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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In the next few lectures we will talk about the recent polyloglog(n) bound on the integrality gap of the Held-
Karp relaxation for Asymmetric TSP [AO14]. Along this way we first go over the recent breakthrough of
Marcus, Spielman and Srivastava [MSS13] who proved the long standing Kadison, Singer conjecture [KS59].

As it will be clear, the proof of [MSS13] although not being long is very involved and has several novel
ideas. So, we start with a significantly simpler setup and we prove relatively weaker statements. As the
ideas become more clear we will go over the actual ideas in [MSS13]. The materials of this lecture are based
on the work of Batson, Spielman and Srivastava [BSS14] and lecture notes of Nick Harvey [Har13].

13.1 Combinatorial and Spectral Thin Trees

In lecture 6 we defined a thin spanning tree with respect to feasible solutions of the Held-Karp LP relaxation
of ATSP. It is not hard to see that by rescaling the edges we can study thin spanning trees with respect to
any unweighted (undirected) graph G.

Definition 13.1 (Thin Tree). Given an unweighted (undirected) graph G = (V,E), we say a spanning tree
T ⊆ E is α-thin with respect to G if for any set S ⊂ V ,

|T (S, S)| ≤ α · |E(S, S)|.

Note that because of the rescaling we are interested in finding a tree with α � 1. It is conjectured that if
G is sufficiently connected then we can always find a tree with α < .99. Recall that a graph G is k-edge
connected (or k-connected for short) if for any set S ⊂ V , |E(S, S)| ≥ k.

Conjecture 13.2 (Weak Thin Tree Conjecture). There exists a number k0 such that for any k ≥ k0, any
k-connected graph (of arbitrary size) has a 0.99 thin spanning tree.

The above conjecture is still open. Note that the main difficulty in proving the above conjecture is for values
of k which are significantly small compared to the size of G. In the strong thin tree conjecture we are looking
to find a spanning tree T that is O(1/k) thin with respect to G. This question can be significantly hard
in some well-known families of graphs. For example, try to construct an O(1/k)-thin spanning tree in a
k-dimensional hypercube. See Problem 3 of Assignment 3 for the solution of this problem.

We recall that a proof of the weak thin tree conjecture gives an O(log(n)1−ε) bound on the integrality gap
of the Held-Karp LP relaxation for some constant ε > 0 independent of n. Any proof of the strong thin tree
conjecture implies a constant bound on the integrality gap of the Held-Karp LP relaxation. In [AO14] it is
shown that any k-connected graph has polyloglog(n)/k-thin tree. All of these statements essentially follow
from the Hoffman circulation argument that we discussed in lecture 7.

One of the major difficulties in understanding thin trees is that proving the thinness of a tree is not an easy
problem. In particular, we are not aware of any polynomial sized certificate to prove the thinness of a given
spanning tree. Note that the thinness of T is

min
S⊂V

|E(S, S)|
|T (S, S)|

,

13-1



Lecture 13: A Construction of Linear size Thin Forests 13-2

which is an instance of the generalized sparsest cut problem. The best approximation algorithm for this prob-
lem is an algorithm of Arora, Lee, Naor [ALN08] that has an approximation factor of O(

√
log(n) log log(n)).

Instead, the idea is to study a generalization of thin trees which is known as spectrally thin trees.

Definition 13.3 (Spectrally Thin Tree). A spanning tree T is α-spectrally thin with resect to G if

LT � α · LG.

Recall that LT =
∑
e∈T beb

ᵀ
e is the Laplacian of T .

First observe that if T is α-spectrally thin, then it is also α-thin. This is because for any set S ⊂ V ,

|T (S, S)| = 1ᵀ
SLT1S ≤ α · 1ᵀ

SLG1S = α · |E(S, S)|.

In other words, T is α thin if for every test vector x, (that is not necessarily integral), xᵀLTx ≤ α · xᵀLGx.
Take a look at Problem 5 of assignment 1 to see the converse of this statement does not necessarily hold.

Second, observe that spectral thinness is very easy to calculate (computationally or analytically), it is just
the maximum eigenvalue of the symmetric matrix

L
†/2
G LTL

†/2
G .

Recall that L†G is the pseudo-inverse of LG and L
†/2
G is the square root of the PSD matrix L†G (see lectures

1-2 for the definition of pseudo-inverse).

This definition has its own drawbacks. A k-connected graph (for arbitrary large k) does not necessarily have
a spectrally thin tree. We will talk more about this in the future lectures. Right now, we are seeking for
a very simpler question. Suppose instead of looking for a tree we are just interested in finding an Ω(n) set
of edges of G which is O(1/k)-thin. The goal of this lecture is to use spectral techniques to answer this
question. In particular, we will find a set F which is a forest such that |F | ≥ Ω(n) and that

LF � LG/k.

It is a very interesting open problem to find a linear sized O(1/k)-thin set of edges in a k-edge connected
graph using randomized rounding (without appealing to spectral techniques).

13.2 Searching for Thin Linear size Forests

In this lecture we design a simple algorithm that finds a linear size thin forest in a k-edge connected graph.

Theorem 13.4. For any (unweighted) k-edge connected graph G = (V,E), there is a polynomial time
algorithm that finds a forest F ⊆ E such that |F | ≥ Ω(n) and

LF � O(LG/k).

We start by normalizing be vectors and putting them in an isotropic position. We have already studied this in

the first lecture, we just need to work with vectors ye = L
†/2
G be. The main motivation for this normalization

is to classify small normed vectors (after normalization) as easy to handle edges. Note that although all
edges have the same norm before the normalization that is not necessarily true after the normalization. In
fact, after the normalization for any edge e, ‖ye‖2 = Reff(e). It is easy to see that if F has an edge of norm
‖ye‖2 ≈ 1, then LF 6� LG/2. We leave this as an exercise. Roughly speaking, we should never pick big edges
with respect to isotropic position in a spectrally thin subgraph.
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So, we can reformulate the theorem as finding a linear size forest F ⊆ E such that

‖
∑
e∈F

yey
ᵀ
e ‖ ≤ O(1/k).

Note that if the above equation holds, then we have

L
†/2
G LFL

†/2
G � O(1/k)I,

or equivalently, LF � O(LG/k).

In the rest of this lecture we prove the following stronger theorem.

Theorem 13.5. Given a set of vectors v1, . . . , vm ∈ Rn such that

m∑
i=1

viv
ᵀ
i � I.

If the set contains k disjoint bases then there is a set F of linearly independent vectors such that |F | ≥ Ω(n)
and

‖
∑
i∈F

viv
ᵀ
i ‖ ≤ O(1/k).

It is easy to see that Theorem 13.4 follows directly from the above theorem. So, in the rest of this lecture
we prove the above theorem.

In addition, there are examples where for linearly independent set of vectors F with |F | > n − n/k, the
above norm is 1. So, in a sense the statement of the above theorem is tight.

Lemma 13.6. There is a set of vectors v1, . . . , vm ∈ Rn that form k disjoint bases such that

m∑
i=1

viv
ᵀ
i � I

and for any set F of linearly independent vectors where |F | > n− n/k,

‖
∑
i∈F

viv
ᵀ
i ‖ ≥ Ω(1).

We leave the proof of the above lemma as an exercise.

13.3 Main Proof

First of all, it is instructive to see that a random sample does not necessarily work, i.e., if we choose each
vector with probability 1/k the sample may have norm 1 with probability very close to 1.

The basic idea is to start with F = {} and iteratively add a “good” vector to F while maintaining that
A =

∑
i∈F viv

ᵀ
i has a small norm. So, we use an inductive argument. Perhaps, the most interesting idea in

this work is to choose the right induction hypothesis. First, assume we use ‖A‖ as the potential function (or
the induction hypothesis). The problem with this is that

‖A+ vvᵀ‖ = ‖A‖+ ‖v‖
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in the worst case. Note that we have a degree of freedom in choosing the right v. But in the worst case it
could be that all of the eigenvalues of A are equal to ‖A‖ so any v will shift the norm of A by ‖v‖.

So, perhaps a better idea is to assume a bound on all of the eigenvalues of A, say we use Tr(A) as the
potential function. In this case it is actually true that Tr(A) only shifts very little 〈v, v〉 when we add a
vector v. Unfortunately, assuming that Tr(A) is small, say O(n), we can not conclude that the maximum
eigenvalue is small.

The idea of Batson, Spielman and Srivastava [BSS14] is to use the following αmax(.) function, say λ1 ≥ · · · ≥
λn are the eigenvalues of A,

αmax(A) = max

{
t :

1

t− λ1
+ · · ·+ 1

t− λn
= α

}
.

Note that
n∑
i=1

1

t− λi
= Tr((tI −A)−1).

There are many interpretations of the above function and we will see generalizations in the future lectures.
Another equivalent definition is the following

Tr((tI −A)−1) =
d
dtχ[A](t)

χ[A](t)
=

d

dt
logχ[A](t).

We will prove this in the next lecture. Perhaps the main source of inspiration is by studying the barrier
functions used in the interior point method. This is out of the scope of this course.

To understand αmax it is instructive to plugin different values of α, if α ≈ ∞, then αmax(A) is the largest
eigenvalue of A. On the other hand if α ≈ 0, then αmax(A) is just n/t; in the latter case it is very easy to
see that αmax(A) changes very slowly when we apply a rank 1 update. The idea is by choosing the right
α we want to have the best of the both worlds, on one hand we want to have a good approximation of the
largest eigenvalue of A and on the other hand we want to be able to say that αmax(A) changes slowly when
we apply a rank 1 update.

To show that αmax(A) is a good potential function we need to prove two properties.

i) Any upper bound on αmax(A) gives and upper bound on ‖A‖.

ii) αmax(A) increases slowly when we apply a rank 1 update operation.

These two properties are proved in the following two claims.

Claim 13.7. For any symmetric matrix A, αmax(A) ≥ ‖A‖.

Proof. Let λ1 ≥ · · · ≥ λn be the eigenvalues of A. For t = λ1,

1

t− λ1
+ · · ·+ 1

t− λn

is infinity and for t > λ1 the above sum is a decreasing continuous function of t. Therefore, αmax(A) > λ1.

Next, we want to prove (ii). Ideally, we want to prove that for a vector vi,

αmax(A+ viv
ᵀ
i ) ≤ αmax(A) +O(1/kn).
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Note that if the above equation holds we can add Ω(n) vectors to F while making sure that ‖A‖ ≤ αmax(A) ≤
O(1/k) is small. But, of course the above equation can not hold for any arbitrary vector vi because vi can
have the same direction as the largest eigenvector of A. Instead we use an averaging argument, we say if
we have Θ(kn) vectors such that the sum of their quadratic form is at most identity, one of the satisfies the
above equation.

Lemma 13.8. Given a symmetric matrix A ∈ Rn×n, and a set of vectors v1, . . . , vm such that

m∑
i=1

viv
ᵀ
i � I,

For any bounded α > 0, there exists 1 ≤ i ≤ m such that

αmax(A+ viv
ᵀ
i ) ≤ αmax(A) +

1

m/2− α
.

Suppose αmax(A) = t. It is enough to show that there is a vector vi such that for any δ ≥ 1
m/2−α ,

Tr(((t+ δ)I −A− vivᵀi )−1) ≤ Tr((tI −A)−1). (13.1)

To analyze the left hand side we use the Sherman-Morrison Formula.

Theorem 13.9. For any invertible matrix A ∈ Rn×n and any vector v ∈ Rn, (A− vvᵀ)−1 exists if and only
if 1− vᵀA−1v 6= 0, and in this case

(A− vvᵀ)−1 = A−1 +
A−1vvᵀA−1

1− vᵀA−1v

Let us use B = (δ + t)I − A for the brevity of notation. Note that B � 0 by definition. We can rewrite
(13.1) as follows:

Tr

(
B−1vvᵀB−1

1− vᵀi B−1v

)
≤ Tr((B − δI)−1)− Tr(B−1) (13.2)

First, we show the RHS is at most δ · Tr((δI +B)−2). Let λ1, . . . , λn be the eigenvalues of B. Then,

Tr((B − δI)−1)− Tr(B−1) =

n∑
i=1

1

t− λi
− 1

t+ δ − λi

≥
n∑
i=1

δ

(t+ δ − λi)2
= δ · Tr(B−2).

Rewriting (13.2) and using Tr(XY ) = Tr(Y X), all we need to show is that there is a vector vi such that

vᵀi B
−2vi

1− vᵀi B−1vi
≤ δ · Tr(B−2). (13.3)

Now, let’s see how does the above equation look like for a random vi. First, observe that for any invertible
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C,

E [vᵀi Cvi] =

m∑
i=1

1

m
Tr(viv

T
i C)

= Tr

(
m∑
i=1

1

m
viv

ᵀ
i C

)

= Tr

(
C1/2

m∑
i=1

1

m
viv

ᵀ
i C

1/2

)

≤ 1

m
Tr(C).

The inequality uses that

C1/2
m∑
i=1

viv
ᵀ
i C

1/2 � C1/2IC1/2 = C.

See Lemma 13.10 below for the proof of the PSD inequality. By Markov’s inequality exists 1 ≤ i ≤ m such
that

viB
−2vi ≤

2 Tr(B−2)

m
,

viB
−1vi ≤

2 Tr(B−1)

m
≤ 2 Tr((B − δI)−1)

m
=

2α

m
.

So,

vᵀi B
−2vi

1− vᵀi B−1vi
≤ 2 Tr(B−2)/m

1− 2α/m
≤ δ · Tr(B−2).

So, it is enough to have δ ≥ 1
m/2−α . This completes the proof of Lemma 13.8.

We just prove Lemma 13.10 below.

Lemma 13.10. For any three symmetric matrices A,B,C ∈ Rn×n, if A � B, then

CAC � CBC.

Proof. For any test vector x, and y = Cx,

xᵀCACx = yᵀAy ≤ yᵀBy = xᵀCBCx,

where the inequality follows by A � B.

To prove Theorem 13.5 it is enough to repeatedly apply the above lemma.

Proof of Theorem 13.5. Let α = m/4. We start with A0 = 0. Then,

α = Tr((tI −A)−1) =
n

t
,

so let αmax(A0) = 4n/m. We apply Lemma 13.8 n/2 times. Let Fj be the set of vectors that we have chosen
in the first j iterations and let Aj =

∑
i∈Fj

viv
T
i .

Now, let S ⊆ {v1, . . . , vm} be all of the vectors which are linearly independent of the vectors in Fj . It is easy
to see that

|S| ≥ k(n− |Fj |) = k(n− j) ≥ kn/2.
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This is because the given set of vectors v1, . . . , vm include k disjoint bases and each of these bases have at
most |Fj | vectors that are linearly dependent to the vectors in Fj .

Applying Lemma 13.8 to S there exists a vector vi such that

αmax(Aj + viv
ᵀ
i ) ≤ αmax(Aj) +

4

|S|
.

We let Fj+1 = Fj ∪ {vi}, Aj+1 = Aj + viv
ᵀ
i and we recurse.

After n/2 iterations we get a set Fn/2 of linearly independent vectors such that

αmax(An/2) ≤ 4n

m
+

n/2−1∑
j=0

4

k(n− j)
≤ 16

k
.

In the first inequality we also used m ≥ nk.

Batson, Spielman and Srivastava [BSS14] used αmax function together with the following αmin and argued
that any graph has a linear size weighted spectral sparsifier. For a matrix A,

αmin(A) = min

{
t :

1

λ1 − t
+ · · ·+ 1

λn − t
= α

}
They show that there is always a vector (with a suitable weight) such that a rank 1 update of A with
that vector increases αmax, αmin by almost similar amounts. Therefore, after O(n/ε2) steps we get a set
F of O(n/ε2) vectors where the corresponding αmax ≤ (1 + ε)αmin. This implies that the quadratic form
associated with F very well approximates the identity matrix, and in the graph language, they correspond
to a very well spectral sparsifier.
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