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In this lecture we introduce hyperbolic and real stable polynomials as natural generalization of real-rootedness
to multivariate polynomials. Then, we define strongly Rayleigh distributions as probability distribution
whose generating function is a real stable polynomial. We will see that this is a generalization of random
spanning tree distributions and determinantal distributions. We will finish this lecture by showing that
strongly Rayleigh distributions satisfy strongest form negative dependence properties including negative
association, stochastic dominance and log concavity.

In the next lecture we will use the properties of strongly Rayleigh measures (extending the properties of
random spanning tree distributions) to design a randomized rounding approximating algorithm for the
symmetric traveling salesman problem. The material of this lecture are mostly based on [BB10; BBL09;
Pem13; Vis13]. We use the notation R[z1, . . . , zd] to denote a degree d polynomial in z1, . . . , zd with real
coefficients.

10.1 Real-rooted Polynomials

We start by recalling some properties of real-rooted polynomials.

In the following simple lemma we show that imaginary roots of univariate polynomials come in conjugate
pairs.

Lemma 10.1. For any p ∈ R[t], if p(a+ ıb) = 0, then p(a− ıb) = 0.

In this note we typically use letter t for the univariate polynomials and z for multivariate polynomials.

Proof. Say p(t) =
∑d
i=0 ait

d−i. Then,

p(a+ ıb) = 0 = p(a+ ıb)

=

d∑
i=0

ai(a+ ıb)i

=

d∑
i=0

ai(a+ ıb)
i

=

d∑
i=0

ai(a− ıb)i = p(a− ıb).

There is a close connection between the real-rooted polynomials and the sum of Bernoulli random variables.
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Lecture 10 & 11: Real Stable and Hyperbolic Polynomials 10-2

Given a probability distribution µ, over [d] = {0, 1, . . . , d} where Pµ [i] = ai. Let

p(t) =

d∑
i=0

ait
i.

We show that p(t) is real-rooted if and only if µ can be written as the sum of independent Bernoulli random
variables.

Suppose p(t) is real-rooted. Since the coefficients of p(t) are non-negative, the roots of p(z) are non-positive.
Therefore, we can write

p(t) = ad

d∏
i=1

(t+ αi),

where α1, . . . , αd ≥ 0. Since p(1) = 1,

1

ad
=

d∏
i=1

(1 + αi),

Now, let qi = 1
1+αi

, or equivalently, αi = 1−qi
qi

. Then,

p(t) =
1∏d

i=1(1 + αi)

d∏
i=1

(
t+

1− qi
qi

)
=

1∏d
i=1

1
qi

∑
S⊆[d]

t|S|
∏
i/∈S

1− qi
qi

=
∑
S⊆[d]

t|S|
∏
i∈S

qi
∏
i/∈S

(1− qi)

=

d∑
k=0

tk
∑

S:|S|=k

∏
i∈S

qi
∏
i/∈S

(1− qi).

Say µ is the distribution of d Bernoulli random variables where the i-th one has success probability qi.
Then the probability that exactly k of them occur is exactly equal to ak. In other words, the real-rooted
polynomials with non-negative coefficients are the same as distribution of independent Bernoulli random
variables. Consequently, we can use Chernoff types of bound to show that these ai’s which are far from the
expectation

∑d
k=0 k ·ak are very small. Next we show that these sequence are highly concentrated by means

of ultra log concavity.

Definition 10.2 (Log Concavity). A sequence {a0, a1, . . . , ad} of nonnegative numbers is said to be log-
concave if for all 0 < k < d,

ak−1 · ak+1 ≤ a2k.
We say the sequence is ultra log concave if for all 0 < k < d,

ak−1(
d
k−1
) · ak+1(

d
k+1

) ≤ ( ak(
d
k

))2

.

Note that any log concave sequence of nonnegative numbers is unimodal, i.e., there is a number k such that

· · · ≤ ak−2 ≤ ak−1 ≤ ak ≥ ak+1 ≥ . . . .

Next, we want to show that the coefficients of a real-rooted degree d polynomial with nonnegative coefficients
are ultra log concave. This is also known as the Newton inequalities.
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Using the above argument this implies that a sum of independent Bernoulli random variables is a log-concave
probability distribution, that is if ai is the probability that exactly i of them occur, thenai−1 · ai+1 ≤ a2i for
all i. Consequently, any such distribution is unimodal.

10.1.1 Closure Properties of Real-rooted Polynomials

In this part we show that the coefficients of a real rooted polynomial with nonnegative coefficients are (ultra)
log concave. The proof uses closure properties of real-rootedness. We start by describing these properties
and then we prove the claim.

Given a real-rooted polynomial, usually it is a non-trivial task to verify real-rootedness without actually
computing the roots. In the next section we will see how the extension of real-rootedness to multivariate
polynomials can help us with this task.

One way to verify real-rootedness of a polynomial p(t) is to start from a polynomial q(t) that is real-rooted
and then use a real-rooted preserving operator to derive p(t) from q(t). Now, let us study some basic
operations that preserve real-rootedness.

i) If p(t) is real-rooted then so is p(c · t) for any c ∈ R.

ii) If p(t) is a degree d real-rooted polynomial then so is tdp(1/t).

iii) If p(t) is real-rooted then so is p′(t). This basically follows from the fact that there is a root of p′ between
any consecutive roots of p there is exactly one root of p′. In other words, the roots of p′ interlace the
roots of p. See the next subsection for more details.

The last property is perhaps the most non-trivial one; it is a special case of the Gauss-Lucas theorem.

Theorem 10.3 (Gauss-Lucas). For any polynomial p ∈ C[t], the roots of p′ can be written as a convex
combination of the roots of p.

Lemma 10.4 (Newton Inequalities). For any real-rooted polynomial p(t) =
∑d
i=0 ait

i, if a0, . . . , ak ≥ 0,
then it is ultra log concave.

Proof. We apply the close properties a number of times. First, by the closure of the derivative p1(t) =
di−1

dti−1 p(t) is real-rooted. This shaves off all of the coefficients a0, . . . , ai−2. By (ii), p2(t) = td−i+1p1(1/t) is

real rooted. This reverse the coefficients. By (iii) p3(t) = dd−i−1

dtd−i−1 p2(t) is real-rooted. This shaves off all of
the coefficients ai+2, . . . , ad. So, p3(t) is a degree 2 real-rooted polynomial,

p3(t) =
d!

2

(
ai−1(
d
i−1
) t2 +

2ai(
d
i

) t+
ai+1(
d
i+1

)) .
The above polynomial is real-rooted if and only if its discriminant is non-negative. This implies the lemma.

An immediate consequence of the lemma is that if µ is a sum of independent Bernoulli random variables
then density function of µ is an ultra log concave sequence of numbers.



Lecture 10 & 11: Real Stable and Hyperbolic Polynomials 10-4

Figure 10.1: The roots of the hyperbolic polynomial z21 − z22 − z23 .

10.2 Hyperbolic and Real Stable Polynomials

We say a polynomial p ∈ R[z1, . . . , zn] is homogeneous if every monomial of p has the same degree.

Definition 10.5 (Hyperbolic Polynomials). We say a polynomial p ∈ R[z1, . . . , zn] is hyperbolic with respect
to a vector e ∈ Rn, if p is homogeneous, p(e) > 0 and for any vector x ∈ Rn, p(x− te) is real-rooted.

For example, the polynomial z21 − z22 − · · · − z2n is hyperbolic with respect to (1, 0, . . . , 0). To see that we
need to show that for any v ∈ Rn,

(x(1)− t)2 = x(2)2 + · · ·+ x(n)2

is real rooted. This holds obviously because the RHS is nonnegative. Figure 10.1 shows the roots of the
polynomial z21 − z22 − z23 in the 3 dimensional real plane, the vertical axis shows the direction of z1. Observe
that any vertical line has exactly two intersection with this variety, so this polynomial is hyperbolic with
respect to e = (1, 0, 0). As a nonexample, consider the polynomial z41 − z42 − z43 . This polynomial is not
hyperbolic with respect to e = (1, 0, 0). Geometrically similar to Figure 10.1 any vertical line crosses the
variety of the roots only in two points, so this polynomial has only two real roots (as opposed to four) along
each vertical line.

Hyperbolic polynomials enjoy a very surprising property, that connects in an unexpected way algebra with
convex analysis. Given a hyperbolic polynomial p, it is not hard to see that the set

Λ++ := {x : all roots of p(x− te) are positive}

is a convex cone. This cone is known as the hyperbolicity cone. For example, the hyperbolicity cone of the
polynomial p(z) = z1 . . . zn is the positive orthant {x : x(i) > 0,∀i}.

As another example, for a set of variables {zi,j}1≤i≤j≤n, the polynomial

det(Z) = det

 z1,1 . . . z1,n
...

. . .
...

z1,n . . . zn,n


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is hyperbolic with respect to the identity matrix. This is because Z is symmetric and det(X − tI) for a
symmetric matrix X is real rooted as X has real eigenvalues. In this case the hyperbolicity cone of det(Z)
is the space of all symmetric PD matrices.

In general, since Λ++ is a convex cone and has an efficient separation oracle one can use the ellipsoid
algorithm or the interior point method [Ren06; Gul97] to optimize any convex function in this domain.
This is because for any point x one can test in polynomial time whether x ∈ Λ++ by calculating the roots
of the real rooted polynomial h(x − te). This family of convex program are also known as the hyperbolic
programming. As we have proven above, hyperbolic programming extends semidefinite programming. But
it is very interesting area of research to find the extent of this generalization.

The following theorem of G̊arding characterizes the hyperbolicity cone.

Theorem 10.6 (G̊arding [Gar59]). For any polynomial p(.) hyperbolic with respect to e, the hyperbolicity
cone is the connected component of p(x) 6= 0 that includes e. In addition, p(.) is hyperbolic with respect to
any direction in the hyperbolicity cone.

Next, we study stable polynomials which are a special family of hyperbolic polynomials.

Definition 10.7 (Stable Polynomials). For Ω ⊆ Cd we say a polynomial p ∈ C[z1, . . . , zd] is Ω-stable if
no roots of p lies in Ω. In particular, we say p is H-stable, or stable if no roots of p lies in the upper-half
complex plane, i.e., p(z) 6= 0 for all points z in

Hn := {v : Im(v) > 0,∀1 ≤ i ≤ n}.

We say p is real-stable if p is H-stable and all of the coefficients of p are real.

Note that a real stable polynomial is not necessarily homogeneous.

A simple example of real-stable polynomials is the polynomial

p(z) =

n∏
i=1

zi.

Note that for each i, zi is a real-stable polynomial and the product of any two real-stable polynomials is
real-stable.

Suppose that p(z) is a real stable polynomial; if we let zi = t for all i we get a univariate polynomial that
is real-rooted (if it is not real-rooted then it must have root with positive imaginary value by Lemma 10.1,
so p(z) has a root in Hn which is not possible). Therefore, real stability can be seen as a generalization of
real-rootedness. In what follows we will see that it also has all of the closure properties of real-rootedness,
so it can be seen as a natural generalization of real-rootedness.

It can be seen that a homogeneous polynomial is real-stable polynomial if it is hyperbolic w.r.t. every
direction e ∈ Rn<0. In other words, it is it is real-stable if the hyperbolicity cone of the vector −1, . . . ,−1
includes the negative orthant.

Lemma 10.8. A polynomial p ∈ R[z1, . . . , zn] is real-stable if and only if for any e ∈ Rn>0 with positive
coordinates and x ∈ Rn, p(x+ te) is real-rooted.

Proof. First, suppose p(x + te) has an imaginary root t̃ for some x ∈ Rn and e ∈ Rn>0. Since the complex
roots of a univariate polynomial appear in conjugates Lemma 10.1, we can assume Im(t) > 0. But then,
z = x+ t̃e is a root of p(.) and the imaginary value of each coordinate of z is positive, which is a contradiction.

Conversely, suppose for every x ∈ Rn, and e ∈ Rn>0, p(x + ta) is real-rooted but p(z) has a root z̃ ∈ Hn.
Suppose for each i, z̃i = z̃i,1 + ız̃i,2. Since z̃i ∈ H, z̃i,2 > 0. Therefore, letting x(i) = z̃i,1 and e(i) = z̃i,2 for
all i we conclude that ı is a root of p(x+ te) which is a contradiction.
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Example 10.9. A simple application of the above lemma is that for any set {a1, . . . , an} ∈ R, the polynomial∑n
i=1 aizi is real-stable.

One of the most important family of real-stable polynomials is the determinant polynomial.

Lemma 10.10. Given PSD matrices A1, . . . , An ∈ Rd×d and a symmetric matrix B ∈ Rd×d, the polynomial

p(z) = det

(
B +

n∑
i=1

ziAi

)
is real stable.

Proof. By Lemma 10.8, it is enough to show that for any x ∈ Rn and e ∈ Rn>0,

p(x+ te) = det

(
B +

n∑
i=1

x(i)Ai + t

n∑
i=1

e(i)Ai

)
is real-rooted. First, assume that A1, . . . , An are positive definite. Then, M =

∑n
i=1 e(i)Ai is also positive

definite. So, the above polynomial is real-rooted if and only if

det

(
M−1/2

(
B +

n∑
i=1

x(i)Ai

)
M−1/2 + tI

)

is real-rooted. The roots of the above polynomial are the eigenvalues of the matrix M ′ = M−1/2(B +
x(1)A1 + · · ·+ x(n)An)M−1/2. Since B,A1, . . . , An are symmetric, M ′ is symmetric. So, its eigenvalues are
real and the above polynomial is real-rooted.

If A1, . . . , An � 0, i.e., if the matrices have zero eigenvalues, then we appeal to the following theorem Hurwitz.
This completes the proof of the lemma. In particular, we construct a sequence of polynomial with matrices
Ai+I/2

k. These polynomials uniformly converge to p and each of them is real-stable by the above argument;
so p is real-stable.

Lemma 10.11 (Hurwitz [Hur96]). Let {pk}k≥0 be a sequence of Ω-stable polynomials over z1, . . . , zn for a
connected and open set Ω ⊆ Cn that uniformly converge to p over compact subsets of Ω. Then, p is Ω-stable.

It also follows from the above proof that the polynomial

det (z1A1 + · · ·+ znAn)

is hyperbolic with respect to e if e(1)A1 + · · ·+ e(n)An � 0.

A simple application of Lemma 10.10 is that the random spanning tree polynomial is real-stable.

Corollary 10.12. For any graph G = (V,E) with weights w : E → R+, and z = {ze}e∈E the following
polynomial is real-stable

p(z) =
∑
T∈T

∏
e∈T

w(e)ze.

Proof. By Lemma 10.10,

det

(
11T +

∑
e∈E

zew(e)beb
T
e

)
is real-stable, because each matrix w(e)beb

T
e is a PSD matrix as w(e) ≥ 0 for all e ∈ E. By the proof of the

matrix tree theorem the above polynomial is just n times p(z).
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10.2.1 Closure Properties

In general, it is not easy to directly prove that a given polynomial is real stable. Instead, one may use an
indirect proof: To show that q(z) is (real) stable we can start from a polynomial p(z) where we can prove
stability using Lemma 10.10, then we apply a sequence of operators that preserve stability to p(z) and we
obtain q(z) as the result.

In a brilliant sequence of papers Borcea and Brändén characterized the set of linear operators that preserve
real stability [BB09a; BB09b; BB10]. We explain two instantiation of their general theorem and we use them
to show that many operators that preserve real-rootedness for univariate polynomials preserve real-stability
for of multivariate polynomials.

We start by showing that some natural operations preserve stability and then we highlight two theorems of
Borcea and Brändén.

The following operations preserve stability.

Symmetrization If p(z1, z2, . . . , zn) is real stable then so is p(z1, z1, z3, . . . , zn).

Specialization If p(z1, . . . , zn) is real stable then so is p(a, z2, . . . , zn) for any a ∈ R. First, note that for any
integer k, pk = p(a + ı2−k, z2, . . . , zn) is a stable polynomial (note that pk may have complex roots).
Therefore by Hurwitz theorem 10.11, the limit of {pk}k≥0 is a stable polynomial, so p(a, z2, . . . , zn) is
stable. But since all of the coefficients of p(a, z2, . . . , zn) are real it is real stable.

External Field If p(z1, . . . , zn) is real stable then so is p(w1 ·z1, . . . , wn ·zn) for any positive vector w ∈ Rn>0.

Inversion If p(z1, . . . , zn) is real stable and degree of zi is di then p(1/z1, . . . , 1/zn)
∏n
i=1 z

di
i is real stable.

Differentiation If p(z1, . . . , zn) is real stable then so is ∂p/∂z1.

As an application of the above closure properties we show that for any graph G the number of edges in
a (weighted) uniform spanning tree distribution is concentrated around its expected value. Recall that we
proved this property by first showing the negative correlation property among any subset of edges and then
proving an extension of the Chernoff bound.

Corollary 10.13. For any graph G = (V,E) and weights w : E → R+, let µ be a weighted uniform spanning
tree distribution in G. Then, for any set F ⊆ E,

PT∼µ [|T ∩ F | > (1 + δ)E [|T ∩ F |]] ≤
(

eδ

(1 + δ)1+δ

)E[|T∩F |]

.

Proof. First, by Corollary 10.12,

p(z) =
∑
T∈T

∏
e∈E

w(e)ze,

is real stable. Let p1(z) be a specialization of p(z) where for each e /∈ F , we let ze = 1. In words, p1(z) can
be seen as projecting the spanning tree distribution to the set F . So, p1 is real stable. Now, let p2(t) be a
univariate polynomial where we set all variables of p1(z) equal to t, so p2 is real stable, i.e., it is real rooted.
Let a0, . . . , a|F | be the coefficients of p2(t). Since p2 is real rooted there is a set of |F | independent Bernoulli
random variables where the law of their sum is exactly a0, . . . , a|F | (and the sum of their expectation is
E [|T ∩ F |]. But, by Chernoff bound, the sum of any set of Bernoulli random variables is concentrated
around its expectation; the statement follows.
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In fact, the above corollary shows that a (weighted) uniform distribution of random spanning trees is not
very far from an independent distribution, i.e., if we symmetrize the edges we see a distribution identical to
an independent distribution. Using Newton identities we can also show that the distribution of the random
variable |T ∩F | in the above corollary is (ultra) log concave and unimodal. This is a remarkable consequence
of the real stability theory; we are not aware of any such proof that only uses the negative correlation
property.

Next we describe two instantiations of the Borcea and Brändén operator preserving theorems.

Let An[R] be the set all finite order linear differential operators with real coefficients. For vectors α, β ∈ Nn,
we write

zα = z
α(1)
1 . . . zα(n)n , ∂α =

∂α(1)

∂z
α(1)
1

. . .
∂α(n)

∂z
α(n)
n

.

Then, each operator D ∈ An[R] can e uniquely represented as

D =
∑

α.β∈Nn

aα,βz
α∂β .

A nonzero differential operator D ∈ A[R] is called stability preserver if it maps any real stable polynomial
p ∈ R[z1, . . . , zn] to another real stable polynomial Dp ∈ R[z1, . . . , zn].

Theorem 10.14. Let D ∈ An[R]. Then, D is stability preserver if and only if∑
α,β∈Nn

aα,βz
α(−w)β ∈ R[z1, . . . , zn, w1, . . . , wn]

is a real stable polynomial.

Let us give some simple application of the above theorem. By Example 10.9, if p(z) is real stable then so is
(1− ∂z1)p(z), or in fact any polynomial of the form

n∑
i=1

ai∂zip(z).

As a nonexample, consider the operator D = (1− ∂3z1). Observe that the polynomial 1− (−w)3 is not real

stable, for w = e2ıπ/3. In fact if p(z) = z31 , then

(1− ∂3z1)p(z) = z31 − 6,

is not a stable polynomial.

As another application of the above theorem we can show that the degree 2 symmetric polynomial, z1z2 +
z2z3 + z1z3 is real stable. Recall that z1z2z3 is real stable as it is a product of real stable polynomials.
Therefore,

3∑
i=1

∂

∂zi
z1z2z3 = z1z2 + z2z3 + z3z1

is real stable. We leave it as an exercise to show that the degree k elementary symmetric polynomial in n
variables for any n > k is real stable.

Next, we discuss a closure property of real stable polynomial when we scale the coefficients of the polynomial
by a multiplier sequence.
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Theorem 10.15 (Pólya-Schur). For a sequence of real numbers w0, w1, . . . , the linear operator Tw is defined
as follows:

Tw

(
n∑
i=0

aiz
i

)
=

n∑
i=0

wiaiz
i.

We say w is a multiplier sequence if Tw preserve the stability (real rootedness) of the given stable polynomial.
Then, w is a multiplier sequence if and only if Tw((1 + z)n) is real stable with all roots of the same sign.

Borcea and Brändén extend the above theorem to multivariate stable polynomials. Think of w = w : r ∈
Zd+ → R as a function of real number scalers; in particular, for any integer vector r ∈ Zd+, w(r) is the scaler
of the monomial zr where the degree of zi is r(i). We say w is a multiplier sequence if

Tw

(∑
r

arz
r

)
=
∑
r

w(r)arz
r

preserves the class of real stable polynomials.

Theorem 10.16 ([BB10, Theorem 1.8]). The array w is a d-variate multiplier sequence if and only if there
are d univariate multiplier sequences w1, . . . , wd such that for all r,

w(r) = w1(r(1)) . . . wd(r(d))

and satisfying a further sign condition: Either every w(r) is nonnegative or every w(r) is nonpositive or the
same holds for (−1)|r|wr.

The following corollary is immediate

Corollary 10.17. Let p be a real stable polynomial, then the multi-affine part of p, i.e., the sum of all square
free monomials of p is real stable.

Proof. For every 1 ≤ i ≤ d, let wi(0) = wi(1) = 1 and wi(j) = 0 for all j ≥ 2. The corollary follows from
Theorem 10.16.

Let us give an application of the corollary. Say we have two variables ze for each edge e in a graph G. As
we discussed in Corollary 10.13, p(z) =

∑
T∈T

∏
e∈T w(e)ze is real stable. Since the product of any two real

stable polynomials is real stable, p(z)2 is real stable. Now, by the above corollary, the sum of square free
monomials of p(z)2 is real stable, so ∑

F is a union of
two disjoint trees

∏
e∈F

zen(F )

is real stable, where n(F ) is the number of partitioning of F into two disjoint spanning trees.

10.3 Characterization of Real Stability

Helton and Vinnokov [HV07] characterized the set of Hyperbolic polynomials in three variables.

Theorem 10.18 ([HV07; LPR05]). Suppose that p(x, y, z) is of degree d and hyperbolic with respect to
e ∈ R3. Suppose further that p is normalized such that p(e) = 1. Then there are symmetric matrices
A,B,C ∈ Rd×d such that

p(x, y, z) = det(xA+ yB + zC),

where e(1)A+ e(2)B + e(3)C = I.
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This result was a major breakthrough in this area, it made many of the classical proofs simpler and it has
been used since then quite often.

Borcea and Brändén [BB10] extended the above theorem to the family of real stable polynomials. Roughly
speaking, if p is real stable, that is if p is hyperbolic with respect to any e ∈ R2

>0, then p(.) can be written
as the determinant of xA+ yB + C subject to that A,B � 0

Theorem 10.19 (Borcea and Brändén [BB10]). If p(x, y) ∈ R[x, y] of degree d is real stable, then there
exist PSD matrices A,B ∈ Rd×d and a symmetric matrix C ∈ Rd×d such that

p(x, y) = det(xA+ yB + C).

The above theorem shows that the converse of Lemma 10.10 is true if the polynomial has at most two vari-
ables. If p(x, y, z) is a homogeneous real stable polynomial then we can also write it in terms of determinants,

p(x, y, z) = det(xA+ yB + zC)

for A,B,C � 0. In the above theorem we restrict to two-variate polynomials because p(.) may not be
homogeneous.

Let us give some examples and non-examples of the above results. As we discussed above, the polynomial
z21 − z22 − z23 is hyperbolic with respect to (1, 0, 0). We can write

z21 − z22 − z23 = det

[
z1 + z2 z3
z3 z1 − z2

]
= det

(
z1

[
1 0
0 1

]
+ z2

[
1 0
0 −1

]
+ z3

[
0 1
1 0

])
,

and the coefficient of z1 is I.

As another example, recall that z1z2 +z2z3 +z3z1 is a homogeneous real stable polynomial. So, by the above
theorem it can be written as a determinant polynomial.

z1z2 + z2z3 + z1z3 = det

[
z1 + z3 z3
z3 z2 + z3

]
= det

(
z1

[
1 0
0 0

]
+ z2

[
0 0
0 1

]
+ z3

[
1 1
1 1

])
.

As a non-example the real stable polynomial
∑

1≤i<j≤4 zizj can not be written as

det

(
4∑
i=1

ziAi

)

where Ai ∈ R2×2 is a real symmetric matrix. Roughly speaking, the reason is that the space of 2 by 2 real
symmetric matrices is 3 dimensional and we have more than 3 variables.

It was conjectured that if p(.) is hyperbolic then at least a higher power of p(.) can be written as a determinant.
This conjecture makes sense because higher powers of p(.) are supported on the same set of variables but
have much higher degree so the dimension of the matrices Ai can be significantly higher than the number of
variables. This conjecture is recently refuted by Brändén [Bra11].
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10.4 Interlacing Polynomials

Definition 10.20 (Interlacing). We say a real rooted polynomial p(t) = α0

∏d−1
i=1 (t − αi) interlaces q(t) =

β0
∏d
i=1(t− βi) if

β1 ≤ α1 ≤ β2 ≤ · · · ≤ αd−1 ≤ βd.

We also say p, q are interlacing if the degree of p, q differ by at most 1 and their roots alternate.

As a simple example, for any univariate real rooted polynomial p(z), the polynomial dp/dz interlaces p(z).

By convention, we assume that the roots of any two polynomials of degree 0 or 1 interlace. The Wronskian
of two polynomials p, q is defined as follows:

W [p, q] = p′q − pq′. (10.1)

It is not hard to show that if p, q are interlacing, then W [p, q] is either nonnegative or nonpositive in the
whole real axis. In addition, if p interlaces q, then W [p, q] ≤ 0 on the whole real axis.

Lemma 10.21. Let p(t) = α0

∏m
i=1(t − αi) and q(t) = β0

∏n
i=1(t − βi) where |n −m| ≤ 1. If the roots of

p, q alternate, then either W [p, q] ≤ 0 or W [p, q] ≥ 0 on the whole real axis.

Proof. First, we show that without loss of generality we can assume p, q do not have any common roots. If
α is a common root, then we inductively prove that for p1(t) = p(t)/(t − α) and q1(t) = q(t)/(t − α), the
sign of W [p1, q1] is invariant over R, so the sign of

W [p, q] = q(t)(p1(t) + (t− α)p′1(t))− p1(t)(q1(t) + (t− α)q′1(t)

= (t− α)2(p′1(t)q1(t)− p1(t)q′1(t)),

is also invariant as (t− α)2 is non-negative.

So, suppose p, q do not have any common roots. Since, p, q are interlacing, the multiplicity of each root of p
and each root of q is 1. We show a stronger claim, that is W [p, q] 6= 0 over the whole real axis, this proves
the lemma because of continuity of the Wronskian. Suppose W [p, q] = 0 at a point t∗. Therefore,

p′(t∗)q(t∗) = p(t∗)q′(t∗).

First assume t∗ is a root p(t∗) = 0. But then q(t∗) 6= 0 because p, q do not have common roots and p′(t∗) 6= 0
because the multiplicity of roots of p (and q) are 1. But, this is a contradiction.

Now, suppose p(t∗) 6= 0 and q(t∗) 6= 0. Then,

m∑
i=1

1

t∗ − αi
=
p′(t∗)

p(t∗)
=
q′(t∗)

q(t∗)
=

n∑
i=1

1

t∗ − βi
.

Without loss of generality assume αk is the largest root that is less than t∗ and βk+1 is the smallest root
larger than t∗. We show the LHS is strictly bigger than the right. This is because for each i ≤ k,

1

t∗ − αi
>

1

t∗ − βi
> 0.

In addition, for each i > k,
1

t∗ − βi
<

1

t∗ − αi
< 0.

But, this is a contradiction, so the Wronskian is nonzero in the whole R.
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We note that the converse of the above lemma also holds if the multiplicity of the roots of p, q is 1. Otherwise,
the Wronskian may not change sign while p, q do not interlace.

Example 10.22. Let p(t) = t3(t − 2) and q(t) = (t − 1)3(t + 1). Then, p, q have the same degree but they
do not interlace. However, the Wronskian W [p, q] ≥ 0 over all R,

p′q − q′p = 2(t− 1)3(t+ 1)t2(2t− 3)− 2(t− 2)(t− 1)2t3(2t+ 1) ≥ 0.

If W [p, q] ≤ 0, then we say p, q are in proper position and we write p� q.

Next, we highlight several theorems about necessary and sufficient conditions for interlacing.

Theorem 10.23 (Hermite-Biehler). For any two polynomials p, q ∈ R[z], p+ ıq is real rooted if and only if
q � p.

Theorem 10.24 (Obrechkoff, Dedieu [Ded92]). Any two real-rooted degree d polynomials p, q are interlacing
if and only if ap+ bq is real rooted for any a, b ∈ R.

If our assumption is that any convex combination of p, q is real rooted it is not necessarily true that p, q are
interlacing but we can show that they have a common interlacer.

Theorem 10.25 (Dedieu [Ded92]). For any two real-rooted degree d polynomials p, q, with roots α1, . . . , αd
and β1, . . . , βd, the following are equivalent:

i) For any a ∈ [0, 1], ap+ (1− a)q is real-rooted.

ii) p, q have a common interlacer, i.e., for any 1 ≤ i < d,

max(αi, βi) ≤ min(αi+1, βi+1).

Hermite-Biehler theorem gives a good indication of a generalization of the concept of interlacing to multi-
variate polynomials.

Definition 10.26. Two multivariate polynomials p, q ∈ R[z1, . . . , zn] are in proper position, p� q if for all
x ∈ Rn and e ∈ Rn>0,

p(x+ te)� q(x+ te).

Roughly speaking, the above definition says that two multivariate polynomials interlace if along every positive
direction e ∈ Rn>0 they interlace. Note that for univariate polynomials the two definitions coincide. The
following theorem is proved in [BBS09]

Theorem 10.27 (Borcea, Brändén, Shapiro [BBS09]). For any p, q ∈ R[z1, . . . , zn], p+ zn+1q is real stable
if and only if q � p.

The above theorem relates real stable polynomials and interlacing. Say p+zn+1q is the real stable polynomial
corresponding to the random spanning tree distribution of a graph G with n+ 1 edges (see Corollary 10.12).
Let en+1 be the edge corresponding to zn+1. In this case p is the polynomial of uniform spanning tree
distribution on G \ en+1 and q is the polynomial of uniform spanning tree distribution on G/en+1, i.e.,
when en+1 is contracted. The above theorem says that these two polynomials interlace along every positive
direction in the space.

Let us give an illuminating example. Let G be a cycle of length 3 with edges e1, e2, e3. This graph has 3
spanning trees, so the corresponding polynomial of a uniform distribution on this trees is

z1z2 + z2z3 + z1z3 = z1z2 + z3(z1 + z2)
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z1

z2

Figure 10.2: The red lines show the zeros of the polynomial z1 · z2 in the real plane, the blue line shows the
zeros of the polynomial z1 + z2. Observe that any line pointing to the positive orthant crosses the blue line
once in the middle of the red lines, so the roots interlace.

Following the argument in the previous paragraph, we have p = z1 · z2 and q = z1 + z2. In Figure 10.2 we
plotted the roots of these two polynomials. Observe that the roots of the polynomials interlace along any
line pointing to the positive orthant, so q � p.

Next we show that stability of real stable polynomials is closely related to negative correlation. The following

Theorem 10.28 (Brändén [Bra07, Theorem 5.6]). A multilinear polynomial p ∈ R[z1, . . . , zn] is real stable
if and only if for all 1 ≤ i < j ≤ n and x ∈ Rn,

∂p

∂zi
(x) · ∂p

∂zj
(x)− p(x) · ∂p

∂zi∂zj
(x) ≥ 0

Note that the multilinearity is a necessary condition for the above theorem. That is, if a real stable polynomial
is not multilinear, then the above inequality may not hold for all x ∈ Rn.

Example 10.29. Let p(z1, z2) = z21 + z22 . It is easy to see that p is a real stable polynomial but it is not
multilinear. Now, for i = 1, j = 2 the above inequality is equivalent to

4z1z2 − (z21 + z22)0 ≥ 0

The above inequality does not hold for the point z1 = 1, z2 = −1.

Let us give some interesting applications of the above theorem. Let p be the polynomial of random spanning
trees of a graph G and let zi and zj be the variables corresponding to ei, ej . Also, let xi = 1 for all i.

Then, p(x) = 1, ∂p
∂zi

(x) = P [ei ∈ T ], and ∂p
∂zi∂zj

(x) = P [ei, ej ∈ T ]. So, when x = 1 the above inequality

implies that ei, ej are negatively correlated. Roughly speaking, one can read the above inequality as that
the random spanning tree distribution is negatively correlated along every direction.

Although the above statement does not make any sense when we look at a probability distribution, we
can interpret by looking at the polynomial of a distribution (see Definition 10.33 for the polynomial of a
distribution). Let ∂ip = ∂p

∂zi
. Also, let p = f + zih for f, h ∈ R[z1, . . . , zi−1, zi+1, . . . , zn]. Then,

∂ip∂jp− p · ∂i,jp = h · (∂jf + zi∂jh)− ∂jh · (f + zih)

= h∂jf − f∂jh.
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By Theorem 10.27 and that p is real stable we know that f, h are interlacing along any line pointing to the
positive orthant. So W [h, f ] ≤ 0 along the direction that is 1 in the j-th coordinate and 0 everywhere else.
Therefore, the quantity in the RHS of the above equation is always nonnegative.

The Upshot. The above argument shows that interlacing is the same as negative correlation when we
look at multilinear polynomials. Intuitively, interlacing along every direction is a generalization of negative
correlation property which implies real stability (Theorem 10.27). Real stability implies strongest form of
negative dependence properties (see section 10.6).

10.5 Negative Dependence

We discuss negative correlation and one of its very important consequences, i.e., concentration of measures,
in lectures 2 and 3. Negative correlation (respectively positive correlation) can be seen as the weakest form
negative dependent between a given set (binary) random variables. Roughly speaking, when a distribution
is negative correlated we can argue that the moments of the distribution are at most what they would be in
the independent case. This property implies strong concentration bounds.

An stronger form of dependence is called negative (respectively positive) association. We say a collection
of binary random variables X1, . . . , Xn are positively associated if for any two nondecreasing function f, g :
{0, 1}n → R,

E [f(X1, . . . , Xn)] · E [g(X1, . . . , Xn)] ≤ E [f(X1, . . . , Xn)g(X1, . . . , Xn)] . (10.2)

Recall that a function f : {0, 1}n is nondecreasing if for any two vectors X1, . . . , Xn, Y1, . . . , Yn ∈ {0, 1}
where Xi ≤ Yi for all i,

f(X1, . . . , Xn) ≤ f(Y1, . . . , Yn).

We also say f is nonincreasing if −f is nondecreasing.

Negative association cannot be defined by simply reversing the inequality (10.2). This is because any function
is always nonnegatively correlated with itself. Therefore, we can only hope to get negative correlation when
f, g depend on disjoint set of variables. In particular, we say {X1, . . . , Xn} are negatively associated if for
any two nondecreasing functions f, g such that for a set S ⊂ [n], f only depends on {Xj : j ∈ S} and g
depends only on the rest of the variables,

E [f(X1, . . . , Xn)] · E [g(X1, . . . , Xn)] ≥ E [f(X1, . . . , Xn)g(X1, . . . , Xn)] . (10.3)

One of the most useful results on positive association is a result of Fortuin, Kasteleyn and Ginibre [FKG71].
Consider a probability distribution µ on {0, 1}n, we say µ has the positive lattice condition if for any two
vectors x, y ∈ {0, 1}n,

µ(x ∧ y) · µ(x ∨ y) ≥ µ(x) · µ(y). (10.4)

Theorem 10.30. If µ satisfies the positive lattice condition, then µ is positively associated.

Let us give a motivating example. Suppose we have Erdös-Réyni random graph G(n, p) for some 0 < p < 1.

We can see the edge set of this graph as a sample in {0, 1}(
n
2). Because of the edges are sampled independent

for any point x ∈ {0, 1}(
n
2), µ(x) = p‖x‖1 · (1− p)(

n
2)−‖x‖1 , where we use ‖x‖1 to denote the number of ones

of x. It follows that this distribution satisfies (10.4) with equality for all x, y. Therefore, it is positively
associated (note that because of the independence property this distribution is also negatively associated).
Consequently any two increasing functions are positively associated. For example, say f is the function
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indicating that G has a Hamiltonian cycle and g is the function indicating that G is 3-colorable. Observe
that f is a nondecreasing function and g is a nonincreasing function. So, by (10.2), f,−g are positively
associated or f, g are negatively associated. Note that the striking fact is that f, g are NP-hard functions
but we can study their correlation thorough the lens of positive association.

Although we have such a strong theorem for positive association, the negative dependence and negative
association were not fully understood until very recently. We say a matroid is balanced if the uniform
distribution of the bases of the matroid and the bases of all of its minors are negatively correlated. Feder
and Mihail [FM92] used the following theorem to prove that balanced matroids are negatively associated.
Recall that a probability distribution µ is homogeneous if every set in the support of µ has the same size.

Theorem 10.31 (Feder and Mihail [FM92]). Given a class of homogeneous measures on finite Boolean
algebras (of differing sizes) which is closed under conditioning. If each of the measures in this class satisfy
pairwise negative correlation, then all measures in this class are negatively associated.

The above theorem implies that random spanning trees and more generally linear matroids are negatively
associated probability distributions.

Negative association is only one form of negative dependence. The following fact is a simple application of
the negative association property of random spanning trees.

Fact 10.32. For any graph G = (V,E), any (weighted) uniform spanning tree distribution µ, F ⊆ E, c ∈ R
and any edge e /∈ F ,

PT∼µ
[
e ∈ T

∣∣ |S ∩ T | ≥ c] ≤ PT∼µ [e ∈ T ] .

Pemantle [Pem00] wrote a nice survey and asked for general theories regarding properties of negatively
dependent probability distributions. Several years later, Borcea, Brändén and Liggett used the rich theory
of real stable polynomials to answer many of the questions raised in [Pem00]. They introduced Strongly
Rayleigh measures as a family of probability distributions whose generating polynomial is a real stable
polynomial and they show that this family satisfy almost all of the properties that Pemantle asked in his
survey.

10.6 Strongly Rayleigh Distributions

In this section we introduce strongly Rayleigh measures and their properties. The material of this section
are mostly based on the seminal work of Borcea, Brändén and Liggett [BBL09]. In many cases we will
discuss interesting consequences of these properties in the random spanning tree distributions. Throughout
this section we use [n] = {1, 2, . . . , n}.

Definition 10.33 (Strongly Rayleigh distributions). For a set E of elements let µ : 2[n] → R+ be a
probability distribution. For a set of variables {z1, . . . , zn}, The generating polynomial of µ, gµ is defined as
follows:

gµ(z) :=
∑
S⊆[n]

∏
j∈S

zj .

We say µ is strongly Rayleigh (SR) if gµ is a real stable polynomial.

Note that by the above definition, the generating polynomial of any strongly Rayleigh measure is multilinear.
So, we can use Theorem 10.28 to show that any strongly Rayleigh measure is negatively correlated, and in
fact more generally they are negatively correlated along every direction pointing to positive orthant.
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It is an interesting question to extend the above definition to a family of distribution defined on random
variables that take values in larger field, say {0, . . . , q}.

It follows by Corollary 10.12 that (weighted) uniform spanning tree distributions are strongly Rayleigh. In
general, it is not hard to see that any determinantal probability distribution is also SR (see Lecture 2 for
the definition of determinantal probability distribution). Other examples, includes product distributions
and exclusion process measures. As we will many other families of probability distributions are SR because
their generating polynomial can be derived from the generating polynomial of say a random spanning tree
distrbution using the closure properties of real stable polynomials.

In the rest of this section we discuss closure properties and negative dependence properties of SR measures. In
the next lecture we use these properties of SR to design an approximation algorithm for symmetric traveling
salesman problem.

10.6.1 Closure Properties of SR Measures

We start by going over the closure properties of the strongly Rayleigh measures. Unless otherwise specified,
throughout this section we assume µ : 2[n] → R+ is a SR distribution and for each 1 ≤ j ≤ n we use
Xj to denote the indicator random variable of j being in a sample of µ. Also, for a set S ⊆ [n] we use
XS :=

∑
j∈S Xj .

Conditioning. For any 1 ≤ j ≤ n, {µ|Xj = 0} and {µ|Xj = 1} are SR. To see this observe that (up to
normalization)

g{µ|Xj=0}(z) = gµ(z1, . . . , zj−1, 0, zj+1, . . . , zn),

and recall that by the specialization property of real stable polynomials the RHS is real stable. On the other
hand,

g{µ|Xj=1}(z) = zj∂jgµ(z),

and recall that real stable polynomials are closed under differentiation. The above property may not be too
striking as random spanning tree distributions are also closed under conditioning.

Projection. For any set S ⊆ [n], the projection of µ onto S, µ|S is the measure µ′ where for any A ⊆ S,

µ′(A) =
∑

B⊆[n]:B∩S=A

µ(B).

It is easy to see that µ|S is SR. This is because for any S ⊆ [n], we can construct gµ|S (z) simply by specializing
zj = 1 for all variables j /∈ S. This is a very nice property, as random spanning tree distributions are not
closed under projection, e.g., the distribution of the set of edges of a random spanning tree in a cut (S, S)
is not a random spanning tree distribution.

As a practical application of this property, take another look at the proof of Corollary 10.13 where we used
the projection property to prove concentration inequalities of random spanning tree distributions.

Truncation. For any pair of integers 1 ≤ k, ` ≤ n, the truncation of µ to [k, `] is the conditional measure
µk,` where

µk,`(S) ∝

{
µ(S) if k ≤ |S| ≤ `
0 otherwise.
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Borcea et al. show that if |` − k| ≤ 1 then µk,` is SR. The proof of this property essentially follows from
Theorem 10.16. First, note that if µ is homogeneous, then truncation is a trivial operation. But, if µ is
not homogeneous, truncation is a very nontrivial operation. To prove this statement [BBL09] first show
that one can homogenize a real stable polynomial p(.) by adding a new dummy variable as long as all of
the coefficients of p(.) are nonnegative, i.e., say p has degree d, they add a new variable zn+1 and for all

0 ≤ j ≤ d they multiply any monomial of p of degree j with zd−jn+1. Then, they Theorem 10.16 to extract
monomials of the new polynomial where the power of zn+1 is in [k, `].

For example, suppose for a set of independent Bernoulli random variables B1, . . . , Bn, µ(S) is the probability
that Bj = 1 for all j ∈ S and zero otherwise. Then, µ is not a homogeneous distribution. By above argument,
the truncation of µ to k, µk, is a SR distribution; this is a nontrivial property because unlike µ, µk is not
an independent probability distribution. As we will see later, because µk is SR we can argue that it is a
negatively associated probability distribution.

10.6.2 Negative Dependent Properties of SR Measures

In this part we explain the negative dependent properties of SR measures.

Log Concavity of the Rank Sequence. The rank sequence of µ is a sequence q0, q1, . . . , qn where
qi = PS∼µ [S = i]. It follows that the rank sequence of any SR measure is (ultra) log concave. The proof of
this is very similar to Corollary 10.13. We symmetrize all variables of gµ,

p(t) = gµ(t, t, . . . , t)

by symmetrization property, p(t) is real stable. But, p(t) is just a sum of independent Bernoulli variables.
So, by Newton identities we get the log concavity.

Negative Association. In the above we already argued that any SR is negatively correlated. But, indeed
any SR measure is negatively associated. This property follows from Theorem 10.31. For simplicity suppose
µ is homogeneous. Then, we can construct a class of homogeneous negatively correlated probability distri-
butions because SR measures are closed under conditioning and all of them are negatively correlated. Then,
Theorem 10.31 implies that µ and any other measure in this class is negatively associated.

Stochastic Dominance Property. We say a probability event A ⊆ 2[n] is upward closed if for any S ∈ A
all supersets of S are also in A. We say a probability distribution µ stochastically dominate ν, ν � µ, if for
any upward closed probability event A, ν(A) ≤ µ(A). Borcea et al. showed that for any integer k < n if µk
and µk+1 are nonzero, then

µk � µk+1.

We will not talk about the proof of this property and we refer the interested readers to [BBL09; Pem13].
For example, if µk, µk+1 are well defined for any j ∈ F ,

Eµ′k [Xj ] ≤ Eµ′k+1
[Xj ]

The stochastic dominance property is a natural property of SR measures, roughly speaking, it says that
truncation on larger numbers increases the probability of the underlying elements and upward event defined
on them.
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