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Abstract—Recognizing classes of objects from their shape is an unsolved problem in machine vision that entails the ability of a

computer system to represent and generalize complex geometrical information on the basis of a finite amount of prior data. A practical

approach to this problem is particularly difficult to implement, not only because the shape variability of relevant object classes is

generally large, but also because standard sensing devices used to capture the real world only provide a partial view of a scene, so

there is partial information pertaining to the objects of interest. In this work, we develop an algorithmic framework for recognizing

classes of deformable shapes from range data. The basic idea of our component-based approach is to generalize existing surface

representations that have proven effective in recognizing specific 3D objects to the problem of object classes using our newly

introduced symbolic-signature representation that is robust to deformations, as opposed to a numeric representation that is often tied

to a specific shape. Based on this approach, we present a system that is capable of recognizing and classifying a variety of object

shape classes from range data. We demonstrate our system in a series of large-scale experiments that were motivated by specific

applications in scene analysis and medical diagnosis.

Index Terms—Three-dimensional object recognition and classification, deformable shapes, range data, numeric and symbolic

signatures, Mercer kernel, scene analysis, craniosynostosis, craniofacial malformations.

�

1 INTRODUCTION

OBJECT recognition from shape has always been an
important topic in computer vision research, but only

with the advent of inexpensive range data acquisition
devices, such as laser scanners and stereo cameras, has it
become possible to develop recognition systems for
applications in a variety of fields that include, among
others, scene analysis for robotics and autonomous naviga-
tion, industrial machine vision, object retrieval in distrib-
uted database systems, and, more recently, shape-based
analysis for medical diagnosis. However, most of the
approaches developed to date have concentrated on
designing algorithms for recognizing a small set of specific
objects and very little attention has been paid to the more
general problem of identifying objects that belong to a
particular shape class.

Recognizing classes of 3D object shapes is a hard problem,

not only because the amount of shape variability of the classes

that occur in practice is large, but also because the nature of

the input data is rather complex. Real range scenes may
contain multiple shapes and the class members have to be
identified among varying amounts of clutter. Range scenes
also contain sensor noise and occlusion, so there is only
partial information relative to the objects of interest.

Most 3D object recognition research in computer vision
has heavily used the alignment-verification methodology for
recognizing and locating specific objects [27]. This approach
finds sets of point correspondences between a 3D model
and a 2D or 3D scene using attributes of these points, such
as numeric signatures. A numeric signature at a given point
on a surface is a descriptor that encodes the geometric
properties measured in a neighborhood of the point. For
instance, the spin images of Johnson and Hebert [19], are
created by constructing a pose-invariant 2D coordinate
system at an oriented point (3D point with normal vector)
on the surface, and accumulating the coordinates ð�; �Þ of
contributing points in a square matrix of dimension
Nn ¼ N2. This is illustrated in Fig. 1. Contributing points
are those that are within a specific distance of P and for
which the surface normal forms an angle less than a
specified size with the surface normal N of P . This angle is
called the support angle, �, and is used to limit the effect of
self occlusion and clutter. As shown in Fig. 1, the coordinate
� is the distance from P to the projection of Q onto the
tangent plane TP at point P ; � is the distance from Q to this
plane. The width of the spin image is the dimension N . The
remarkable property of spin-image representation is that it
combines the descriptive nature of global object character-
istics with the robustness to partial views and clutter of
local shape descriptions. Through adjustment of their
generation parameters such as the support angle and
width, spin images can be transformed from global to local
representations. In fact, the spin image generation process
can be visualized as a sheet spinning around the oriented
point basis, accumulating space as it sweeps through space
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(Fig. 1a). Using this analogy, it is possible to define the
sweep volume as the portion of space swept out by the
spinning sheet [19]. The spin image for the oriented point P
in Fig. 1a encodes local and some global shape information
of a face model, as can be appreciated in Fig. 1c. In this
work, we use spin images as our numeric signatures.

The correspondences are used to solve a set of linear
equations that determine the parameters of a potential rigid
transformation that aligns the model to the scene. The
model is projected by applying the transformation, and a
verification technique determines if this is a good match by
analyzing how well the model overlays the scene. This type
of verification is dependent on a specific model for which
there is an exact instance in the scene.

The alignment-verification technique has been very
successful in industrial machine vision, but, in general, it
fails to extend well to the problem of identifying classes
of similar shapes. There are three main reasons for this
failure: 1) Numeric shape representations are not robust
to deformations, 2) there are no exact correspondences
between the model and the scene, and 3) instances of a
shape class do not necessarily align.

In this work, our focus is the development and testing of
a component-based methodology that overcomes the limita-
tions described above and is capable of identifying classes
of deformable shapes that contain a significant amount of
intraclass variability. Our approach consists of five key
elements. We use numeric signatures to encode the surface
geometry of an object shape and a constellation of
components, formed by groups of equivalent numeric
signatures, to quantify the geometry of a shape class.
The spatial configuration of the components is encoded
into a set of symbolic signatures, whose similarity across
deformations is quantified using a novel kernel function.
Finally, an architecture that consists of a series of
classification stages learns components and their spatial
arrangement from a set of exemplar shapes or a training set.

All the shapes considered in this work are represented as
oriented surface meshes of fixed resolution. A surface mesh
is a piecewise linear surface consisting of vertices, edges,
and faces. Surface meshes are often used to approximate the
boundary of an object and can be considered a dense
version of a landmark-based shape descriptor whose
resolution is defined as the median length of its edges.
We also assume that, for a given shape class, the vertices of
the meshes in the training set are in full correspondence.

Finding full correspondences is a difficult problem that we

approached using a morphable models algorithm devel-

oped in [2], [32] that is summarized in Section 3.

1.1 Problem Statement

We wish to use our component-based approach to develop

a practical system that is capable of recognizing and

classifying deformable shapes from range data. In a

recognition task, a large part of the scene is clutter and

we don’t know which of the object classes are in the scene,

while, in a classification task, all the objects in the scene

belong to a known class. These tasks can be formally stated

as follows:

Problem 1 (Recognition). We are given a training set of

L surface meshes that form a random sample of a shape

class C. Using the given meshes, we wish to construct an

algorithm that determines whether or not members of

the shape class are present in a cluttered range scene

containing occlusions (Fig. 2).

Problem 2 (Classification). We are given a random sample

of surface meshes S of two shape classes Cþ1 and C�1,

labeled by either þ1 or �1, respectively. Using the given

meshes and labels, we wish to construct an algorithm

that can predict the label of a new surface mesh (Fig. 3).

We also consider the problem of classifying shapes in a

range scene containing more than one class member.

1.2 Contributions

In this work, we present a computational framework for

recognizing classes of deformable shapes from range data.

The contributions of our component-based approach

include

1. a novel symbolic-signature representation of de-
formable shape classes that is robust to intraclass
variability and missing information,

2. a region-growing algorithm for learning shape class
components from numeric signatures,
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Fig. 1. Spin image construction. The spin image for point P is
constructed by accumulating in a 2D histogram the coordinates � and
� of a set of contributing points on a surface mesh. The image width is
N ¼ 100 pixels and the support angle is � ¼ 60o. Key: oriented point (P ),
tangent plane at P (TP ), and normal vector (N).

Fig. 2. Recognizing shape class members in a range scene. True

positive recognition is indicated by a circle. A false negative decision is

indicated by a square.

Fig. 3. Normal (þ1) versus abnormal (�1) skull shape classification

problem. The label of the last skull is unknown.



3. a novel kernel function for quantifying symbolic
signature similarities,

4. a novel architecture of classifiers for abstracting the
geometry of a shape class, and

5. a validation of our methodology in a set of large
scale recognition and classification experiments.

The paper is organized as follows: Related work on
3D object shape recognition and classification is summar-
ized in Section 2. Section 3 introduces our component-based
methodology for recognizing and classifying object shapes.
This section contains the development of the symbolic
signature representation, a proposed kernel function for
symbolic descriptors, and a novel classification architecture.
The results of 6,170 large scale recognition/classification
experiments on a variety of shape classes aimed at
validating our approach are presented in Section 4. The
paper concludes with a discussion of the lessons learned
from the presented experiments and future research
directions enabled by this work. The results of preliminary
experiments related to the methodology presented in this
work can be found in [29], [28].

2 RELATED WORK

There are several methods reported in the literature that
address the problem of recognizing or classifying 3D object
shape instances. Nevertheless, to the best of our knowledge,
none of them has addressed the recognition/classification
problem using range data, where, as mentioned before,
there is only partial information about the object shapes to
be recognized/classified in the scene. Most existing
methods attempt to recognize/classify a single presegmen-
ted instance, as opposed to our methodology, which can
deal with multiple and incomplete instances. This section
summarizes some recent work on shape class recognition
and classification. The interested reader is referred to [9],
[14], [21], [23] for references on these topics.

Recent investigations on 3D object class recognition have
focused on developing shape representations and similarity
measures for comparing shapes represented as polygonal
meshes. For instance, Osada et al. developed in [25] a shape
representation to recognize similar objects for applications
in 3D object retrieval. The so-called shape distribution
encodes the shape information of a complete 3D object as a
probability distribution sampled from a shape function
measuring geometric properties. The primary motivation of
this approach is to reduce the shape matching problem to
the comparison of probability distributions using an
Lp norm. The underlying assumptions are that objects
belonging to the same class will have similar shape
distributions and that there is enough 3D shape information
for the probability distributions to converge. Funkhouser
et al. [12] extended the work on shape distribution by
developing a representation based on a spherical harmonics
expansion of the points of a polygonal surface mesh
rasterized into a voxel grid. The grid is aligned to the
center of mass of the object. Query objects represented as
harmonics descriptors are matched to the database using a
nearest neighbor classifier. In [21], Kazhdan et al. intro-
duced a novel descriptor that represents a measure of

symmetry for an arbitrary 3D model for all planes through
the model’s center of mass. This descriptor is insensitive to
noise, is stable under point sampling, and improves the
performance of the descriptors described above. The main
advantage of these shape representations is that they can
operate on degenerate meshes. They lack robustness to
scene clutter and occlusion due to their global character.

Research on shape classification has concentrated on
developing shape representations that are suitable for
generative probabilistic modeling and statistical analysis.
Common approaches include active shape models (ASM)
[6], [8], statistical deformation models (SDM) [26], and
morphometrics [3], [22]. However, in only a few instances
are full 3D models considered and the classification scheme
is restricted to a linear or quadratic classifier that operates
on data obtained by performing Principal Component
Analysis (PCA) on the original data set [1], [24]. A notable
exception to this trend is the work of Golland [13], which
develops a discriminative framework for classifying and
quantifying shape that is based on the so-called discrimina-
tive direction for kernel classifiers. The discriminative
direction corresponds to the differences between classes
implicitly represented by a classification function. It is
worth mentioning that none of the approaches mentioned
in this section is suitable for applications with range data
since they assume complete presegmented models that are
aligned to the center of mass of the objects.

3 MATERIALS AND METHODS

As pointed out in Section 1, although object recognition
based on the alignment-verification technique has been very
successful in industrial machine vision applications, its use
in the context of shape classes is limited for three main
reasons: 1) Numeric signature representations are not
robust to deformations. For instance, spin images do not
vary smoothly as a function of the orientation of normal
vectors across an object [18]. As a consequence, instances of
the same shape class with different normal vector distribu-
tions may have very different spin images on regions that
are semantically equivalent. 2) There are not exact corre-
spondences between any of the models in the training set
and the shapes in the scene and 3) instances of a shape class
do not necessarily align.

The component-based methodology developed in this section
addresses these problems. We use numeric signatures to
encode the geometry of specific objects and groups of
equivalent classes of numeric signatures, or shape class
components, to encode the geometry of a shape class. That is,
our approach learns components from examples in order to
account for shape variations across class instances so that
explicit modeling for handling deformations is not required.

The spatial configuration of a group of components (or
constellation) is encoded into a set of symbolic descriptors
(or symbolic signatures) whose variability across deformation
space is learned by a series of classification stages. These
stages utilize a novel Mercer kernel for quantifying symbolic
similarities. More specifically, the conceptual role of our
proposed kernel is to embed purely symbolic patterns into
Hilbert space in which a similarity measure between patterns
is defined as the inner product of the space. The nice
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property of the Mercer kernels is that explicit knowledge of
the embedding and inner product functions is not neces-
sary. The kernel itself provides both implicitly [34].

This section is divided in four parts that present:

1. a description of our database,
2. a preview of our component-based methodology,
3. training and testing algorithms, and
4. implementation.

3.1 Object Database

We used a Roldand-LPX250 laser scanner to acquire our
data. The scanner has a maximum resolution of 0.008 inches
for plane scanning mode. The scanner and some of the
objects used in the experiments are shown in Fig. 4. Raw
data consisted of clouds of points that were further
processed to obtain smooth and uniformly sampled
triangular meshes of 0:9-1:0 (mm) resolution. Real scenes
used in the experiments described in Section 4 were made
of handmade clay toys, animals, scale models of human
heads sculpted by an artist, real skull models, and other
common house and office objects chosen at random. Fig. 5
shows several examples of each of the shape classes of our
database. Some recognition experiments also included real
human faces from a database provided by the University of
South Florida [2], which consists of 100 dense surface
meshes (70,000 vertices and 160,000 polygons each).

3.2 Component-Based Methodology: A Preview

For the sake of simplicity, we consider the classification task
defined in Section 1 for which we are given L surface meshes
representing instances and noninstances of a shape class.
Each surface mesh is labeled by y 2 f�1g. The problem is to
use the given meshes and the labels to predict the label of a
new surface mesh. We summarize the key points of our
approach by presenting an architecture that consists of two
stages (Fig. 6a). The first stage identifies shape class

components by using two classification blocks: a bank of
component detectors and a multiway classifier that assigns
component labels (Fig. 6b). The input is a surface mesh and
the output is a labeled surface mesh, defined as a mesh for which
each vertex has an associated symbolic label referencing the
component in which it lies. The labeled mesh of Fig. 6b has
four component labels numbered from 5 to 8.

The second stage verifies the spatial configuration of the
components detected in the previous stage. It also consists
of two classification blocks, a set of symbolic signature
detectors, and a multiway classifier that assigns symbolic
labels (Fig. 6c). The input is a labeled surface mesh and the
output is a class label. In Fig. 6c, the bank of detectors
identifies a pattern associated with components 5, 6, and 8.
The multiway classifier determines that this symbolic
pattern corresponds to the class of abnormal heads (�1).
Symbolic patterns associated with components 1-4 (not
shown in the figure) correspond to normal heads.

3.3 Training Algorithms

3.3.1 Learning Shape Class Components

The pseudocode of our training algorithm for learning
shape class components is shown in Fig. 7. The process
starts with the acquisition of surface mesh models
(MeshModels) from L real objects (L � 15). These meshes
are processed by the functions listed in Fig. 7 as follows.

—computePointCorrespondences: This function imple-
ments a morphable surface models algorithm developed by
Shelton that finds dense correspondences between surfaces
of arbitrary topology by minimizing an energy function
[32]. The algorithm does not require user intervention. The
input to this function is the set of surface meshes and the
output is a set of correspondences (Correspondences) for the
vertices of all surface meshes. Correspondences are com-
puted so that the vertices have the same semantic across
mesh models. For instance, consider a collection of human

78 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 1, JANUARY 2006

Fig. 4. (a) Laser scanner used for acquiring data. (b) Artistic models made by a sculptor. (c) Real models of virtual examples that were produced with

a 3D printer.

Fig. 5. Some of the shape classes in our database.



skull mesh models. If a vertex is on the tip of the nasal bone
in a particular mesh, then the corresponding vertices must
lay on the tip of the nasal bone for all the meshes in the
collection.

—selectSeedPoints: This function implements a graphi-
cal interface that allows the user to manually select points
on a set of surface meshes whose vertices are in full
correspondence. The output is a list of seed points
(SeedPoints) whose meaning will be explained below.

—generateVirtualExamples: This function allows the
user to generate virtual examples by applying deformations
on a set of surface meshes [2]. The input is a set of mesh
model correspondences. The output is a set of deformed
surface meshes, called TrainingSet, whose vertices are also
in full correspondence. Global deformations are generated
by using morphing operators whose parameters are
randomly chosen from given ranges. The operators in-
cluded eight parametric deformations (taper, twist, stretch,

push, bend, spherify, scale, and mirror) and each
deformed model included at least five different deforma-
tions applied in a random sequence. Global deformations
are also generated using convex combinations. Local
deformations are produced by constructing elastic models
of the objects and applying small random force fields
using a multiresolution approach [5]. In the case of the
human head class, shape changes are controlled to keep
the following anthropometric landmark distances within
normal averages: head width and length, forehead height,
nasal length, lower facial height, facial height, and facial
width [11]. Real plastic models of virtual examples were
created with a 3D printer (Fig. 4c).

—splitTrainingSetInHalf: The input to this function is a
set of surface meshes TrainingSet. The outputs are two sets
of surface meshes called TS1 and TS2. The sets have the
same size, their vertices are in full correspondence, and
their elements were randomly chosen without replacement

RUIZ-CORREA ET AL.: SYMBOLIC SIGNATURES FOR DEFORMABLE SHAPES 79

Fig. 6. (a) Our proposed architecture for a binary classification problem consists of two main stages. (b) The first stage identify components. (c) The

second verifies their spatial relationships.

Fig. 7. Training algorithm for learning a shape class components.



from TrainingSet. These sets are required to separately
train and test the classification functions described below.

—computeBanknOfComponentDetectors: The input to
this function is a set of surface meshes TS1 and a set of
seed points used to grow the components. The output is a
bank of component detectors fbank1

n; � � � ; bankNC
n g, where

NC is the number of components (number of seed points).
Each component detector banki

n is a classifier that can
recognize the component that is grown about SeedPointi. A
region growing algorithm both grows the region and learns
its classifier as follows: Given a set of surface meshes TS1,
whose vertices are in full correspondence, and a seed
point s, the numeric signatures are computed at the
corresponding seed points of every training instance in
TS1, as shown in Fig. 8. This set of signatures is the training
set Ts for the selected seed point s. Then, using the training
set Ts, a component detector is trained to learn a component
about s.

Region Growing. The component detector (a �-SVM)
actually grows a region about s using the shape information
from the numeric signatures in the training sample. The
growing phase is as follows: The performance of the
component detector for point s can be quantified by
calculating a bound on the expected probability of error E
on the training set as E ¼ #SVs=#P , where #SVs is the
number of support vectors in the component detector for s,
and #P is the number of mesh points that belong to the
region. Using the classifier for point s, an iterative
component growing operation expands the component
about s. Initially, the component consists only of point s.
An iteration of the procedure consists of the following steps:

1. Select a point that is an immediate neighbor of one of
the points in the component and is not yet in the
component.

2. Retrain the classifier with the current component
plus the new point.

3. Compute the error E0 for this classifier.

4. If the new error E0 is lower than the previous error E,
add the new point to the component and set E ¼ E0.

5. This continues until no more neighbors can be added
to the component.

Fig. 8a summarizes the region growing algorithm. The
training instances in the top row are marked with a seed
point on the leftmost sample and the corresponding seed
points on the other instances. After region growing around
the seed, the growth components are shown in the bottom
row. Note that the user only selects seed points on one of
the training instances. The corresponding seeds on other
instances are automatically known since the points of all
meshes are in full correspondence.

A component detector is implemented as a one class
�-SVM [30]. This classifier partitions the space of numeric
signatures into regions of typical and outlier elements. A
component is thus defined as the set of all numeric
signatures that are classified as typical by the component
detector. Fig. 8b shows a component extraction example.
Eight seed points were selected by hand and the compo-
nents were grown one at a time on the training set. The
resulting component detectors were applied to an indepen-
dent test set and the output is shown in Fig. 9. Each surface
mesh in the figure has a total of eight surface regions that
belong to each of the learned components. Regions
belonging to the same component appear in both sides of
the faces. This is due to the fact that the numeric signatures
being used are invariant to mirror symmetry and our
approach preserves this invariance approximately. The
approach we have followed to construct our component
detectors is related to the one used by Heisele et al. [16].

Selection of Seed Points. Seed points were selected one
at a time following an iterative process. First, the (normal-
ized) mean curvature of several shape models was
estimated using the methods described in [33]. The first
seed point was located on a region that, on average, had low
curvature and its corresponding component detector
estimated. The next point was manually located close to
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Fig. 8. (a) A component detector is computed using the numeric signatures of seed points selected on a training set (top row). The signatures are fed

to a region growing algorithm that expands the component around the seeds. (b) Extracted components for eight seed points are shownon the right

side.



the first seed point. It was rejected as the second seed point
whenever its corresponding component detector produced
a region that overlapped that of the first seed point. In that
case, a different location for the second seed point was
manually selected. This operation was repeated until no
overlap occurred. A similar procedure was followed to
select other seed points. The total number of components
per class was iteratively selected on the basis of the
recognition/classification rates. Initially, a small number
of components per shape class (two to three) was selected
and a pilot study performed. The number of components
was increased and the study repeated whenever recogni-
tion/classification rates were low. This procedure contin-
ued until the system achieved true positive and true
negative rates close to 80 percent.

The approach just described was used to select and
locate the seed points for the components of all the shape
classes considered in the experimental validation of
Section 4. No more than three iterations were needed to
specify seed points and compute two to eight component
detectors. On average, the processing time with a training
set consisting of 200 meshes was roughly 1.75 hours.

—detectComponents: The inputs to this function are an
array of surface meshes and a bankn of component
detectors. The output is an array of labeled surface meshes.
The pseudocode of this function is shown in Fig. 10.

—computeComponentsClassifier: The inputs to this
function are two sets of labeled surface meshes,
LabeledTS1 and LabeledTS2. The output is a multiwayn

classifier that is trained and tested with the numeric
signatures associated with the components of the meshes
in LabeledTS1 and LabeledTS2, respectively. The role of the
multiwayn classifier is to verify the labels assigned by the
bankn of detectors. In practice, we found that the use of the

bankn requires a subsequent processing with a multiwayn

classifier in order to achieve good recognition and
classification performance at testing time. A detailed
description of the joint use of the bankn of detectors and
multiwayn classifier will be given in Section 3.4.

3.3.2 Learning Symbolic Signatures

Symbolic signatures were motivated by the observation that
the algorithm described in the previous section generated
regular patterns on the occurrence and geometric config-
uration of the learned components. An example of this
behavior, which was consistently observed in the experi-
ments described in Section 4, is depicted in Fig. 9.

Symbolic surface signatures are shape descriptors that
encode the geometric configuration of a constellation of
components. They are somewhat related to numeric surface
signatures in that they also start with a critical point P on the
surface mesh and consider a set of contributing points Q,
which are still defined in terms of the distance from P and
support angle (refer to Section 1 for a definition of this
parameter). The main difference is that they are derived
from a labeled surface mesh (shown in Fig. 11a); each vertex
of the mesh has an associated symbolic label referencing a
component in which it lies. For symbolic surface signature
construction, the vector PQ in Fig. 11b is projected to the
tangent plane at P , where a set of orthogonal axes � and �

have been defined. The direction of the � � � axes is
arbitrarily defined since no curvature information was used
to specify preferred directions. This ambiguity is resolved
by the methods described below. The discretized version of
the � and � coordinates of PQ are used to index a square
matrix of dimension N2 and the indexed position of the
matrix is set to the component label of Q. Note that it is
possible for multiple points Q that have different labels to
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Fig. 9. Output of a set of eight component detectors applied to a testing set of surface meshes representing human head shapes.

Fig. 10. Pseudocode for function detectComponents.



project into the same bin. In this case, the label that

appeared most frequently is assigned to the bin. Empty

bins, that is, bins that do not store any component label are

set to “0.” The resultant matrix is the symbolic surface

signature at point P . This signature captures the relation-

ships among the labeled regions on the mesh. It is shown as

a labeled image in Fig. 11c. The computational complexity

for constructing a symbolic signature with Ns ¼ N2 ele-

ments is OðNsÞ.
Symbolic signatures for point s for the deformed range

images in Fig. 9 are shown in Fig. 12. Although these shapes

belong to a class that contains a significant amount of

intraclass variability, the symbolic signatures remain con-

sistent across deformation space. The actual plastic models

corresponding to the heads 2 and 4 (from left to right) in

Fig. 9 are shown in Fig. 4c in order to illustrate shape

differences.
The pseudocode of our training algorithm for learning

the symbolic signatures is shown in Fig. 13. The process

starts with the manual selection of the critical points. These

are used as the base P for computing the symbolic

signatures during the training phase (Fig. 11b). This

computation is performed on the points of the labeled

meshes in LabeledTS1 and LabeledTS2.
—selectCriticalPoints: This function implements a gra-

phical interface for selecting critical points with user

interaction.

—computeBanksOfSymbolicSignatureDetectors: The in-
put to this function are two sets of labeled surface meshes
LabeledTS1 and LabeledTS2 and a set of CriticalPoints.
The output is a bank of symbolic signature detectors
fbank1

s ; � � � ; bankNS
s g, where NS is the number of critical

points. The ith-detector is trained with symbolic signatures
associated with the ith-critical point of the surface meshes
in the set LabeledTS1. The testing is performed with the
signatures associated with the surface meshes of the set
LabeledTS2.

—computeSymbolicSignatureClassifier: The inputs to this
function are two sets of labeled surface meshes, LabeledTS1
and LabeledTS2, and a set of CriticalPoints. The output is
multiways, a classifier that is trained and tested with the
numeric signatures associated with the components of the
meshes inLabeledTS1 andLabeledTS2, respectively. The role
of the multiways classifier is to verify the labels assigned by
the banks of detectors. In practice, we found that the use of the
banks requires a subsequent processing with a multiways

classifier in order to achieve good recognition and classifica-
tion performance at testing time. A detailed description of the
joint use of the banks of detectors and multiways classifier will
be given in Section 3.4.

Selection of Critical Points. Critical points are used as
the base points to construct symbolic signatures. A symbolic
signature is generated by projecting the labels of the vertices
of a surface mesh onto a tangent plane defined at the base
point (Fig. 11). We selected the location of the critical points
in order to project the maximum number of different labels
to the tangent plane. That is, critical points were selected
such that the symbolic signatures encoded the maximum
possible number of distinct class labels. We found that
symbolic signatures constructed in this way provided
information that improved the performance of the classifi-
cation stages. The entropy of symbolic signatures with a
diversity of class labels is higher than the entropy of
symbolic signatures encoding few labels.

3.3.3 A Mercel Kernel for Symbolic Signatures

Our kernel function for measuring similarities between
symbolic patterns was motivated by the development of
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Fig. 11. (a) Labeled surface mesh. (b) Coordinate system used to

construct the symbolic signature for point P . (c) Symbolic signature for P .

Fig. 13. Training algorithm for learning symbolic signatures.

Fig. 12. Symbolic signatures for critical point P in Fig. 11.



kernels for string matching [31]. The function is rather
simple, but it is powerful enough to produce high
recognition and classification rates (Section 4). It is
constructed by embedding symbolic signatures into a
Hilbert space by means of a Mercer kernel as follows. Let
A and B be two symbolic signatures of dimension N2

storing component labels. The symmetric mapping defined
as < A;B >¼ 1

N2

P
ij �aijbij , where � is the Kroneker delta and

whose range is the interval ½0; 1�, can be interpreted as the
cosine of angle �AB between two unit vectors on the unit
sphere lying within a single quadrant. The quantity cos� is
the correlation coefficient between A and B, and the angle
�AB ¼ cos�1ð< A;B >Þ is the geodesic distance. Our kernel
function is defined as k	ðA;BÞ ¼ expð��2

AB=	
2Þ, a Gaussian

kernel for symbolic signatures. The parameter 	 is defined
as the width of the function and determines the zone of
influence of one symbolic pattern on to another.

3.4 Testing Algorithms

Our testing algorithms are implemented as an architecture
consisting of a cascade of two modules. The first module
extracts shape class components; the second verifies their
corresponding geometric configuration in order to identify
symbolic patterns associated with particular shapes. A nice
feature of these modules is that they have the same internal
structure. Their only difference is that they operate on
different input spaces. It is worth recalling that we are
addressing two kinds of tasks: a recognition task and a
binary classification task (see Problems 1 and 2 in Section 1).

3.4.1 Classification Stage I (for Numeric Signatures)

The first module operates on a surface mesh (Fig. 14). It
consists of a bank fbank1

n; � � � ; bankNC
n g of detectors and a

multiway classifier multiwayn. The bank detects compo-
nents of the input mesh based on the numeric signatures of
the vertices. Recall that the binary output of the lth
component detector is defined as 1 if the signature lies
inside its corresponding typical region and 0 otherwise. The
multiway classifier assigns component labels to the numeric
signatures that are accepted by the bank of detectors. The
operation of this stage can be summarized by the
pseudocode of Fig. 15, where

W
represents the “or”

operator. The functions used by the algorithm are defined
as follows:

—connected_components1: This function applies a con-
nected components algorithm to a labeled surface mesh S,
where each connected component consists of groups of

labeled points connected by a path on the mesh. Compo-
nents with less than fa (� 16) points are filtered out, that is,
their corresponding vertices are set to label “0.”

—connected_components2: This function applies a con-
nected components algorithm to a surface mesh S, where
each connected component consists of groups of points with
the same label. Components with less than fb (� 5) points
are filtered out.

—fill_holes: This function relabels a surface mesh S
applying the following algorithm: For each vertex of the
labeled mesh, compute a histogram of labels corresponding
to its immediate neighbors, including the label of the
current vertex. Relabel each vertex of the mesh using the
label that has the highest frequency according to the
histogram of the current vertex.

The worst-case complexity of the component detection
procedure in a range scene with V mesh vertices is
OðNnNCV Þ. Our multiway classifier uses a pairwise classi-
fication scheme, therefore, the worst-case complexity for
assigning labels is OðNnN

2
CV Þ. A one-versus-all scheme

reduces the complexity to OðNnNCV Þ, but we have not
determined if this configuration decreases the recognition/
classification performance significantly.

3.4.2 Classification Stage II (for Symbolic Signatures)

The second module operates on a labeled surface mesh
(Fig. 16). It consists of a bank fbank1

s ; � � � ; bankNS
s g of

symbolic signature detectors and a multiway classifier
multiways. The bank identifies symbolic patterns on the
input mesh based on the symbolic signatures of the vertices
and the multiway classifier assigns labels to the patterns
found. The input to this stage is the labeled surface mesh S
from the previous stage. The output is a class label. The
operation of this stage can be summarized by the
pseudocode of Fig. 17.

The output class label is computed from the labels
assigned to S0 by classification stage II. This label identifies
symbolic patterns associated with constellations of compo-
nents. For instance, in the binary classification task illustrated
in Fig. 18b, the symbolic patterns of components 1, 2, and 3
are related to the class of normal human head shapes. The
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Fig. 14. Classification stage I structure in a recongition task. In this

example, NC ¼ 8.

Fig. 15. Classification stage I algorithm.



symbolic patterns of components 5, 6, and 7 correspond to
abnormal human heads. Therefore, the labels of the
vertices of S0 are set to þ1 (normal head) where evidence
of the symbolic pattern of components 1, 2 and 3 was found
and the output class label is set to þ1; the labels of S0 are set
to �1 (abnormal) where evidence of the symbolic pattern of
components 5, 6, and 7 was detected and the output class
label is set to �1 (Fig. 18c). The case of a recognition task is
similar except that all symbolic patterns correspond to the
same shape class. For instance, in Fig. 16, there are (NS ¼ 2)
patterns that identify human head class members.

3.5 Implementation

We used one class �-support vector machines (�-SVMs) or
novelty detectors as our component detectors and �-SVM

binary classifiers for constructing multiway classifiers.
�-SVMs were introduced in [30] as an approach to control
the number of margin errors and support vectors. More
specifically, the parameter � of a �-SVM has a rather
intuitive interpretation as an upper bound on the fraction of
margin errors and a lower bound on the fraction of support
vectors. Our SVMs were trained using Gaussian kernels for
numeric signature classifiers and our proposed Gaussian
kernel for symbolic signature classifiers. We trained all of

our classifiers by using standard cross-validation techni-

ques for model (� and 	) selection [7], [31]. The interested

reader is referred to [4] and [31] for an introductory tutorial

to SVMs and training techniques, respectively.
Since symbolic surface signatures are defined up to a

rotation, we use the virtual support vectors method for

training all the classifiers involved with symbolic signatures

[31]. The method consists of training a component detector

on the signatures to calculate the support vectors. Once the

support vectors are obtained, new virtual support vectors

are extracted from the labeled surface mesh in order to

include the desired rotational invariance, that is, a number r

of rotated versions of each support vector is generated by

rotating the � � � coordinate system used to construct each

symbolic signature (see Fig. 11). Finally, the novelty

detector used by the algorithm is trained with the enlarged

data set consisting of the original training data and the set

of virtual support vectors.

4 EXPERIMENTAL RESULTS

This section describes the results of 6,170 large scale

experiments aimed at validating our approach for recogniz-

ing/classifying 3D shape classes from range data. The

experiments focus on 1) measuring the conditions under

which our approach generalizes on unseen 3D data and

2) quantifying its sensitivity (true positive) and specificity

(true negative) rates as a function of scene clutter and

occlusion.
We applied the methods described in [28] to measure the

scene occlusion and clutter of an object model. These

quantities are respectively defined as:

occlusion ¼ 100�model surface patch area on the scene

total model surface area
;

ð1Þ
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Fig. 16. Classification stage II structure used in a recognition task. In this

example, NS ¼ 2, that is, there are two symbolic patterns that identify

human head shape class members.

Fig. 17. Classification stage II algorithm.



clutter ¼ 100� clutter points in model surface patch

total points in model surface
; ð2Þ

where the clutter points in the model surface patch are

those whose numeric signatures have been corrupted

during their generation process due to the presence of

cluttering objects in the range scene [18] that are within

sweep volume of the signatures. The generation process

was described in Section 1 and illustrated in Fig. 1.
The recognition state of our algorithm was defined as:

1. true positive (TP) whenever a class member present
in the scene is assigned its class label;

2. false positive (FP) whenever a class label is assigned
to an object present in the scene that is not a class
member;

3. true negative (TN) whenever class members are not
present in the scene and no labels are assigned; and

4. false negative (FN) whenever a class label is not
assigned to a scene object that is a member of the
shape class.

The classification state was defined in a similar manner. We

define sensitivity and specificity as the TP and TN rates,

respectively. Note that TP ¼ 100� FN and TN ¼ 100� FP.

We used spin images as our numeric signatures (see
Section 1). In all the experiments, the support angle was set
to 60�. This angle allows the spin-image representation to
encode global aspects of shape while maintaining robust-
ness against clutter [18]. The support angle for the symbolic
signatures was set to 30�.

4.1 Recognition

In the recognition experiments, we developed three tasks
that considered range scenes containing: 1) a single class
member with no clutter and low levels of occlusion,
2) multiple shape class members and multiple clutter
objects, and 3) human head models and multiple clutter
objects (detection of human faces). The parameters settings
used in Tasks 1-3 are summarized in Table 1. Note that the
training and testing set sizes, as well as the number of
component and symbolic signature detectors shown in the
table, are specified per shape class.

4.1.1 Task 1 (Single Object)

This task considered real range scenes containing a single
object with no clutter and low levels of self-occlusion
(< 30 percent). The objects were randomly selected from a
set containing known shape class members (snowmen,
rabbits, floppy-eared dogs, cats, cows, bears, horses, human
heads, and faces) and other unrelated shapes (a total of
50 objects). These experiments were run in order to estimate
true positive (TP) and true negative (TN) rates. We note
that, in the case of the human face class, all the scenes were
synthetically generated as a convex combination of the
original UFS data that consists of 100 faces.

The results of 2,360 experiments suggest that our
approach is capable of recognizing a variety of shape
classes with high sensitivity and specificity. In all cases but
one, the TP and TN rates are above 80 percent (see Table 2).
These results are encouraging considering the large inter
and intraclass variability of the shape classes tested. The
average TP and TN rates across classes (excluding human
faces) are 90.27 percent and 88.15 percent, respectively.
Typical qualitative results are shown in Fig. 19. We note that
the recognition performance for the human faces class was
poor. This is likely due to the fact that our training set is small
(100 meshes) and the shape class variability is rather large.
The set of faces includes people of different age, gender, race,
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Fig. 18. Classification example of normal versus abnormal human
heads. (a) Normal (top) and abnormal (bottom) human head.
(b) Components 1, 2, 3, and 4 are associated with normal human head
shapes (top). Component 5, 6, 7, and 8 are associated with abnormal
heads (bottom). (c) The symbolic patterns associated with normal heads
was found on the red region (top), while the symbolic patterns
associated with abnormal heads were located on the green region
(bottom). (d) Red points indicate the highest confidence level regarding
the presence of the symbolic patterns found.

TABLE 1
Parameter Setting per Class for Tasks 1-3

* For the class of human faces, we used 100 meshes for training and 100 meshes for testing. y For each experiment, clutter objects were randomly
selected from a set of 50 real 3D objects.



and facial gesture. We hypothesize that a larger training set
could improve the performance dramatically.

4.1.2 Tasks 2 (Multiple Objects)

This task considered 510 real range scenes containing
multiple shape class members (snowmen, rabbits, and
dogs) and multiple clutter objects. The scenes were created
by placing, without any systematic method, two to six
objects in the 3D scene by hand. Each scene always
contained at least one member of the learned classes.
Typical range scenes of Task 2 are shown in the left column
of Fig. 20. The ellipses indicate the region of the scene where
the class members were found. Squares indicate false
positive or false negative recognition.

The true positive rates for this task are high considering
that, in practice, the objects in a scene are not as packed as
they are in scenes in our database (Table 2). The average
TP rates are 90.26 percent and 87.13 percent for levels of
occlusion and clutter lower than 45 percent and 75 percent,
respectively. However, the true negative rates are low
(> 65 percent). On average, for levels of clutter and
occlusion below 45 percent (75 percent), the algorithm
assigns erroneous labels 31 percent (25 percent) of the time.
These results indicate that if a small number of components
is used to identify each shape class (3 in this case), it is
possible to achieve high sensitivity levels at the cost of low
specificity since there may be a number of scene objects that
share similar components but belong to distinctive shape
classes. The results of Task 3 revealed that a successful
solution to this issue in a practical application is simply to
increase the number of components and symbolic signature
detectors to represent each shape class.

4.1.3 Task 3 (Detection of Human Faces in Complex

Scenes)

This task considered real range scenes containing human
head models and multiple clutter objects. One hundred
sixty range scenes were created by following the procedure

described in Task 2. One hundred thirty contained at least
one shape class member and other object shapes randomly
selected from a set of 50 models. Thirty scenes contained
only nonclass member objects. All scenes are real; no
synthetic scenes were generated in this task. The heads in
this scenes were physically made of head data provided by
a sculptor. The heads shape class was represented by using
eight components and two symbolic signature detectors.
Typical range scenes for this task are illustrated in the right
column of Fig. 20.

It is clear from Fig. 20 that the models are closely packed,
a condition that creates cluttered scenes with occlusions (see
(1) and (2) for a definition of clutter and occlusion). We also
note that the shape class components in Task 3 were grown
from seed points located on the right cheek (Fig. 9).
However, the algorithm is able to correctly detect the
partially occluded faces (Fig. 20), due to the fact that the
algorithm is approximately invariant to mirror transforma-
tions. Currently, the components of a shape class must be
visible in the scene so that the classification stage II can
identify the corresponding symbolic signature. Shape
classes with multiple signatures can be recognized if at
least one signature is visible.

The results of 1,010 experiments showed that our
proposed algorithm can achieve high sensitivity and speci-
ficity. For instance, in Table 2, the TP and TN rates are above
92 percent for levels of clutter and occlusion levels below
35 percent and 40 percent, respectively. Both rates decrease as
the levels of clutter and occlusion in the scene increase, but
remain above 81 percent. The behavior of our algorithm is
remarkable considering the complexity of the scenes. These
results suggest that the sensitivity-specificity trade-off can be
greatly improved by increasing the number of component
and symbolic signature detectors that are used to represent a
shape class. Finally, Fig. 21 shows the TP rate as a function of
scene occlusion and clutter. The vertical bars bound the
average values, shown as filled circles. Both charts indicate
that the recognition performance decreases for levels of
clutter and occlusion above 45 percent. The bounding bars
were estimated using a bootstraping algorithm. The boot-
strap is a resampling method for assigning nonparametric
measures of accuracy [10].

4.2 Classification

We developed two binary classification tasks that consid-
ered scenes containing: 1) a single class member with no
occlusion and clutter and 2) multiple class members with
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TABLE 2
Percent True Positive (TP) and True Negative (TN) Rates for Recognition Tasks 1-3

Key: shape class (SC), % occlusion (O), and % clutter (C).

Fig. 19. Qualitative recognition results for Task 1. Ellipses indicate true

positive recognition. Squares indicate false positive recognition.



occlusion and low levels of clutter. The parameter settings
for these tasks are shown in Table 3.

Task 4.2.1 (Single Object). For this task, we used six
subclasses of human head shapes and two classes of human
skull shapes. We performed classification of normal versus
abnormal heads (skulls), a task that occurs in medical
settings. The head abnormalities considered are related to
two genetic syndromes that produce severe craniofacial
deformities. The head samples were obtained from models
with craniofacial features based upon either Greig cepha-
lopolysyndactyly (Abnormal 1) or trisomy 9 mosaic
(Abnormal 2) syndromes [20]. Our goal was to measure
the sensitivity and specificity of our classifier in discrimi-
nating two well-defined classes, for which a very fine
distinction exists (Fig. 22).

We attempted to discriminate between test samples that
were: 1) either 100 percent normal or 100 percent abnormal
and 2) either 100 percent abnormal or had a varying degree
of abnormality (Abnormals 3-5 are shown in Fig. 22). The
samples in 2) were convex combinations of normal and
abnormal heads. The (normal, abnormal) weights used to
compute the convex combinations are: Abnormal 3 (65 per-
cent, 25 percent), Abnormal 4 (50 percent, 50 percent),
Abnormal 5 (25 percent, 75 percent) and Abnormal 6
(15 percent, 85 percent). The degree of collusion between

the resulting classes made the discrimination process more
difficult. Our rationale was to drive a realistic task to its
limits in order to study the discrimination capabilities of
our approach. It is worth mentioning that all the models
constructed as convex combinations were validated by an
expert geneticist and an expert radiologist, both coauthors
of this work.

Our data shows that the classification algorithm has high
values of sensitivity and specificity for discriminating
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Fig. 20. Qualitative recognition results for Tasks 2 and 3. Ellipses indicate true positive recognition. Squares indicate false positive recognition.

Fig. 21. Quantitative recognition results for Task 3.

TABLE 3
Parameter Settings per Class for Tasks 4 and 5

* For the class of human skulls, numeric signature size (NC) was set to
1002.



normal from abnormal heads (Table 4) . It also discriminates
very well between heads that are 100 percent abnormal and
heads with varying degrees of abnormality, including
meshes that have only 25 percent of normal features. The
algorithm breaks down when the test sample has only
15 percent of normal features.

This task also includes classification experiments of
normal and abnormal skull shapes. The abnormality
considered is associated with craniosynostosis, a serious
and common disease of children cause by premature fusion
of the sutures of the skull. The resulting abnormal skull
growth can lead to severe deformity, increased intracranial
pressure, vision, hearing, and breathing problems. Fig. 3
shows a normal and a synostotic skull shapes. The
sensitivity and specificity values are also high (above
85 percent); see Table 4.

4.2.2 Task 5 (Multiple objects). For this task, we
considered real range scenes containing two or more
members of the subclasses of 100 percent normal or
100 percent abnormal head shapes. The levels of occlusion
and clutter were below 45 percent and 15 percent,
respectively, and the number of components per class was
set to 4. Moderate sensitivity and specificity rates were
obtained in these experiments (88.03 percent and 82.7 per-
cent, respectively).

Processing times and computational complexity. For the
sake of space, we report the running time for the experiments
of Task 3, which had the longest execution times. The
numbers are summarized in Table 5. We note that the range

scenes for these experiments contained 20,000 points on
average. The recognition process took 12 minutes per
scene on a Linux server running with a 2.8GHz processor.
We were able to train and test our algorithm with surface
meshes composed of 2� 3� 104 points. The processing
time with meshes containing more than 8� 104 points was
impractical.

We end this section by emphasizing that all our experi-
ments considered range scenes from real object shapes
containing a significant degree of intra and interclass
variation. For instance, our data set of human heads included
several distinctive head models produced by a sculptor
(Figs. 4b and 4c). The shape variation of the snowmen set is
another pertinent example (Figs. 19 and 20). We acknowledge
that our training sets were enlarged using a variety of
deformation techniques. However, the deformations pro-
duced are large and very significant. Our point is that, to the
best of our knowledge, our proposed algorithm is the first to
be able to recognize/classify real range data with clutter and
occlusion into learned deformable shapes. We suggest that
this advance should be beneficial to a number of practical
applications. Obviously, the shape variability of everyday
objects is enormous and a comprehensive solution to the
problem is yet to be discovered.

5 CONCLUSIONS

In this paper, we have presented a novel symbolic-signature
approach to the difficult problem of recognizing and
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Fig. 22. Detecting syndromes from craniofacial deformations. From left to right: normal human head shape, abnormal head with the characteristics of

a patient with Greig cephalopolysyndactyly syndrome, abnormal head model with the characteristics of a patient with the trisomy 9 mosaic

syndrome. The last three models are human head models that are a convex combination of Normal and Abnormal 2.

TABLE 4
Percent True Positive (TP) and True Negative (TN) Rates for Recognition Tasks 4 and 5

Key: shape class (SC), % occlusion (O), % clutter (C), normal head (N), abnormal head (A), normal skull (NS), and abnormal skull (AS).

TABLE 5
Worst-Case Complexity for All Processing Stages

The parameter settings of Task 3 are reported as typical values in the table. Key: Numeric signature size (Nn), total number of components class
components (NC), average number of scene points (V ), symbolic signature size (Ns), total number of symbolic signature detectors (NS), average
proportion of scene points that were not filtered out by classification stage I ("), and average running time per range scene point (T).



classifying raw data into learned deformable shapes. We
have shown that our symbolic descriptors and classification
architecture can be used to represent a variety of objects
classes so that the expected sensitivity to large shape
deformations and consequent intraclass variability issues
are properly addressed. We validated our approach with a
set of 6,170 large-scale experiments with real range data
containing varying levels of scene clutter and occlusion and
obtained encouraging results. We have also suggested that
our approach is practical and can be effectively used in
industrial and medical applications. However, there are a
number of important issues that need to be investigated in
the future, as listed below:

1. The region growing algorithm for computing class
components uses seed points that are manually
selected by the user. We have described an iterative
algorithm that accomplishes this task and have
shown that it is practical and works for the classes
of objects considered in the experiments. During the
training process of our experimental validation, we
did not observed much changes in recognition/
classification performance as a function of the
location of the seed points as long as the average
(normalized) curvature of the region on which the
points were selected was low. However, we
acknowledge that it is necessary to carefully study
the sensitivity in recognition/classification perfor-
mance as the number and location of the seeds
points change. We hypothesize that components
computed on regions of high curvature are less
reliable and more difficult to learn than components
computed on regions of low curvature. The numeric
signatures used in this work require the estimation
of surface normal vectors. It is well-known that the
estimates of normal vectors on regions of high
curvature are noisy and produce numeric signatures
with higher variance than those estimated on regions
of low curvature.

2. In our experiments, we observed that few compo-
nents can provide high sensitivity at the expense of
specificity and that a simple solution to this is to
increase the number of components per class.
However, this could become an issue in the case of
a large number of classes as the complexity of the
multiwayn and multiways classifiers is proportional
to the square of the number of component detectors
and symbolic signature detectors, respectively
(Table 5). A possible solution to decrease complexity
could be to use a one-versus-all classification
scheme. However, the recognition/classification
performance of this scheme has not been determined
in the context of our algorithm.

3. The extension of our approach to a multiclass setting
requires the addition of an output stage that looks
up the class shapes labels assigned to the learned
symbolic signature patterns. However, experiments
are needed to determine the extensibility to a large
number of classes due to the complexity reasons
mentioned in point 2.

4. More extensive testing is required to provide a full
characterization as a function of inter and intraclass
variability. Although how to quantitatively assess

such variability is an open question at present, it is
clear that large data sets are required to learn a shape
class with high variance, such as the USF face set.

5. We used three different image widths for both the
numeric and symbolic signatures described in the
experiments. The results are comparable in all cases,
but more extensive testing is required for a complete
characterization of the methodology as a function of
the image width and support angle of the numeric
and symbolic signatures.

6. We made extensive use of off-the-shelf �-SVM
classifiers, but are currently investigating the use of
Maximum-Entropy [17] and Bayes point classifiers
[15], which allow us to utilize prior knowledge that
could potentially improve the performance of our
algorithms for cases in which the amount of
intraclass variability is very large. We are also
investigating techniques to simultaneously train
and test the bank of detectors and the multiway
classifiers.
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