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A B S T R A C T   

Background: Pathologists analyze biopsy material at both the cellular and structural level to determine diagnosis 
and cancer stage. Mitotic figures are surrogate biomarkers of cellular proliferation that can provide prognostic 
information; thus, their precise detection is an important factor for clinical care. Convolutional Neural Networks 
(CNNs) have shown remarkable performance on several recognition tasks. Utilizing CNNs for mitosis classifi-
cation may aid pathologists to improve the detection accuracy. 
Methods: We studied two state-of-the-art CNN-based models, ESPNet and DenseNet, for mitosis classification on 
six whole slide images of skin biopsies and compared their quantitative performance in terms of sensitivity, 
specificity, and F-score. We used raw RGB images of mitosis and non-mitosis samples with their corresponding 
labels as training input. In order to compare with other work, we studied the performance of these classifiers and 
two other architectures, ResNet and ShuffleNet, on the publicly available MITOS breast biopsy dataset and 
compared the performance of all four in terms of precision, recall, and F-score (which are standard for this data 
set), architecture, training time and inference time. 
Results: The ESPNet and DenseNet results on our primary melanoma dataset had a sensitivity of 0.976 and 0.968, 
and a specificity of 0.987 and 0.995, respectively, with F-scores of .968 and .976, respectively. On the MITOS 
dataset, ESPNet and DenseNet showed a sensitivity of 0.866 and 0.916, and a specificity of 0.973 and 0.980, 
respectively. The MITOS results using DenseNet had a precision of 0.939, recall of 0.916, and F-score of 0.927. 
The best published result on MITOS (Saha et al. 2018) reported precision of 0.92, recall of 0.88, and F-score of 
0.90. In our architecture comparisons on MITOS, we found that DenseNet beats the others in terms of F-Score 
(DenseNet 0.927, ESPNet 0.890, ResNet 0.865, ShuffleNet 0.847) and especially Recall (DenseNet 0.916, ESPNet 
0.866, ResNet 0.807, ShuffleNet 0.753), while ResNet and ESPNet have much faster inference times (ResNet 6 s, 
ESPNet 8 s, DenseNet 31 s). ResNet is faster than ESPNet, but ESPNet has a higher F-Score and Recall than 
ResNet, making it a good compromise solution. 
Conclusion: We studied several state-of-the-art CNNs for detecting mitotic figures in whole slide biopsy images. 
We evaluated two CNNs on a melanoma cancer dataset and then compared four CNNs on a public breast cancer 
data set, using the same methodology on both. Our methodology and architecture for mitosis finding in both 
melanoma and breast cancer whole slide images has been thoroughly tested and is likely to be useful for finding 
mitoses in any whole slide biopsy images.   

1. Introduction 

Melanomas account for approximately 75 % of all skin-cancer- 

related deaths and are responsible for over 10,000 deaths annually in 
the United States alone (Esteva et al., 2017). Melanoma is highly curable 
when detected in its earliest stage (Society, 2016). The gold standard for 
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diagnosis of melanoma is the histopathological examination in which 
the skin biopsy specimen is examined under a microscope by a pathol-
ogist (Cireşan et al., 2013). However, a single whole slide image of one 
tissue sample has a size of approximately 2.2 Gigapixels and the biopsy 
material often includes more than one tissue section with hundreds of 
thousands of cells on each slide, posing a great challenge for the 
pathologist to fully analyze all of the cellular data within the images. A 
pathologist’s diagnosis is often subjective and prone to variability 
(Elmore et al., 2015; Elmore et al., 2017); automated diagnosis holds 
promise to improve accuracy and reproducibility (Mercan et al., 2019). 
Thus, research on the automated classification of skin biopsies has 
gained traction with the overall goal of assisting pathologists to make 
accurate diagnoses. 

Melanoma diagnosis involves histological analysis of various cellular 
and architectural features. Melanocytic lesions range across a broad 
spectrum of categories: 1) benign, 2) variably atypical (e.g. demon-
strating mild, moderate or severe atypia), 3) melanoma in situ, 4) 
invasive melanoma stage T1a, and 5) invasive melanoma >= stage T1b 
(Piepkorn et al., 2014). A mitosis (or mitotic figure) remains an 
important entity in the review of skin biopsy cases as their presence may 
aid in the diagnosis of a melanoma in addition to being associated with 
poorer prognosis. A high mitotic rate in a primary invasive melanoma is 
associated with a lower survival probability. Among the independent 
predictors of melanoma-specific survival, mitotic rate is the strongest 
prognostic factor after tumor thickness (Thompson et al., 2011). Thus, 
the accurate detection of mitotic activity is an important role for the 
pathologist in making cancer diagnoses, and because mitoses are small 
objects with various shapes that can resemble normal nuclei, mitosis 
detection remains a challenging task for humans. Because of its clinical 
importance, the development of automated mitosis detection has 
become an active area of research with the goal of developing decision 
support systems to assist pathologists (Li et al., 2018a). 

Various approaches have been applied to detect mitotic figures. 
Sertel et al. (2009) computed the probability map based on the likeli-
hood functions and then used a component-wise two-step thresholding 
to find mitoses in neuroblastoma. A graph-based multi-resolution 
approach with color and texture features was used by Roullier et al. 
(2010), Roux et al. (2013) for mitosis extraction in breast biopsy images. 
Irshad et al. used morphological features to identify cellular entities in a 
breast biopsy dataset (Irshad et al., 2013). 

In recent years, with the development of fast and accessible Graphics 
Processing Units (GPUs), Convolutional Neural Networks (CNNs) have 
gained attention for medical image analysis, primarily because of their 
capability to learn strong structural representations about objects of 
interest (e.g. cellular entities (Cireşan et al., 2013) or tissues (Mehta 
et al., 2018a; Ronneberger et al., 2015)). For example, Cireşan et al. 
(2013) used a CNN-based method for mitosis detection and won the 
International Conference on Pattern Recognition 2012 (ICPR 2012) 
mitosis detection challenge by a significant margin. Since then, much of 
the research on mitosis detection in breast cancer biopsy images has 
used CNNs. Simo-Serra et al. (2015), Irshad et al. (2013) and Wang et al. 
(2014) developed different methods that merge CNN image descriptors 
and handcrafted features to improve the detection. Chen et al. (2016) 
proposed a two-stage mitosis detection pipeline, with a coarse retrieval 
model, followed by a fine discrimination model. In recent work, Li et al. 
(2018b) used a deep detection network using residual connection when 
only the weak label is given. López-Tapia et al. (2019) introduced a 
pyramidal model to detect mitoses. On each pyramid level, a Bayesian 
convolutional neural network is trained to compute class prediction and 
uncertainty on each pixel. 

Several CNN-based methods have been proposed for mitosis detec-
tion in different tissues, including breast (Cireşan et al., 2013; Irshad 
et al., 2013; Chen et al., 2016), stem cells (Zhou et al., 2017), and skin 
(López-Tapia et al., 2019). Unlike natural image datasets (e.g. the 
ImageNet Deng et al., 2009), the number of training samples are limited 
in medical image datasets usually by an order of a few hundred (Roullier 

et al., 2010; Veta, 2016; Veta et al., 2015). To achieve strong perfor-
mance on these datasets, CNNs have been complemented with several 
methods, including hand-crafted features (Saha et al., 2018; Irshad 
et al., 2013; Dodballapur et al., 2019) and better augmentation strate-
gies (Ronneberger et al., 2015). U-Net (Ronneberger et al., 2015) 
introduced an encoder-decoder architecture with skip-connections for 
segmenting different biological structures in images and demonstrated 
good performance across several datasets 

Most research in mitosis detection has been conducted on biopsy 
images other than the skin (Saha et al., 2018; Mercan et al., 2019; Mehta 
et al., 2018a; Chen et al., 2016). However, skin biopsy images are 
different from these biopsy images in terms of texture, color, and mitosis 
shape, as shown in Fig. 1. As a result, existing CNN-based classifiers 
trained on these biopsy images may have poor performance on skin 
biopsies. Moreover, to the best of our knowledge, there are no publicly 
available skin biopsy datasets with mitosis annotations. Given the 
importance of mitosis detection in skin cancer diagnosis, we created a 
new dataset with mitosis-level markings from an expert pathologist. We 
studied and compared the performance of two different state-of-the-art 
CNNs, one that is lightweight in terms of parameters and execution time 
and one that is much bigger, in terms of accuracy, sensitivity, specificity, 
precision, recall, and F-score. We then compare the performance of these 
two CNNs with two additional state-of-the-art architectures on a public 
breast cancer data set in terms of precision, recall, F-score, architecture, 
training time, and inference time. Our work has several contributions: 1) 
This is the first paper to experiment with finding mitotic figures in whole 
slide melanoma biopsies. 2) After determining the best possible per-
formances on the melanoma biopsy slide images, we showed that this 
pipeline could be applied to a well-known breast cancer data set 
(MITOS) and compared the results from our two models (ESPNet, which 
was chosen for lightweight network and speed, and DenseNet, which 
was an example of a state-of-the-art network) with the results from 
several published papers, showing that DenseNet could beat all of them 
and ESPNet came close (Table 4). 3) We ran two more models, ResNet 
and ShuffleNet, on the MITOS dataset for further comparison and found 
that DenseNet is still the best performer in terms of F-1 score (DenseNet 
0.927, ESPNet 0.890, ResNet 0.865 and ShuffleNet 0.847) and, partic-
ularly, in terms of Recall (DenseNet 0.916, ESPNet 0.866, ResNet 0.870 
and ShuffleNet 0.753), which is very important for cancer grading. 4) 
Our paper, in general, gives a methodology and architecture for mitosis 
finding in both melanoma and breast cancer whole slide images, and 
that is likely to be useful for finding mitoses in any whole slide biopsy 
images. 

2. Materials and methods 

2.1. Dataset and preprocessing 

Our dataset comes from hematoxylin and eosin (H&E) stained slides 
of skin biopsy images, acquired in the MPATH study (R01 CA151306). 
The Institutional Review Board at the University of Washington 
approved all test set study activities. The identification and development 
of these images has been previously described in (Elmore et al., 2015). 
All glass slides of skin biopsies were scanned at 40x magnification with a 
high-quality digital scanner. The compression method we used on these 
images is tiff. 

2.1.1. Dataset and materials 
An experienced pathologist (SK) chose six skin biopsy cases of >=

pT1b invasive melanoma, a diagnostic category known to be associated 
with high mitotic activity, from our dataset and cropped 34 areas in the 
whole slide images (WSIs) of these cases. The size of the areas and the 
number of areas per each case were not fixed but were based on the 
pathologist’s judgment with the aim of marking as many mitoses as 
possible. A total of 628 mitoses in the cropped image areas were marked 
by the same pathologist with a green dot on each mitosis, using the 
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Sedeen Viewer (Martel et al., 2017). These marked mitoses provide 
“class mitosis” samples for training and validation of our binary classi-
fiers. The details about our skin biopsy dataset are summarized in 
Table 1. 

Distinguishing mitoses from normal nuclei is a challenge for auto-
mated mitosis classifiers. Mitoses and nuclei can appear very similar in 
color and shape; thus, the classifiers require a large number of nuclei 
samples to differentiate between these cellular entities. If the whole non- 
mitosis regions of the image were to be sampled uniformly, many of the 
non-interesting instances such as background would be in the class “non- 
mitosis” and training a strong classifier would be inefficient. To avoid 
this, we used a standard watershed-based nuclei segmentation method 
(Corredor et al., 2018) to find nuclei in the images and use them as 
examples for the class non-mitosis. Fig. 2 shows the output of this nuclei 
detector on a cropped portion of a skin biopsy. 

Fig. 3 shows some examples of mitoses and normal nuclei, which we 
note are very similar in terms of texture, color, and shape. In the process 
of sampling mitoses and nuclei, based on our experiments, we used a 
101 × 101 patch approximately centered on the target entity’s center. If 
a part of this window lies outside of the image borders, the image is 
padded using mirroring of the border pixels. To help our classifier learn 
rotation, scale, and translation-invariant representations, we augmented 

our training set with standard augmentation methods such as rotation 
(45, 90, 135 or 225 degrees) and mirroring (horizontal and vertical) 

The number of mitoses per slide is an order of magnitude fewer than 
other entities, such as nuclei and melanocytes present in the slide. In 
other words, the dataset is imbalanced. If we train a classifier with such 
an imbalanced dataset, then the classifier will be biased towards the 
entities with more samples. To address this imbalance, a standard 
approach (Prati et al., 2009; Ren et al., 2015) is to maintain a good ratio 
between positive samples (patches that contain mitoses) and negative 
samples (patches that do not contain mitoses). For our dataset, we 
empirically found that this ratio is 1:3 i.e. the number of negative 
samples available for training is approximately 3 times the number of 
positive samples; resulting in 4364 mitoses and 12,640 non-mitosis 
samples after data augmentation. Since we used a watershed-based 
nuclei segmentation (Corredor et al., 2018) as a pre-processing 
method, non-mitosis samples mostly contain nuclei. 

2.1.2. Data split 
We split our dataset randomly into training (80 %) and validation 

(20 %) sets, respectively. The validation set was withheld during the 
training phase. After the training is complete, validation set is used to 
evaluate the trained model performance. 

2.2. Training 

2.2.1. Networks 
Our classification network uses a standard pipeline (Krizhevsky 

et al., 2012; He et al., 2016) that stacks encoding and down-sampling 
units to learn latent representations. In our experiments, we used two 
state-of-the-art encoding units: 1) Efficient Spatial Pyramid of Dilated 
Convolutions (ESPNet) (Mehta et al., 2018b) and 2) Densely Connected 
Convolutional Networks (DenseNet) (Huang et al., 2017). The same 
dataset split was used for both ESPNet and DenseNet training and 
validation. 

Efficient spatial pyramid of dilated convolutions (ESPNet): ESPNet 
(Mehta et al., 2018b) is a fast and efficient CNN that was designed for 
semantic segmentation on mobile devices. The core building block of the 
ESPNet architecture is the ESP unit that decomposes a standard 
convolution into a point-wise convolution and a spatial pyramid of 

Fig. 1. Example crops of biopsy images with mitoses in them; (top) skin; (bottom) breast. These biopsies are different in terms of color, texture, and mitosis phase 
and shape. 
*A mitosis in each image is present near the center and is marked with a green circle for visualization. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article). 

Table 1 
Mitosis dataset summary – Melanoma.  

Case ID Number of 
slices 

Number of cells in 
WSI 

Number of 
areas 

Number of 
mitoses 

Case # 
1 

5 ~ 250k 14 197 

Case # 
2 

3 ~ 237k 6 32 

Case # 
3 

6 ~ 320 7 232 

Case # 
4 

1 ~ 115k 5 156 

Case # 
5 

3 ~ 49k 1 6 

Case # 
6 

4 ~ 39k 1 5 

Total  – 34 628  
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dilated convolution. This factorization reduces the computational 
complexity of the ESP unit in comparison to the standard convolution. 
Fig. 4 (a) visualizes the ESP unit. We chose this unit in our study because 
of its good performance in segmenting breast biopsy whole slide images 
(Mehta et al., 2018a). 

Densely Connected Convolutional Networks (DenseNet): DenseNet, 
densely connected convolutional neural network (Huang et al., 2017), 
introduces a novel connectivity mechanism to improve the flow of in-
formation between different stacked convolutional layers. As shown in 
Fig. 4 (b), this unit establishes a direct link between different convolu-
tional layers. This connectivity pattern provides multiple paths for 
gradients to flow back to the input and thus, helps in learning better 
representations. 

2.2.2. Training parameters 
We train our classifiers using the ADAM optimizer (Kingma and 

Adam, 2014) for a total of 20 epochs with an initial learning rate of 
0.001. We decay the learning rate by 0.1 after every 5 epochs. During 

training, we minimize the cross-entropy loss (De Boer et al., 2005). 

2.2.3. Evaluation metrics 
We evaluate the performance of our classifier on the melanoma 

dataset using six metrics: four standard metrics (precision, recall, F- 
score, and accuracy) and two widely used metrics in clinical care 
(sensitivity and specificity):  

• Accuracy = TP+TN
TP+FP+TN+FN  

• Precision = TP
TP+FP  

• Recall = TP
TP+FN  

• F − score = 2× Precision×Recall
Precision+Recall  

• Sensitivity = TP
TP+FN  

• Specificity = TN
TN+FP 

Fig. 2. Examples of applying the nuclei seg-
mentation method (Corredor et al., 2018) on a 
crop of skin biopsy image (a) original crop (b) 
nuclei segmentation result. 
* Two mitoses that are present in the original 
crop are marked with red dots for visualization. 
* Segmentation method was able to find the 
mitoses. We marked them here with red boxes 
for visualization. (For interpretation of the ref-
erences to colour in this figure legend, the 
reader is referred to the web version of this 
article).   

Fig. 3. Examples of (top) sampled mitoses, and (bottom) sampled nuclei that are not mitoses. These two entities have similarity in color, surrounding and texture.  
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where True Positive (TP) is the number of correctly predicted mitosis 
and True Negative (TN) is the number of correctly predicted non-mitosis 
samples, while False Negative (FN) is the number of mitosis samples 
which classified as non-mitosis by the classifier and False Positive (FP) 
are the non-mitosis samples predicted as mitosis. F-score is the harmonic 
mean of precision and recall. 

3. Results 

3.1. Mitosis detection results on Melanoma dataset 

Table 2 summarizes the results of our classifiers using two different 
encoding units: 1) ESPNet and 2) DenseNet. Both networks achieved 
high accuracy on classifying mitoses with a sensitivity of 0.976 and 
0.968, and specificity of 0.987 and 0.995, respectively. Though Dense-
Net outperformed ESPNet, this outperformance was not statistically 
significant (p-value is 0.5716), and the training time of ESPNet is about a 
third that of DenseNet (see Table 2) (Table 3). 

3.2. Generalizability of the MITOS dataset 

To study the generalization ability of our classifiers on other data-
sets, we evaluated the performance on a publicly available mitosis 
dataset for breast biopsies: MITOS (Roullier et al., 2010; Roux et al., 
2013). The dataset consists of 50 images corresponding to 50 
high-power fields in 5 different breast cancer slides stained with 

hematoxylin and eosin. This dataset contains 800 mitoses. 
We first compared our two classifiers (ESPNet and DenseNet) to the 

results reported in several papers in the recent literature (Saha et al., 
2018; Cireşan et al., 2013; Li et al., 2018a; López-Tapia et al., 2019; 
Dodballapur et al., 2019) The architectures of these classifiers can be 
summarized as follows: 

Fig. 4. Two convolutional units, ESPNet (a) and DenseNet (b), that are used in our experiment. Each of these units receives a 3D tensor with width W, height H, and 
depth N as an input and produces a 3D tensor with width W, height H, and depth M as an output. The projection channel dimension in ESPNet unit is represented by 
d while in DenseNet unit, it is represented by di. For ESPNet, output tensor depth is M = k× d, where k is the number of parallel branches in the ESPNet unit (k = 3 in 
(a)), the size of the point-wise convolution is 1× 1, and ni is the size of the dilated convolutional layers. For more information, see (Mehta et al., 2018b). For the 
DenseNet unit, output tensor depth is M =

∑
di , i = {1,…,L}, where L represents the number of stacked layers (L = 3 in (b)). It is common to use 3 × 3 standard 

convolutional layers in DenseNets. For more information, see (Huang et al., 2017). 

Table 2 
Quantitative results of ESPNet and DenseNet on validation set* of Melanoma.  

Metrics ESPNet (Mehta et al., 2018b) DenseNet (Huang et al., 2017) 

Accuracy 0.984 0.988 
Precision 0.961 0.984 
Recall 0.976 0.968 
F-score 0.968 0.976 
Sensitivity 0.976 0.968 
Specificity 0.987 0.995 
FP, FN 5, 3 2, 4 
TP, TN 122, 370 121, 373 
Training Time** 35 minutes 106 min  

* Validation set contains 20 % of the whole set (no data augmentation). 
** Experiments were performed on a 2.10 GHz Intel Xeon Silver 4110 CPU 

with GeForce GTX 1080 GPU. Utilization of a GPU and small patch size speed up 
the training process. In addition, ESPNet is a much lighter model than DenseNet, 
which explains the lower training time of ESPNet compared to that of DenseNet. 
We trained our classifiers using the ADAM optimizer for a total of 20 epochs with 
an initial learning rate of 0.001. We decayed the learning rate by 0.1 after every 
5 epochs. During the training process, we minimized the cross-entropy loss. 
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• Saha, et al. The deep learning consists of two parts: (1) a convolu-
tional neural network and (2) a handcrafted feature extractor. The 
deep architecture contains five convolution layers, four max-pooling 
layers, four ReLUs, and two fully connected layers.  

• Dodballapur et al. In this work, handcrafted features extracted from 
the masks generated from the Mask R-CNN network are combined 
with deep features to classify the candidate cells. To extract an 
image-level representation, the Xception network pre-trained on 
ImageNet without the last two fully connected layers was used.  

• Li, et al. Their pipeline consists of three components: (1) a deep 
detection model (DeepDet) that produces primary detection results, 
(2) a deep verification model (DeepVer) that verifies these detections 
and eliminates false positives, and (3) a deep segmentation model 
(DeepSeg) that segment the images and generates bounding box 
annotations around segmented regions to provide weak box-level 
annotations. The DeepDet model consists of an RPN (Region Pro-
posal Network) and a region-based classifier. The DeepVer model is 
based on the ResNet.  

• López-Tapia, et al. Their pipeline consists of two components: first, 
a coarse-to-fine cascade of CNN Bayesian models for mitosis detec-
tion; then, to make the model resistant to local and shape de-
formations, a Spatial Transforming Layer is applied before the 4th 
and 7th residual blocks in scale x40. 

• Cireşan, et al. They trained two DNNs and ensembled the perfor-
mance evaluation results: DNN1 contains five convolutional layers, 
five max-pooling layers, and two fully connected layers. DNN2 
contains four convolutional layers, four max-pooling layers, and two 
fully connected layers. 

For comparison, the architectures of ESPNet and DenseNet are as 
follows:  

• ESPNet: Our classification network uses a standard pipeline that 
stacks encoding and down-sampling units to learn latent represen-
tations. The model contains one conventional 2D convolution layer, 
five ESP blocks, four down-sampling layers, one average-pooling, 
and two fully connected layers.  

• DenseNet: We used the DenseNet161 architecture which contains 
one conventional 2D convolution layer, four Dense block, three 
Transition layers, one max-pooling, and two fully connected layers. 

In comparison to existing state-of-the-art methods (see Table 4), our 
classifiers achieve a competitive performance. In particular, our 

DenseNet-based classifier is 2% more accurate than Saha et al. (2018). 
In order to compare more thoroughly, we added two more state-of- 

the-art CNNs, ResNet (He et al., 2016) and ShuffleNet (Zhang et al., 
2018) to the original two (ESPNet and DenseNet). We compared all four 
classifiers on precision, recall, and F-score (as is standard for MITOS) 
and measures of architecture and speed. 

Results with precision, recall and F-score are summarized in Table 5. 
DenseNet is the clear winner in this contest with F-score of 0.927 
compared to 0.890 for ESPNet, 0.865 for ResNet and 0.847 for Shuf-
fleNet. Furthermore, results with respect to architecture and speed are 
summarized in Table 6. Here ResNet is the most efficient with ESPNet a 
close second. 

4. Discussion 

While it is the role of the pathologist to make cancer diagnoses and 
evaluate for important prognostic indicators, such as mitoses, concern-
ing levels of variability have been noted among pathologists (Elmore 
et al., 2015; Elmore et al., 2017). Variability has been noted both be-
tween different pathologists reviewing the same case (inter-observer 
variability) and within the same pathologist when they are shown the 
same case on two different occasions, usually with a “wash-out” period 
between interpretations and they are not told that they are seeing the 
same cases (intra-observer variability). Clinically, this variability is 
noted by the submitting clinician if a second opinion is received from 
another institution. The submitting clinician will not know which 
opinion is closer to the true biologic nature of the lesion sampled due to 
the lack of well-established ancillary tests in these circumstances. This 
places the submitting clinician in the difficult position of discussing 
variability with the patient, who will likely have associated anxiety of 
not knowing if their lesion is truly benign or malignant in addition to 
making the difficult decision of having to decide which treatment option 
to undergo. 

One microscopic parameter that is both helpful to the pathologist in 
establishing a cancer diagnosis and in assessing prognosis, is the pres-
ence or absence of mitotic figures; a microscopically visible nuclear 
feature closely tied to cellular proliferation. In mitosis a cell divides to 
form two new cells. Cancer tissue generally has more mitotic activity 
than normal tissues, and this is assessed by calculation of the mitotic 
index – the number of cells in mitosis divided by the total number of cells 
However, measurement of the mitotic index depends on the subjective 
visual analysis by pathologists who have a hard time both in identifying 
and also counting mitotic figures and total cell counts (Knezevich et al., 
2014). Thus, development of supporting tools that can be more accurate 
and reproducible would greatly aid clinical care. Machine learning 
techniques, including CNNs, have shown incredible performance in 

Table 3 
Quantitative results of ESPNet and DenseNet on MITOS (Roullier et al., 2010).  

Metrics ESPNet DenseNet 

Accuracy 0.946 0.964 
Precision 0.916 0.939 
Recall 0.866 0.916 
F-score 0.891 0.927 
Sensitivity 0.866 0.916 
Specificity 0.973 0.980 
FP, FN 16, 27 12, 17 
TP, TN 175, 582 185, 586  

Table 4 
Performance comparison of ESPNet and DenseNet with other approaches on MITOS (Roullier et al., 2010) reported in the literature.  

Method ESPNet (Our trained 
model) 

DenseNet (Our trained 
model) 

Saha et al., 
2018 

Dodballapur et al., 
2019 

Li et al., 
2018b 

López-Tapia et al., 
2019 

Cireşan et al., 2013  
** 

Precision 0.916 0.939* 0.92 0.93 0.854 N/A 0.886 
Recall 0.866 0.916* 0.88 0.80 0.812 N/A 0.70 
F-score 0.890 0.927* 0.90 0.87 0.832 0.826 0.782  

* Precision, recall, and F-score of our DenseNet model are higher than other approaches in the literature on the MITOS dataset. 
** ICPR12 winner. 

Table 5 
Performance comparison of ESPNet, DenseNet, ResNet, and ShuffleNet on 
MITOS (Roullier et al., 2010).  

Method ESPNet DenseNet ResNet ShuffleNet 

Precision 0.916 0.939 0.931 0.968 
Recall 0.866 0.916 0.807 0.753 
F-Score 0.890 0.927 0.865 0.847  
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visual recognition tasks, and thus have the potential to improve histo-
logic diagnostics, both as aids for pathologists to improve the quality 
and reproducibility of their diagnoses and in the medical research 
domain (Mehta et al., 2018a; Ribli et al., 2018; Kermany et al., 2018). 

In this work, we trained two CNN methods, ESPNet and DenseNet, as 
two separate classifiers; both CNNs had high accuracy on our dataset of 
skin biopsies of invasive melanoma. We further generalized our classi-
fiers to the MITOS breast biopsy dataset and compared our results with 
the existing state-of-the-art on the MITOS dataset with high accuracy in 
classifying mitoses (Saha et al., 2018; Cireşan et al., 2013; Chen et al., 
2016; Li et al., 2018b; López-Tapia et al., 2019; Dodballapur et al., 2019) 
and ran experiments with two more state-of-the-art CNNs to make more 
thorough comparisons. We achieved competitive accuracy on the 
MITOS dataset compared to the existing state-of-the-art methods. 

No study is without limitations, and our research is not an exception. 
First, both the melanoma dataset and the MITOS dataset (as well as other 
public digital datasets) make use of less information than a microscopic 
examination, in which a typical tissue section is 5 μm and on which the 
pathologist can focus through an infinite number of planes, ensuring all 
cells of interest are in optimal focus. Secondly, for the public datasets, 
the use of only two-dimensional images with no recourse to looking at 
three-dimensional tissue sections makes it difficult to confirm the given 
diagnoses. 

Marking biopsy images is an onerous task and obtaining samples 
with variation in the dataset is a challenge. To expand our dataset, we 
generated new samples out of our existing samples with horizontal and 
vertical mirroring and with rotations of 45, 90, 135 or 225 degrees. 
However, having samples from more patients would be beneficial for 
training a precise classifier for mitosis detection. 

Given the complex and dense nature of working with biopsy tissue 
datasets, a significant challenge is posed in developing training sets that 
reflect the full spectrum of cases seen in clinical practice and also that 
accurately identify the cellular entity of interest. In our skin cancer 
work, the cases were carefully selected to represent the full spectrum of 
skin biopsies obtained in clinical practice and a three-person expert 
defined consensus diagnosis was used (Elmore et al., 2017). In addition, 
each case was carefully reviewed by an expert dermatopathologist to 
identify and mark the individual mitotic figures. 

Mitotic activity is an important biomarker that can assist in the 
diagnosis and may provide prognostic information. However, each bi-
opsy specimen may contain hundreds of thousands of cells, making their 
identification a significant challenge. We have shown that mitoses can 
be identified using our machine learning method with high accuracy; 
thus, this method has the potential of being a powerful diagnostic and 
prognostic aid to practicing pathologists. 
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