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Abstract

Longitudinal studies of a variety of transgenic mouse models for lens development can create substantial challenges in database management and
analysis. We report a novel, automated, feature-based informatics approach to screening lens phenotypes in a large database of slit lamp images.
Digital slit lamp images of normal and abnormal lenses in eyes of wild type (wt), SC1 null and SPARC null transgenic mice were recorded for
quantitative evaluation of their structural phenotype. The images were processed to improve the contrast of structural features that corresponded
to rings of opacity and fluctuations in scattering intensity in the lenses. Measurable attributes were assigned to the features in the lens images and
given as an output vector of 46 dimensions. Characteristic patterns were correlated with the structural phenotype of each mutant and wt lens and
a statistical fit for each phenotype was defined. The genotype was identified correctly in nearly 85% of the slit lamp images on the basis of an
automated computer analysis of the lens structural phenotype. The automated computer algorithm has the potential to evaluate a large database
of slit lamp images and distinguish mouse genotypes on the basis of lens phenotypes objectively using a neural network analysis of the structural
features observed in the slit lamp images. The neural network approach is a promising technology for objective evaluation of genotype/pheno-
type relationships based on structural features and light scattering in lenses. Further improvements in the automated method can be expected to
simplify and increase the accuracy and efficiency of the feature based analysis of structural phenotypes linked to genetic variation.

© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Genetic variations in the eye are well known and often pres-
ent structural phenotypes that can be mapped to specific, some-
times multiple, sites on chromosomes. In contrast, the ability to
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evaluate variations in structural phenotype observed in a large
database of images can be complicated by difficult and subtle
differences in the structural appearance of the eye that can
depend on exposure conditions, lighting and the angle of imag-
ing. This report describes the results of an effective, automated
method for the quantitative comparison of a large database of
slit lamp images using a neural network approach to the com-
puterized analysis of variations in structure of three different
lens phenotypes and their correlated genotype.

The lens is an excellent model for development of an objec-
tive analysis of structural phenotype because the lens structure
is highly ordered and readily observed and recorded in living
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animals using a slit lamp. The lens is a sensitive indicator of
hereditary and genetic disorders. A normal mammalian lens
consists of symmetric layers of transparent cells containing
a condensed protein solution that increases the refractive index
to permit the lens to function as an optical element in the visual
pathway. A complex network of special interactions between
the concentrated cellular proteins favors short range, glass-
like order and transparency across layers of lens cells
(Benedek, 1983; Clark, 2004). Loss of transparency results
when interactions between proteins are altered to produce inho-
mogeneities and large fluctuations in the index of refraction
that scatter light. The opacity or cloudiness of the crystalline
lens increases progressively with age (Harding, 1991; Kashima
et al., 1993a; Thurston et al., 1997; Chylack and Khu, 2001;
Thylefors et al., 2002). The spatial distribution and intensity
of opacities within the lens varies with the molecular or genetic
basis for the cataract (Phelps-Brown and Bron, 1996; Kojima
et al., 2002; Fan et al., 2003; Seeberger et al., 2004).

Several methods for classification have been used effectively
in clinical and epidemiological studies of cataract formation
(Chylack et al., 1993a; Leske et al., 1996; Chylack and Khu,
2001; Klein et al., 2005) and it is widely recognized that
specific patterns of opacification can be linked with hereditary
and metabolic diseases including Alport’s, Lowe’s, Marfan’s,
and Down’s syndromes, as well as myotonic dystrophy, corali-
form cataract, and chromosomal mutations (Phelps-Brown and
Bron, 1996; Alizadeh et al., 2004; Graw, 2004). A distinctive
form of opacity in Alzheimer’s patients was identified using
slit lamp imaging, suggesting a relationship between structural
phenotype and genotype (Goldstein et al., 2003). Mutant and
transgenic mice have been linked to variations in the structural
patterns of light scattering in lenses and in many cases, resem-
ble human lens opacities (Clark and Carper, 1987; Rodriguez
et al.,, 1992; Bettelheim et al., 1997; Graw, 1999; Norose
et al., 2000; Tumminia et al., 2001; Yan et al., 2002). The
success of the subjective classification of slit lamp images
encourages the development of an automated computer based
analysis of structural phenotypes that can be correlated with ge-
netic mutations when the number of categories as well as the
number of images increases in a very large database, as in a pre-
clinical trial or genetic screen (Datiles et al., 1987; Chylack
et al., 1995; Chylack and Khu, 2001; Seeberger et al., 2004;
Wolf et al., 2005).

This report presents a novel method for computerized and
quantitative evaluation of the progressive variations in lens
structural features resulting from various mechanisms of opaci-
fication. No previous methods for the correlation of genotype
with patterns of structural features in slit lamp images of mouse
lenses have been reported. A Dynamic Light Scattering (DLS)
fiber-optic probe that measured particle size distributions in an-
imal lenses involves a different technology (Chenault et al.,
2002; Datiles et al., 2002; Ansari et al., 2003; Simpanya
et al,, 2005) based on earlier quasielastic light scattering
(QLS) instrumentation for lens opacification (Nishio et al.,
1984; Benedek et al., 1987; Thurston et al., 1997). The DLS
was used in the analysis of the distribution of particles of differ-
ent sizes in the eyes of desert rodents, two groups of mice,

guinea pigs and in a rat model for cataract formation (Ansari
et al.,, 2003; Simpanya et al., 2005; Chenault et al., 2002).
The DLS method is not automated and is limited in its ability
to consider the spatial distribution of the scattering features in
lens with respect to phenotype.

The density of opacities in different areas of the eye lens
(posterior capsular, posterior cortical, nuclear, anterior cortical,
and anterior capsular) and in different age ranges has been
studied (Edwards et al., 1990; Chylack et al., 1993b; Kashima
et al., 1993b). The minimum number of views required was
studied in patients to avoid subjecting patient eyes to the re-
peated and extended exposure of intense light used for camera
recordings and to reduce the number of images stored. Light
exposure and photographic storage were problems that could
limit the number of images per patient. Current imaging
methods are significantly advanced with regard to light sensi-
tivity for image acquisition using digital video imaging, and
short exposure time for patients. The advancement in modern
compression technologies allows storage of more images
with higher resolution than was possible ten years ago.

A number of classification methods are in use to define clin-
ically relevant features obtained from densitometric analyses
that are correlated with opacity but are not for general pheno-
type analysis (Dimock et al., 2000; Seeberger et al., 2004).
Some of these studies were automated for cataract classification
of nuclear sclerosis from slit-lamp photographs (Fan et al.,
2003) and gray scale processing with predefined landmarks
was useful for classification of clinically important cataracts.
The purpose of previous studies was different from the current
approach which concentrates on patterns of subtle variations in
structural features resulting from genetic mutation of mouse
lenses at the earliest possible age.

Two mouse models that have abnormal lens phenotypes on
the 129Sv background, the SC1/Hevin null and the SPARC
(osteonectin, BM40) null mouse, were selected for the evalua-
tion using the phenotype analysis (Brekken and Sage, 2001;
Sullivan and Sage, 2004; Sullivan et al., 2006). The selection
of the mouse models was based on the slow temporal progres-
sion of the opacification pattern in lens with age which involves
zones of discontinuity characteristic of ageing in many mam-
malian lenses. The patterns are subtle without distinct or unique
structural features. SC1/Hevin and SPARC are matricellular
proteins that modulate interactions between the lens basement
membrane or capsule and the epithelial cells. The absence of
SC1/Hevin or SPARC alters mobility of differentiating fibers
at the basal attachments to the lens capsule which results in
a progressive loss of transparency in layers of lens fibers
(Bassuk et al., 1999; Norose et al., 2000). The microscopic
structure responsible for the slit lamp images remains to be de-
termined using direct, systematic histological methods (Kuszak
and Costello, 2004; Kuszak et al., 2006; Blankenship et al.,
2007). In the current study, an innovative computerized
approach quantified collectively the patterns and features of
the structural phenotype observed in images of transgenic
mouse eyes. Structural features in the slit lamp image were
assigned attributes that were concentrated into a vector of 46
dimensions for each image. The neural network assigned
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Fig. 1. Lens phenotype for: wild type (WT), synaptic cleft 1 protein null (SC1), and secreted protein acidic and rich in cysteine (SPARC) null.

each input image to a set representing its genotype and labeled
it accordingly. On the basis of the structural features alone the
algorithm separated a testing set of slit lamp images into their
three genetic categories, WT, SC1 null or SPARC null, with
a high degree of accuracy. The results provide baseline data
for improved informatics approaches to phenotype/genotype
relationships in living animals. In a broader study the molecular
basis for each phenotype will need to be investigated.

2. Materials and methods
2.1. Slit-lamp eye image capture

We are given a set of k known cataract classes
S ={C,,Cy,...,C¢}, a training set of slit lamp mouse eye im-
ages, T, where each image t € Ty is labeled as corresponding
to a category C;e S, and a test image set Tr such that
T¢ N Ty = ¢. We want to assign C; € S to which each image
Q € Tr belongs. The wild type animals were the same back-
crossed strain, 129Sv, as the mutants and the same animals
were used as the wild type group for comparison with both
mutant groups. The age range of the mice was 3 to 25 months.
The transgenic mouse models were examined and imaged us-
ing a Nikon FS-2 slit lamp ophthalmoscope and a Canon Op-
tura 20 digital video camera. Frames from each examination
were selected from video recordings, using Adobe Premiere,
saved in TIF file format, and then cropped and oriented using
Adobe Photoshop. The total image database numbered over
100 different eyes in different mice. Duplicate images ob-
tained under the same conditions were identical.

The set S of lenses used in this work is either: the WT
(wild-type which has no laboratory-induced opacity), the Se-
creted Protein Acidic and Rich in Cysteine (SPARC) null (a
matricellular protein), and the Synaptic Cleft (SC1) null.

S = {WT,SCI,SPARC}

In both the SPARC-null and SCI-null animals, the gene en-
coding the specific protein was truncated or replaced so that
the functional protein is no longer expressed. Fig. 1 shows
typical slit lamp images for each class. The original high-
resolution images were resized to 300 by 300 pixel versions.
The properties of the images in the datasets Ts and T are:

e The eyes in the images are approximately the same size
and are approximately centered at the same location in
each image.

e Each image is of a single eye in an individual mouse.

e The illumination during the image capture process varies
among the different experiments (Fig. 2).

e There are artifacts caused by the illumination that are
independent from the cataracts (Fig. 3).

e The pattern in the center of the lens is directly related to
the cataract.

e A ring pattern can be observed in the WT class. Depend-
ing on the cataract, partial or total modification of this ring
pattern can be observed.

Fig. 2. The shape of the eye in an image varies depending on both the mouse
and the angle of incidence of the slit-lamp light source on the surface of the
eye. Illumination was not controlled.
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Fig. 3. Artifacts caused by the imaging process are marked by yellow ellipses.

e Because of the manner in which the images are taken, the
ring pattern is not circular but elliptical. This makes detec-
tion of the rings more difficult (Fig. 2).

e The images contain structures such as eyelashes, which are
not of interest.

The opacity or cloudiness of the lens changes the percep-
tion of the layers in the lens. The pattern of the rings or the
relative colors between rings may vary, making this a useful
feature in the characterization of the pattern of opacity in
a lens. The angle of incidence of the slit-lamp light on the cor-
nea accounts for the elliptical shape of the ring pattern shown
in the image. Fitting circular arcs to the rings in the images
was a good approximation to the layers of opacification. To
include the largest amount of information, images with ring
patterns as close to a circle as possible were preferred. Noise
factors in the image were non-trivial because control of the
imaging conditions was limited in the initial testing. Constant
illumination and shape were not assumed (Fig. 2).

The analysis involved feature extraction and learning.
Quantifiable features characteristic of particular patterns
were defined. A defined set of features was extracted from
each slit lamp image ¢t € Ts, and these features were used to

Slit-lamp eye
image

Histogram of

Segmented least

Ring detection and
feature extraction

Intensity profile
feature extraction

western quadrant squares intensity

extraction feature extraction
\ 4 \ 4 \ 4 \ 4
Statistics for Coefficients Variance of Statistics for
- for the X X
the maxima, intensit the western intensity
minima, and ":::f?lley quadrant profile
ring widths function fit histogram segments

Eye feature

vector

Fig. 4. Feature extraction process.
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Fig. 5. The original image (a), the original image after a histogram equalization (b), and the contrast enhancement (c).

train a neural network (Russell, 1995). The training or learning
process produced a model using the information from the
training set. This model was used in the final analysis of
each image.

2.2. Feature extraction

A set of image features with measurable attributes was de-
veloped to discriminate between the different known geno-
types. The features were rings, intensity profile, and
histogram. For each slit-lamp image input into the feature ex-
traction process, a numeric feature vector of 46 dimensions
was output. The process is summarized in Fig. 4.

2.3. Ring detection

Rings, or elliptical layers of varying transparency, are pres-
ent in the WT, mutant SC1 null, and SPARC null lenses.
Visualization of the layers of lens cells depends on magnifica-
tion and contrast. In the WT lens, the contrast between
adjacent cells or layers of cells is small when observed in
a slit lamp biomicroscope. The contrast increases when

Rect(x.y)

Fig. 6. The region inside an elliptical sector is mapped to a rectangular sector
using the Rect(x, y) = (cx + a, y) transformation.

opacity occurs in some layers and not in adjacent layers.
The increased contrast allows the rings to be observed in the
slit-lamp. The pattern of rings can be correlated with the mu-
tation. The proposed approach in identifying and quantifying
these characteristics of the rings consists of a five-step process:

—_

. Ring enhancement

2. Isolation of an elliptical sector of the lens

3. Transformation of the elliptical sector into a rectangular
image containing only pixels corresponding to the lens

4. Compression of the rectangular image representation into
a 1-dimensional array of mean intensities

5. Extraction of feature vector values from the 1-dimensional

array produced in the previous step

This process contributes 23 numerical values from the raw
input image that will be used for the training phase.

2.3.1. Ring enhancement

As shown in Fig. 5, the contrast between the rings is small.
A standard solution for this problem is histogram equalization
transform, which modifies the intensity values of image pixels
to achieve nearly equal numbers of the distinct intensity
values; this tends to stretch out the gray tones and increase
the contrast. Fig. 5b illustrates the histogram equalization
transform applied to the image of Fig. 5a. Although there is
some enhancement, the rings are not yet distinct. To solve
this problem, a local histogram equalization transform that op-
erates on local windows instead of the whole image is applied
to the image. Each pixel value in the locally-equalized image
is the result of applying histogram equalization to the sub-im-
age formed by a window of fixed size centered at a pixel. The
window size was 5 pixels squared. Fig. Sc shows the results of
the local histogram equalization transform, which strongly en-
hanced the rings. The locally-equalized image was used for
ring feature extraction.

2.3.2. Isolation of an elliptical sector and transformation to
a rectangular image

Once the rings were enhanced, the parameters of the ring
pattern were extracted. Let the coordinates of the center of
the eye be (¢, ¢y). Consider the region that corresponds to
the elliptical sector centered at (c,, ¢y) and between the angles
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o and —a, where 0 < —a < 7/2. A ring was modeled as an el-
liptical arc with axes of length @ and b parallel to the x and y
axes respectively and centered at (c,, ¢,). Every point (x, y) in
this elliptical arc was mapped to a point on a vertical line by
the transformation Rect(x, y) = (¢, + a, y) as shown in Fig. 6.

The Rect transformation was applied to every ellipse cen-
tered at (¢, ¢y) with a fixed c = a/band 0 < a <w — c,, where
w and h are the width and height of the image, respectively, to
form a rectangular version of the elliptical eye. The resulting
image of the Rect mapping was cropped to remove the cornea
and the area outside the lens. The elliptical-to-rectangular
transformation had three degrees of freedom: c,, c,, and c.
The value of ¢, was restricted to 4/2, working with two degrees
of freedom for each image.

2.3.3. Compression of the rectangular eye representation to
a Il-dimensional array of data

The Rect transformation converts the elliptical rings into
vertical lines for easier and more accurate analysis. It is impor-
tant to choose the correct center (c,, ¢,) and ¢ value for the lens
(Fig. 7). The previous step generates a large number of poten-
tial fits to the data. To evaluate the goodness of a chosen set of
parameters, two vectors are constructed:

e a vector M(c,, c) of values containing the mean intensity
value for each column in the Rect(c,, c¢) image, and

e a vector V(c,, ¢) containing the variance of each column in
Rect(c,, ¢).

The score associated with each pair of values (c,, c) is de-
fined as:

EllipseFit,. (c.,¢) = — Z v

veV(cx,c)

Using this score, a pair of (c,, ¢) values that will be called
(best.,, best.) is chosen. This pair has the property that
V¢!, ¢, such that:

Fig. 8. The ring extraction process allowed detection of the lens center and
characterization of the lens rings as observed in the fitted elliptical arcs.

EllipseFit,,. (bestcx, bestc),) = EllipseFit, . (cx, cy)

for some ¢ > 0. Note that only the vector of variances V is used
for parameter evaluation. The vector of means M was a simpler
way of characterizing the ring information by exploiting the
property of homogeneous intensity of every ring. The result
of the mapping by M will be used for the extraction of numer-

ical features in the next step.

Fig. 7. An iterative process selected a center point, isolated an elliptical sector of the lens which was mapped to a rectangle. The variance at each column of the
rectangular map was computed, and the case where the sum of the column variances was the lowest was selected as the best elliptical sector isolation; its center

corresponded to the best center of the lens.
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Fig. 9. The white line in the left image (a) indicates the row of pixels that was considered for the intensity profile feature. The middle image (b) shows a polynomial
fit of degree 5 on the intensity profile. The right image (c) shows a polynomial fit on the output of the Fast Fourier Transform of the intensity profile.

2.4. Ring feature extraction

The last transformation by M provided an easier method for
identifying the boundaries of the rings, their average intensi-
ties, and other relationships that were useful features for the
recognition of cataract patterns.

The mean vector M was analyzed to provide a feature vec-
tor of numeric attributes that was used for pattern recognition.
The vector we used contained the following 23 ring attributes:

e number, maximum, minimum, mean, and variance of max-
ima of the function;

e number, maximum, minimum, mean, and variance of min-
ima of the function;

western quadrant

Fig. 10. Western quadrant of the lens.

e maximum, minimum, mean, and variance of the distance
between pairs of consecutive maxima;

e maximum, minimum, mean, and variance of the distance
between pairs of consecutive minima;

e maximum, minimum, mean, and variance of the difference
between each pair of consecutive maxima and a minima;

e number of consecutive pairs of maxima and minima
(regions formed by peaks and valleys).

These attributes captured several features of the rings.
Globally, the attributes included the number of rings and the
distribution of their properties such as mean intensity, width,
and others. Locally, the attributes described the width and
opacity of each ring and provided a comparison of these char-
acteristics with the characteristics of other rings in the same
image (Fig. 8).

2.5. Intensity profile

A fast Fourier transform, FFT, was used to provide a pa-
rameter representing the spatial intensity fluctuations ob-
served in a line scan across the diameter of slit lamp
images of subtle opacities (Fig. 9a). Intensity profiles were
normalized to the corneal opacity for each mouse being ex-
amined, and duplicate images from the same eyes appear the
same. For the function /(x), where the domain is each column
in the image, and the range {0, 255} quantified the pixel
values for intensity /(x), a polynomial was a poor fit to the
spatial fluctuations in the noisy intensity profile across the
center of the slit lamp image (Fig. 9b). Instead, the entire in-
tensity profile (Fig. 9b) was the input for a fast Fourier trans-
form, Fourierl(x), which provided a power spectrum
(Fig. 9c) containing the same information as the intensity
profile in a broad, simplified reciprocal plot. The result is
a much better polynomial fit. 12 coefficients of this polyno-
mial (6 real and 6 imaginary) were concatenated to form
a feature vector.
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2.6. Histogram of western quadrant of the lens

There was a characteristic pattern of rings for each lens
class. A histogram of the western quadrant (Fig. 10) of the
lens was created and was fit to a 1-dimensional Gaussian using
Maximum Likelihood. The variance of the Gaussian was in-
cluded in the feature vector. Because of the variations in illu-
mination caused by external sources in the image, only the
variance, which was related to the distribution of intensities,
and not the mean, which was directly associated with the
change in external illuminations, was considered. Fig. 11

569

shows the histogram of the images corresponding to each of
the three categories of images.

2.7. Segmented least squares fitting on the
intensity profile

While the intensity profile feature characterized some
lenses, the function was assumed to be continuous and non-
continuous fluctuations were approximated as smooth curves.
Some classes such as SPARC null and WT lenses had similar
polynomial fits but differed in the number of non-continuous

Histogram Fitting for Western Quadrant of

0.014 a SPARC-null Image Type: SCI
0.012
0.01
0.008
Normal PDF
0.006 = u=124.66 62 =947.08
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0.002 o’ ~4416.87
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x 10°
7 Histogram Fitting for Western Quadrant of
a SCl-null Image Type: SPARC
6
5
4
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3 1 =127.46 62= 4416.87
2
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Fig. 11. The histogram of the western quadrant of the images of three different lens mutants. The variance of pixel intensities is smaller in SPARC null images and
larger in SC1 null images, while the WT type images had a variance value in between.
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Segmented Least Squares Approximation on the
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Fig. 12. The fluctuations in the intensity profile were not well characterized when fit to a continuous function. The upper graph was the intensity profile for the
SPARC null lens (top right) and the bottom graph was the intensity profile for the WT (bottom right). The intensity fluctuations were observed as sharp edges in the
intensity profile that were characteristic in SPARC null, while their presence was not as prominent in the WT class.

changes. To encapsulate the “‘continuity,” a piecewise linear Z}’i —a in
function was fit on I(x). b=- d

The standard least squares linear fitting algorithm fits a line to
a set of n 2-dimensional points P = {(xy, ¥1), (X2, ¥2),- - (X Y1) }-
The line with the minimum error is y = ax + b, where

n
The error of the fit is:

Error(L,P) = Z(y —i—ax,—b)’
i=1

S - () ()

The objective of the segmented least squares approximation is

nyx?— (Y X‘)z to find the partition of consecutive points that minimizes the
i i .

i error of the fit, which corresponds to the sum of the errors
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for each linear segment used in the fit with an additional cost C
for each segment used as defined by:

Ep = ZError(li,pl-) +C

pieP

where p; is a set of consecutive points in /(x), /; is the least
squares linear fit on this set, and C is the cost for each extra
segment. We used values of C on the order of 500.

After fitting the piecewise linear function to /(x), only the
left side of the lens was considered for this feature extraction.
This was done by considering the segments up to the middle of
the image and discarding the first segments that had a very
small value for their slope and intersection at the origin. These
segments corresponded to the dark section of the image, not
a part of the mouse lens. The features extracted (Fig. 12) were:

e number of segments;

e means of the slope and the intersection at the origin (a,b)
of each of the segments;

e variances of the slope and the intersection at the origin
(a,b) of each of the segments.

2.8. Learning

The analysis uses an inference engine mapping a feature
space to a discrete set of labels for lens mutants. Each set is dis-
tinguished by the way it learns or obtains information to output
decisions generalizing the training data presented to unseen
situations. Supervised learning uses labeled training data as
a knowledge base. Unsupervised learning determines patterns
from unlabeled training input. Reinforcement learning involves
areward when the system output is correct and a penalty when
the output is incorrect with the objective of identifying the out-
put on the basis of the maximum reward. For the current prob-
lem supervised learning is expected to be most effective given
the features of the images and their respective classes or labels.

2.8.1. Neural networks

The information processing capacity of the human brain is
thought to emerge from networks of neurons. This was the the-
oretical basis for the creation of artificial neural networks as
inference engines. Neural networks are composed of nodes
or units connected by directed links. A link from unit j to
unit i serves to propagate the activation a; from j to i. Each
link also has a numeric weight W;; associated with it, which
determines the strength and sign of the connection. A network
of units or a neural network is a structure with a set of units
connected in a particular way and a set of defined weights
for each unit. A network can be feed-forward, or recurrent.
Feed-forward networks represent a function of their inputs,
while recurrent networks feed their output back to their inputs.
Feed-forward networks are arranged with layers of units such
that each unit in a layer receives input from only the units in its
preceding layer. A neural network represents the creation of
a separator in an n-dimensional space (where n is the size of

Training
Images

Feature
Extraction

¥ ;

Feature
vectors far
labeled
images

Meurd net training

L 4 Y
Cataract Precision
model and errar

parameters rates

Fig. 13. Learning process.

the feature vector or the number of inputs to the neural net-
work). Neural networks can learn (adjust the weights of their
units) using different techniques. Backpropagation is an itera-
tive technique where an example is applied to the network
(originally set with random weights) and the weights are read-
justed based on the quality of the output. The value is then
propagated backwards through the network and changes are
made to the weights of the nodes in each layer. This process
is repeated until the overall error is below some threshold.

2.8.2. Use of neural networks

The numeric attributes from the four types of features in
a lens images can be concentrated into a 46-dimensional fea-
ture vector F = {fi, f>,....f46}. For each training image I € T,
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Fig. 14. Use of the final categorization.

a feature vector F(I7) can be extracted and T = (F, ¢) can be
constructed, where c¢ indicates the known training vector F.
The algorithm can be trained to discriminate between the dif-
ferent phenotypes and to become a decision function that,
when given a vector U of attribute-values from a previously
unseen lens image, will produce a value, c, that indicates the
most likely genotype for the new image. The training process
for obtaining the automated parameters is summarized in
Fig. 13. The current analysis was implemented as a neural
network with 15 hidden units in one hidden layer for training
using the data mining software package Weka (Witten and
Eibe, 2005). The model for the final system was trained
with the whole dataset.

3. Results

The testing phase (Fig. 14) used the parameters obtained
from the training phase and accepted slit-lamp images outside
the training dataset for the analysis. The resulting output was
compared to the correct genotypes and an error was calculated.
The analysis was tested using three image sets: SC1 null,
SPARC null, and WT lenses. The testing was performed
with a 10-fold cross-validation. This method consisted of di-
viding each dataset into 10 subsets and using each of these

Table 2
Confusion matrix for the results trained using only intensity profile features
SCI SPARC WT
Catarac Testing scl 103 1 3
mode Images SPARC 1 109 45
parameters WT 0 60 61

subsets in one of the 10 iterations as the testing set while
the rest were used as the training set. The dataset consisted
of 107 images of SC1 null, 155 of SPARC null, and 121 of
WT. The values listed in the following tables are the average
for the ten individual experiments.

3.1. Using only ring features

The performance of the trained analysis on the ring feature
alone was shown in Table 1, expressed as a confusion matrix.
The diagonal elements of the matrix (SC1, SC1), (SPARC,
SPARC), and (WT, WT) indicated the number of instances
in which an image was identified correctly. More than 69%
of the images were identified correctly showing that the ring
pattern feature correlated highly with the genotype. The off-di-
agonal elements show incorrect genotyping. Columns denote
the underlying (real) categories and rows denote the inferred
categories. For example, the entry in row SC1, column WT in-
dicates that 17 SCI1 images were wrongly categorized as WT.

3.2. Using only intensity profile features

The performance of a trained analysis on the intensity pro-
file feature alone is shown in Table 2. A significant improve-
ment can be observed in the characterization of the SC1 null
class in comparison to the ring feature. However, the analysis
showed some confusion differentiating between SPARC null
and WT. The percentage of correct identifications was 71%.

3.3. Using both intensity profile and ring features

The performance for a combined ring-profile feature is
shown in Table 3. Using both features not only reduced the
confusion between the WT and SPARC null mutants, but
also increased the accuracy for the SC1 null mutant. This anal-
ysis achieved an overall accuracy of 77%.

3.4. Using ring, intensity profile, and western quadrant
histogram features

Integrating the histogram of one of the quadrants of the
lens, a higher accuracy was achieved and more instances of

Table 1 Table 3
Confusion matrix for results using only ring features Confusion matrix for trained using ring and intensity profile features

SCI SPARC WT SCI SPARC WT
SCI 81 9 17 SCI 99 [§ 2
SPARC 8 110 37 SPARC 3 111 41
WT 12 35 74 WT 1 34 86
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Table 4
Confusion matrix for the results using ring, intensity profile, and western quad-
rant histogram features

SCI SPARC WT
SCI 97 6 4
SPARC 2 118 35
WT 1 33 87

the classes SPARC null and WT were identified correctly. Less
accuracy was achieved with SC1 null in comparison to the pre-
vious setup. The overall accuracy is 79% and the confusion
matrix is shown in Table 4.

3.5. Using ring, intensity profile, western quadrant
histogram, and segmented least squares fitting features

The introduction of the segmented least squares fitting fea-
ture increased the number of correct identifications and re-
duced the confusion observed using only the ring and
intensity curve features. The accuracy using this set of features
was of 83% and the confusion matrix is shown in Table 5.

4. Discussion

A novel neural network approach for analysis of mouse
lenses with different genotypes was developed using four types
of features: the ring pattern, the intensity profile, the western
quadrant histogram, and segmented least squares. The first
two features were of major importance while the last two
were additions that improved the accuracy of the analysis.
The natural layering of transparent fibers in the lens varies
with the genotype of the mice. The intensity profile is a feature
that captured information from the rings, and the FFT analyzed
the pattern formed by all the rings collectively not locally. This
novel analysis permits categorization of large data bases of var-
ious types and stages of opacification on the basis of spatial and
temporal differences in the pattern of opacities of the lens. Im-
age analysis that accurately and consistently uses recognition
of ring and intensity patterns in the identification of the geno-
type of mice can be expected to add a simple, new, automated
and standardized method for computerized evaluation of
patterns of early stage opacity and to establish phenotype—
genotype relationships between factors contributing to lens
structure. The preliminary experimental data from Tables 1—
5 established the success of the new approach in distinguishing
patterns of opacity in the SC1 null class from patterns of opac-
ity in the SPARC null and WT classes to nearly 99% accuracy

Table 5
Confusion matrix for the results using ring, intensity profile, western quadrant,
and segmented least squares fitting features

SCI SPARC WT
SCI 104 1 2
SPARC 1 122 32
WT 0 30 91
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Abbreviations
RP = Ring Pattern 65 70 75 80 85
IP = Intensity %
Profil
\I,ng_"i Western 1 % correctly classified instances
| Quadrant
[ Histogram

SLQ = Segmented
Least Squares (on
intensity profile)

Fig. 15. Percentage of correct identification using different combinations of
features.

when four features were used. It was reasonably successful in
distinguishing between the SPARC null and WT classes with
a 77% accuracy. Overall, the analysis achieved a 83%
accuracy (Fig. 15). Repeated application of the algorithm to
the same database produced the same results. The result was
an impressive demonstration of a very promising method for
an automated computer analysis of lens images that distin-
guished between selective categories of genetic mutation.
The success of the algorithm is remarkable when considering
the fact that key factors including age and cellular microstruc-
ture were not controlled, which suggests fundamental structural
patterns remain at all ages even when differences are subtle
(Fig. 16). It needs to be appreciated that slit lamp images are
low resolution. The underlying cellular basis for the slit lamp
phenotype can only be determined by detailed and systematic
microscopic analyses (Kuszak and Costello, 2004; Kuszak
et al., 2006; Blankenship et al., 2007). The standard deviation
in phenotype identification rates for the 10-fold cross-valida-
tion using all the features was 0.015 and shows a robust system
with the current training samples. The results provide baseline
data for improved informatics approaches for establishing phe-
notype/genotype relationships using slit lamp images of eyes in
living animals and encourage continued research on automated
and quantitative screening of phenotypes in large image
databases.

Fig. 16. A WT (left) and a SPARC null (right) image.
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