers)	to	learn	meaningful	patterns	from	medical	imaging	data,	which	can	be	used	to	build	computer-aided	diagnostic	systems	[1,2].	With

the	 recent	 advancements	 in	hardware	 technology	 and	 the	 availability	 of	 a	 large	 amount	 of	medical	 imaging	data,	 deep	 learning-based	methods,	 especially	 convolutional	 neural	 networks	 (CNNs)	 [3],	 are	gaining

attention	 in	medical	 image	analysis	 [4,5].	 Researchers	 have	 applied	deep	 learning-based	methods	 to	 a	 variety	 of	medical	 data,	 such	 as	WSIs	 [6],	magnetic	 resonance	 (MR)	 tumor	 scans	 [7],	 electron	microscopic

recordings	[8],	and	tasks,	such	as	cancer	diagnosis	[2,9]	and	cellular-level	entity	detection	[8,10].

In	 this	 chapter,	 we	 will	 describe	 the	 ESPNet	 architecture	 [11]	 that	 has	 been	 successfully	 applied	 across	 a	 variety	 of	 visual	 recognition	 tasks,	 including	 image	 classification,	 object	 detection,	 semantic

segmentation,	 and	medical	 image	analysis	 [6,12,13].	 To	 demonstrate	 the	modeling	 power	 of	 the	ESPNet	 architecture,	we	 study	 the	 application	 of	 ESPNet	 to	 two	 different	medical	 imaging	 tasks:	 (1)	 tissue-level

segmentation	of	breast	biopsy	WSIs	and	(2)	tumor	segmentation	in	3D	brain	MR	images.	Our	results	show	that	the	ESPNet	architecture	learns	meaningful	representations	efficiently	that	allows	it	to	deliver	good



accuracy	on	different	tasks.

The	rest	of	the	chapter	is	organized	as	follows.	Section	6.2	reviews	the	different	types	of	convolutions	that	are	used	in	the	ESPNet	architecture,	which	is	described	in	Section	6.3.	Experimental	results	on	two

different	medical	imaging	datasets	are	provided	in	Section	6.4.	Section	6.5	concludes	the	chapter.

6.2	Background
The	convolution	operation	lies	at	the	heart	of	many	computer	vision	algorithms,	including	CNNs.	In	this	section,	we	will	briefly	review	two	types	of	convolutions,	standard	and	dilated	convolutions,	which	are

used	in	the	ESPNet	architecture.

6.2.1	Standard	convolution
For	a	given	2D	input	image	 ,	the	standard	convolution	moves	a	kernel	 of	size	n×n1	over	every	spatial	location	of	the	input	 to	produce	the	output	 .	Mathematically,	it	can	be	defined	as:

where	*	denotes	the	convolution	operations.

6.2.2	Dilated	convolution
Dilated	 convolutions2	 are	 a	 special	 form	 of	 standard	 convolutions	 in	 which	 holes	 are	 inserted	 between	 kernel	 elements	 to	 increase	 the	 effective	 receptive	 field.	 These	 convolutions	 have	 been	 widely	 used	 in	 semantic

segmentation	 networks	 [14,15].	 For	 a	 given	 2D	 input	 image	 ,	 the	 dilated	 convolution	moves	 a	 kernel	 of	 size	 with	 a	 dilation	 rate	 of	 over	 every	 spatial	 location	 of	 the	 input	 to	 produce	 the	 output	 .

Mathematically,	it	can	be	defined	as:

where	 denotes	 the	dilated	convolution	operation	with	a	dilation	 rate	of	 .	The	effective	 receptive	 field	of	a	dilated	convolutional	kernel	 of	size	 with	 a	 dilation	 rate	 of	 is	 .	Note	 that

dilated	convolutions	are	the	same	as	standard	convolutions	when	the	dilation	rate	 is	1.	An	example	comparing	dilated	and	standard	convolutions	is	shown	in	Fig.	6.1.

6.3	The	ESPNet	architecture
In	this	section,	we	elaborate	on	the	details	of	the	ESPNet	architecture.	We	first	describe	the	ESP	module,	the	core	building	block	of	the	ESPNet	architecture,	and	then	describe	different	variants	of	the	ESPNet

architecture	for	analyzing	different	types	of	medical	images,	such	as	whole	slide	biopsy	images	and	3D	brain	tumor	images.

6.3.1	Efficient	spatial	pyramid	unit
The	core	building	block	of	the	ESPNet	architecture	is	the	efficient	spatial	pyramid	(ESP)	unit.	To	be	efficient,	the	ESP	unit	decomposes	the	standard	convolution	into	a	point-wise	convolution	and	spatial	pyramid	of	dilated

		 	 		 	 		 	 		 	

		 	 		 	 		 	 		 	 		 	 	 	

		 	 		 	 		 	 		 	 		 	 		 	

		 	

Figure	6.1	A	comparison	between	standard	and	dilated	convolution	operations.	Input	X	is	padded	with	zeros	(white	cells)	so	that	the	resulting	output	after	the	convolution	operation	is	of	the	same	size	as	that	of	the	input.



convolutions	using	the	RSTM	(reduce,	split	and	transform,	and	merge)	principle:

• Reduce:	The	ESP	unit	applies	 point-wise3	(or	 )	convolutions	to	an	input	tensor	 to	produce	an	output	tensor	 ,	where	 and	 represent	the	width	and	height	of	the	tensor,	whereas	 and	 represent

the	number	of	channels	in	the	input	and	output	tensor.

• Split	and	Transform:	To	learn	the	spatial	representations	from	a	large	receptive	field	efficiently,	the	ESP	unit	applies	 ,	 dilated	convolutions	simultaneously	with	different	dilation	rates	 to	 to	produce	output	

,	 .	To	learn	spatial	representations	from	a	large	receptive	field,	the	ESP	unit	uses	a	different	dilation	rate,	 ,	in	each	branch.	This	allows	the	ESP	unit	to	learn	spatial	representations	from	an	effective

receptive	field	of	 ,	where	 denotes	the	kernel	size.

• Merge:	The	ESP	unit	concatenates	these	d-dimensional	feature	maps	to	produce	a	M-dimensional	feature	map	 ,	where	 represents	the	concatenation	operation	and	 .

Fig.	6.2	compares	the	ESP	unit	with	the	standard	convolution.	The	ESP	unit	learns	 parameters	and	performs	 operations.	Compared	to	 parameters	and	 operations	for	the

standard	convolution,	the	RSTM	principle	reduces	the	total	number	of	parameters	and	operations	by	a	factor	of	 ,	while	simultaneously	increasing	the	effective	receptive	field	by	approximately	 .

6.3.1.1	Hierarchical	feature	fusion	for	degridding	in	the	efficient	spatial	pyramid	unit
Dilated	convolutions	insert	zeros,	controlled	by	the	dilation	rate,	between	kernel	elements	to	increase	the	receptive	field	of	the	kernel.	However,	this	introduces	unwanted	checkerboard	or	gridding	artifacts	on	the	output,	as

shown	in	Fig.	6.3.	The	ESP	unit	introduces	a	hierarchical	feature	fusion	(HFF)	method	to	remove	these	artifacts	in	a	computationally	efficient	manner4.	HFF	hierarchically	adds	outputs	 and	then	concatenate	them	to	produce	a	high-

dimensional	feature	map	 ,	where	⊕	represents	the	element-wise	addition	operation.	Fig.	6.4	visualizes	the	ESP	unit	with	and	without	HFF.

		 	 		 	 		 	 		 	 		 	 		 	 		 	 		 	

		 	 		 	 		 	 		 	

	 		 	 		 	

		 	 		 	

		 	 		 	 		 	

		 	 		 	 		 	 		 	

		 	 		 	

Figure	6.2	A	comparison	between	the	standard	convolution	and	the	ESP	unit.	In	the	ESP	unit,	the	standard	convolution	is	decompose (We	only	refer	to	white	color	in	this	figure	caption,	which	should	be	okay	for	both	color	and	B&W	prints.	Same	for	Figure	6.1)d	into	a

point-wise	convolution	and	a	spatial	pyramid	of	dilated	convolutions	using	the	RSTM	principle.	Note	that	in	dilated	convolutions,	zeros	(represented	in	white)	are	inserted	between	the	kernel	elements	to	increase	the	receptive	field.

		 	

		 	

Figure	6.3	This	figure	illustrates	a	gridding	artifact	example,	where	a	5×5	input	with	single-active	pixel	(represented	in	blue)	is	convolved	with	a	3×3	dilated	convolution	kernel	to	produce	an	output	with	a	gridding	artifact.	Active	kernel	elements	are	represented	in	ora (This	figure

illustrates	a	gridding	artifact	example,	where	a	5x5	input	with	a	single-active	pixel	is	convolved	with	a	3x3	dilated	convolution	kernel	to	produce	an	ouput	with	a	gridding	artifact.	Active	input,	output,	and	kernel	elements	are	shown	in	color.)nge.



6.3.2	Segmentation	architecture
Most	image	segmentation	architectures	follow	an	encoder–decoder	structure	[16].	The	encoder	network	is	a	stack	of	encoding	units,	such	as	the	bottleneck	unit	in	ResNet	[17],	and	downsampling	units	that	help	the	network

learn	multiscale	representations.	Spatial	information	is	lost	during	filtering	and	downsampling	operations	in	the	encoder;	the	decoder	tries	to	recover	the	loss	of	this	information.	The	decoder	can	be	viewed	as	an	inverse	of	the	encoder

that	stacks	upsampling	and	decoding	units	to	learn	representations	that	can	help	produce	either	binary	or	multiclass	segmentation	masks.	It	is	important	to	note	that	a	vanilla	encoder–decoder	network	does	not	share	information

between	encoding	and	decoding	units	at	each	spatial	level.	To	share	information	between	encoding	and	decoding	units	at	each	spatial	level,	U-Net	[8]	introduces	a	skip	connection	between	the	encoding	and	decoding	units	at	each

spatial	level.	This	connection	establishes	a	direct	link	between	the	encoding	and	the	decoding	units	and	improves	gradient	flow,	thus	improving	segmentation	performance.	Fig.	6.5	compares	the	vanilla	encoder–decoder	and	U-Net

style	encoder–decoder	architectures.

The	 ESPNet	 architecture	 for	 semantic	 segmentation	 extends	 the	 U-Net.	 In	 contrast	 to	 using	 computationally	 expensive	 VGG-style	 [18]	 blocks	 for	 encoding	 and	 decoding	 the	 information,	 the	 ESPNet	 architecture	 uses

computationally	efficient	ESP	units.

6.4	Experimental	results
In	this	section,	we	provide	results	of	the	ESPNet	architecture	on	two	different	medical	imaging	datasets:	(1)	breast	biopsy	whole	slide	imaging	and	(2)	brain	tumor	segmentation.

6.4.1	Breast	biopsy	whole	slide	image	dataset
6.4.1.1	Dataset

The	breast	biopsy	dataset	consists	of	240	WSIs	with	haematoxylin	and	eosin	(H&E)	staining	[19,20].	Three	expert	pathologists	independently	interpreted	each	of	the	240	cases	and	then	met	to	review	each	case	together	and

provide	a	consensus	reference	diagnosis	label,	which	we	use	as	the	gold	standard	ground	truth	for	each	case.	Additionally,	the	expert	pathologists	marked	428	region	of	interests	(ROIs)	on	these	240	WSIs	that	were	representative	of

their	diagnosis.	Out	of	 these	428	ROIs,	58	were	manually	 segmented	by	an	expert	 into	eight	different	 tissue-level	 segmentation	 labels:	background,	benign	epithelium,	malignant	epithelium,	normal	 stroma,	desmoplastic	 stroma,

secretion,	blood,	and	necrosis.	Fig.	6.6	visualizes	some	ROIs	along	with	their	tissue-level	segmentation	labels.	Furthermore,	we	split	these	58	ROIs	into	two	equally	sized	subsets,	a	training	set	(30	ROIs)	and	a	test	set	(28	ROIs),	while

keeping	the	distribution	of	diagnostic	categories	similar	(see	Table	6.1).	A	total	of	87	pathologists	who	were	actively	interpreting	breast	biopsies	in	their	own	clinical	practices	participated	in	the	study	and	provided	one	of	the	four

Figure	6.4	Block	level	visualization	of	the	ESP	unit	without	and	with	hierarchical	feature	fusion	(HFF).

Figure	6.5	Encoder–decoder	architectures	for	segmentation.	Colors	represent	different	types	of	units	in	the	encoder–decoder	arachitecture (Encoder-decoder	architectures	for	tissue-level	semantic	segmentation):	encoding	unit	in	green,	downsampling	unit	in	red,

upsampling	unit	in	orange,	and	decoding	unit	in	blue.



diagnostic	labels	(benign,	atypia,	ductal	carcinoma	in	situ,	and	invasive	cancer)	per	WSI	of	a	case.	Each	pathologist	provided	diagnostic	labels	for	a	randomly	assigned	subset	of	60	patients’	WSIs,	producing	an	average	of	22	diagnostic

labels	per	case.

Table	6.1	Diagnostic	category-wise	distribution	of	58	region	of	interests	(ROIs)	for	the	segmentation	subset.

#	ROI Average	ROI	size	(in	pixels)

Expert	consensus	reference	diagnostic	category Training Test Total

Benign 4 5 9

Atypia 11 11 22

DCIS 12 10 22

Invasive 3 2 5

Total 30 28 58

6.4.1.2	Training
The	breast	biopsy	ROIs	(or	WSIs)	have	huge	spatial	dimensions,	often	of	the	order	of	gigapixels.	Due	to	such	high	spatial	dimensionality	of	these	images	and	the	limited	computational	capability	of	existing	hardware	resources,

it	is	difficult	to	train	conventional	CNNs	directly	on	these	images.	Therefore	we	follow	a	patch-based	approach	that	splits	a	ROI	(or	WSI)	into	small	patches	of	size	384×384	with	an	overlap	of	56	pixels	between	consecutive	patches.	We

use	standard	augmentation	strategies	such	as	random	flipping,	cropping,	and	resizing	to	prevent	overfitting.	For	training,	we	split	the	training	set	of	30	ROIs	into	training	and	validation	subsets	with	a	90:10	ratio.	We	train	our	network

for	100	epochs	using	stochastic	gradient	descent	(SGD)	with	an	initial	learning	rate	of	0.0001,	which	is	decreased	by	0.5	after	every	30	epochs.	To	evaluate	the	tissue-level	segmentation	performance,	we	use	mean	intersection	over

union	(mIOU),	a	widely	used	metric	to	evaluate	segmentation	performance.

The	 shape	 and	 structure	 of	 objects	 of	 interest	 in	 the	 breast	 biopsy	 are	 variable	 in	 size,	 and	 splitting	 such	 structures	 into	 fixed	 size	 using	 a	 patch-based	 approach	 limits	 the	 contextual	 information;	 CNNs	 tend	 to	make

segmentation	errors	especially	at	the	border	of	the	patch	(see	Fig.	6.7).	To	avoid	such	errors,	we	centrally	crop	a	384×384	prediction	to	a	size	of	256×256,	as	shown	in	Fig.	6.8.

Figure	6.6	The	set	of	ROIs	(top	row)	along	with	their	tissue-level	segmentation	labels	(bottom	row)	from	the	dataset. (We	can't	change	colors	for	tissue	labels	in	Figure	6.6.,	6.7,	6.8,	and	6.9	)

		

		

		

		

		

Figure	6.7	Segmentation	errors	along	the	border	of	the	patch.



6.4.1.3	Segmentation	results
Tables	6.2	and	6.3	summarize	the	performance	of	different	segmentation	architectures.

Table	6.2	Impact	of	skip	connections	and	different	decoding	units.

Skip
connection Network

parameters
Encoding–decoding	units Add Concat mIOU

ESP–ESP (Could	you	please	edit	the	layout	of	Table	6.2,	so	that	it	is	the	same	as	we	submited?	In	particular,	merge	the	three	rows	in	Column	1	(corresponding	to	ESP-ESP	setting),	so	that
readers	may	not	get	confused	with	which	row	is	for	which	setting) 1.95 M 35.23

✓ 1.95 M 36.19

✓ 2.25 M 38.03

ESP–PSP ✓ 2.75 M 44.03

Table	6.3	Comparison	with	state-of-the-art	methods.

Method Network	parameters mIOU

Superpixel	+	SVM NA 25.8

SegNet 12.80 M 37.6

SegNet	+	additive	skip	connections 12.80 M 38.1

Multiresolution 26.03 M 44.20

Y-Net	(ESP–PSP) 2.75 M 44.03

Notes:	The	results	in	the	first	four	rows	are	taken	from	Refs	[6,11,21].

6.4.1.4	Skip	connections
Skip	connections	between	the	encoder	and	the	decoder	in	Fig.	6.5	can	be	constructed	using	two	operations:	(1)	element-wise	addition	and	(2)	concatenation.	The	impact	of	these	connections	is	studied	in	Table	6.2.	We	can	see

that	 encoder–decoder	 networks	with	 skip	 connection	 constructed	 using	 concatenation	 operations	 improve	 the	 accuracy	 of	 the	 vanilla	 encoder–decoder	 by	 about	 4%	 and	 that	 the	 encoder–decoder	 networks	with	 skip	 connections

constructed	using	element-wise	addition	operations	improve	the	accuracy	of	the	vanilla	encoder–decoder	by	about	2%.

6.4.1.5	Pyramidal	spatial	pooling	as	a	decoding	unit
Traditionally,	the	decoding	unit	in	encoder–decoder	architectures,	such	as	SegNet	[16]	and	U-Net	[8],	is	the	same	as	the	encoding	unit.	In	our	recent	work	[6,11,21],	we	introduced	a	general	encoder–decoder	network,	sketched

in	Fig.	6.5,	that	allows	the	use	of	different	encoding	and	decoding	units.	When	we	replaced	the	ESP	unit	with	the	pyramidal	spatial	pooling	(PSP)	unit	[22]	in	the	decoder,	the	performance	of	our	network	improved	by	about	6%.	This	is

likely	because	the	pooling	operations	in	the	PSP	unit	allow	the	capture	of	better	global	contextual	representations	(Fig.	6.9).

Figure	6.8	Center	cropping	to	minimize	segmentation	errors	along	patch	border.



6.4.1.6	Comparison	with	state-of-the-art	methods
Table	6.3	compares	the	performance	with	different	methods.	We	can	see	that	the	asymmetric	encoder–decoder	structure,	with	the	ESP	as	the	encoding	unit	and	the	PSP	as	the	decoding	unit,	allows	us	to	build	a	light-weight

network	that	has	 fewer	parameters	than	the	network	of	Refs	[6,11,21]	while	delivering	similar	segmentation	performance.

6.4.1.7	Tissue-level	segmentation	masks	for	computer-aided	diagnosis
Tissue-level	segmentation	masks	provide	a	powerful	abstraction	for	diagnostic	classification.	To	demonstrate	the	descriptive	power	of	tissue-level	segmentation	masks,	we	extract	and	study	the	impact	of	two	features,	tissue-

distribution	and	structural	features	 [2],	 for	a	four-class	breast	cancer	diagnostic	task.	For	this	analysis,	we	use	the	428	ROIs.	We	use	a	support-vector	machine	classifier	with	a	polynomial	kernel	 in	a	 leave-one-out-cross-validation

strategy.	We	measure	 the	 performance	 in	 terms	 of	 sensitivity,	 specificity,	 and	 accuracy.	Table	 6.4	 summarizes	 diagnostic	 classification	 results.	We	 can	 see	 that	 simple	 features	 extracted	 from	 tissue-level	 segmentation	masks	 are

powerful,	and	we	are	able	to	attain	accuracies	similar	to	pathologists.

Table	6.4	Impact	of	different	features	on	diagnostic	classification	from	Ref.	[2].

Diagnostic	features Accuracy Sensitivity Specificity

Invasive	versus	noninvasive

Tissue-distribution	feature 0.94 0.70 0.95

Structural	feature 0.91 0.49 0.96

Pathologists 0.98 0.84 0.99

Atypia	and	DCIS	versus	benign

Tissue-distribution	feature 0.70 0.79 0.41

Structural	feature 0.70 0.85 0.45

Pathologists 0.81 0.72 0.62

DCIS	versus	atypia

Tissue-distribution	feature 0.83 0.88 0.78

Structural	feature 0.85 0.89 0.80

Figure	6.9	ROI-wise	predictions.	The	first	row	shows	different	breast	biopsy	ROIs,	the	second	row	shows	tissue-level	ground-truth	labels;	the	third	row	shows	predictions.	ROI,	region	of	interest.

		 	



Pathologists 0.80 0.70 0.82

Notes:	The	best	numbers	are	indicated	in	bold.

6.4.2	Brain	tumor	segmentation
6.4.2.1	Dataset

The	Multimodal	Brain	Tumor	Segmentation	Challenge	(BraTS)	2018	training	set	consists	of	285	multi (multi-instituitional?)institutional	preoperative	multimodal	MR	tumor	scans,	each	consisting	of	T1,	postcontrast	T1-weighted

(T1ce),	T2,	and	FLAIR	volumes	[23].	Each	volume	is	annotated	with	voxel	 labels	corresponding	to	the	following	tumor	compartments:	enhancing	tumor,	peritumoral	edema,	background,	and	necrotic	core	and	nonenhancing	tumor.

Necrotic	core	and	nonenhancing	tumor	share	a	single	label.	These	data	are	coregistered	to	the	standard	MNI	anatomical	template,	interpolated	to	the	same	resolution,	and	skull-stripped.	Ground-truth	segmentations	are	manually

drawn	by	radiologists.	Fig.	6.10	visualizes	some	MR	modalities	along	with	their	voxel-level	segmentation	labels.

6.4.2.2	Training
MR	scans	are	high-dimensional:	each	of	the	four	MR	sequence	volumes	has	a	dimension	of	 .	We	use	standard	augmentation	strategies	such	as	random	flipping,	cropping,	and	resizing	to	prevent	overfitting.	For

training,	we	split	the	training	set	of	285	MR	scans	into	train	and	validation	subsets	with	80:20	ratio	(228:57).	We	train	our	network	for	300	epochs	using	SGD	with	an	initial	learning	rate	of	0.0001	and	decreased	it	to	0.00001	after	200

epochs.	We	evaluate	the	segmentation	performance	using	an	online	server,	that	measures	the	segmentation	performance	in	terms	of	the	Dice	score.	Furthermore,	we	adapt	the	ESP	module	for	volume-wise	segmentation	by	replacing

the	spatial	dilated	convolutions	in	Fig.	6.4	with	the	volume-wise	dilated	convolutions.	For	more	details,	please	see	Ref.	[13].

6.4.2.3	Results
Table	6.5	summarizes	the	results	of	the	BRATS	2018	online	test	and	validation	sets.	Unlike	the	winning	entries	from	the	competition	that	often	use	specific	normalization	techniques,	model	ensembling,	and	postprocessing

methods	such	as	conditional	random	field	(CRF)	to	boost	the	performance	[7,24],	our	network	was	able	to	attain	good	segmentation	performance	while	learning	merely	3.8	million	parameters,	which	are	an	order	of	magnitude	fewer

than	existing	methods.	Furthermore,	our	visual	inspection	reveals	convincing	performance;	we	display	segmentation	results	overlaid	on	different	modalities	in	Fig.	6.11.	It	is	important	to	note	that	the	predictions	made	by	our	network

are	smooth	and	lack	some	of	the	granularity	present	in	the	ground-truth	segmentation.	This	is	likely	because	our	model	is	not	able	to	learn	such	granular	details	with	a	limited	amount	of	training	data.	We	believe	that	postprocessing

techniques,	such	as	CRFs,	would	help	our	network	in	capturing	such	granular	details	and	we	will	study	such	methods	in	the	future.

Table	6.5	Results	obtained	by	our	method	[13]	of	the	BraTS	2018	online	test	and	validation	set.

Networks Whole	tumor Enhancing	tumor Tumor	core

Ours—validation 0.883 0.737 0.814

Ours—test 0.850 0.665 0.782

Figure	6.10	The	set	of	MR	modalities	(left)	along	with	their	voxel-level	segmentation	labels	(right).	MR,	magnetic	resonance.

		 	



Myronenko	[24] 0.884 0.766 0.815

Notes:	We	also	compare	with	the	winning	entry	on	the	test	set	[24],	which	uses	an	ensemble	of	10	models	and	special	normalization	techniques.

6.4.3	Other	applications
The	ESPNet	architecture	is	a	general-purpose	architecture	and	can	be	used	across	a	wide	variety	of	applications,	ranging	from	image	classification	to	language	modeling.	In	our	work,	we	have	used	the	ESPNets	for	image

classification	[12],	object	detection	[12],	semantic	segmentation	[6,11,21],	language	modeling	[12],	and	autism	spectral	disorder	prediction	[25].

6.5	Conclusion
This	 chapter	 describes	 the	 ESPNet	 architecture	 that	 is	 built	 using	 a	 novel	 convolutional	 unit,	 the	 ESP	 unit,	 introduced	 in	 Refs	 [6,11,21].	 To	 effectively	 demonstrate	 the	 modeling	 power	 of	 the	 ESPNet

architecture	on	medical	imaging,	we	study	it	on	two	different	datasets:	(1)	a	breast	biopsy	WSI	dataset	and	(2)	a	brain	tumor	segmentation	MR	imaging	dataset.	Our	analysis	shows	that	ESPNet	can	learn	meaningful

representations	for	different	medical	imaging	data	efficiently.
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Footnotes
1For	simplicity,	we	assume	that	n	is	an	odd	number,	such	as	3,	5,	7,	and	so	on.

2Dilated	convolutions	are	sometimes	also	referred	to	as	atrous	convolutions,	wherein	“trous”	means	holes	in	French.
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Abstract

Medical	imaging	is	a	fundamental	part	of	clinical	care	that	creates	informative,	noninvasive,	and	visual	representations	of	the	structure	and	function	of	the	interior	of	the	body.	With	advancements	in	technology

and	the	availability	of	massive	amounts	of	imaging	data,	data-driven	methods,	such	as	machine	learning	and	data	mining,	have	become	popular	in	medical	imaging	analysis.	In	particular,	deep	learning-based	methods,

such	as	 convolutional	neural	networks,	now	have	 the	 requisite	 volume	of	data	and	computational	power	 to	be	 considered	practical	 clinical	 tools.	We	describe	 the	architecture	of	 the	ESPNet	network	and	provide

experimental	results	for	the	task	of	semantic	segmentation	on	two	different	types	of	medical	images:	(1)	tissue-level	segmentation	of	breast	biopsy	whole	slide	images	and	(2)	3D	tumor	segmentation	in	brain	magnetic

resonance	images.	Our	results	show	that	the	ESPNet	architecture	is	efficient	and	learns	meaningful	representations	for	different	types	of	medical	images,	which	allows	ESPNet	to	perform	well	on	these	images.
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