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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In the last lecture we showed that every k connected graph G has a linear sized O(1/k)-spectrally thin forest.
We also briefly argued that if G has edges with effective resistance close to 1, then those edges cannot be in
any spectrally thin subgraph of G. Suppose we are given a graph where the effective resistance of every edge
is at most 1/k. Can we say that this graph has a O(1/k)-spectrally thin tree? It turns out that the answer to
this question is yes and it follows from the Kadison-Singer conjecture. That is indeed the motivation that we
are talking about the proof of the Kadison-Singer conjecture by Marcus, Spielman and Srivastava [MSS13]
in this class. In particular, we will prove the following theorem (note that this theorem is incomparable with
the statement of the Kadison-Singer conjecture).

Theorem 14.1 ([MSS13; HO14]). Given a set of vectors v1, . . . , vm ∈ Rd such that
∑m
i=1 viv

ᵀ
i = I and that

for each 1 ≤ i ≤ m, ‖vi‖2 ≤ ε. There exists a basis T , i.e., d linearly independent vectors {vi}i∈T such that∥∥∥∥∥∑
i∈T

viv
ᵀ
i

∥∥∥∥∥ ≤ O(ε).

Unfortunately, the same technique that we used in the last lecture cannot be used to prove the above theorem
without a logarithmic loss in the dimension. First, it is not hard to see that the same analysis can give us
a basis of norm O(ε · log(d)). This is because for any number `, if |F | = `, in the next iteration, the upper
barrier, t, will increase by at most O( ε

d−` ). So, by the time that we have a basis (|F | = d), the norm of the
vectors in F is at most O(ε · (1 + 1/2 + · · ·+ 1/d)) = O(ε · log d). It is instructive to take a look at [HO14]
for an argument based on pipage rounding with an O(log d/ log log d) loss.

Now, let us see that there is an underlying barrier to get a bound better than O(ε · log d) in the greedy
algorithm. Roughly speaking, the impossibility is due to the memoryless property of the greedy algorithm.
In particular, observe that in each iteration of the algorithm we choose one vector vi from a given set of
vectors {v1, . . . , vm} where

∑m
i=1 viv

ᵀ
i = I such that vi is linearly independent of the vectors that are already

in F and that it only increases the upper barrier, t, by a small amount. The same analysis would work if
the set of vectors that we feed into the algorithm in `-th iteration is different from those that we feed in the
`+ 1-th iteration. It turns out that an adversary can feed in a bad sequence of vectors for which there is no
basis of norm less than O(ε · log d). Let us elaborate an example by Harvey [Har14].

Example 14.2 ([Har14]). Suppose we are at the d− `+ 1 iteration of the greedy algorithm and |F | = d− `.
As the vectors in F are linearly independent, ker(F ) = `. Let u1, . . . , u` be an orthonormal basis of ker(F )
and let u0 be the largest eigenvector of the matrix

∑
i∈F viv

ᵀ
i . We choose the vectors for the d−`+1 iteration

as follows: There are (`+ 1)/ε vectors of the form

±
√

ε

`+ 1
u0 ± · · · ±

√
ε

`+ 1
u`,

where the + or − sign is chosen such that the sum of the quadratic forms of these vectors is u0u
ᵀ
0 + · · ·+u`uᵀ` .

The rest of the vectors are chosen such that each of them has square norm ε and the whole set add up to the
identity. To choose a vector that is linearly independent of those that are already in F , the algorithm has to
choose one of the above vectors. But, any such vector increases the spectral norm by ε/(` + 1). So, by the
time where F is a basis the spectral norm is O(ε · log d).

14-1
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In summary, to prove Theorem 14.1 we need to exploit a different technique. In this lecture we reprove (a
weaker version) the thin forest result using a different technique. We will use the barrier argument to bound
the norm, but instead of using the greedy algorithm we use properties of real rooted polynomials to find a set
F of small norm. The materials of this lecture are based on the survey by Marcus, Spielman and Srivastava
[MSS14]. We prove the following theorem.

Theorem 14.3. Given a set of vectors v1, . . . , vm ∈ Rd, such that

m∑
i=1

viv
ᵀ
i = I,

There exists a multiset F of vectors of size |F | ≥ Ω(d) such that∥∥∥∥∥∑
i∈F

viv
ᵀ
i

∥∥∥∥∥ ≤ O(d/m).

Note that unlike the previous lecture we do not guarantee that vectors in F are linearly independent, so
in a sense we want to prove a weaker statement. But as we will see the technique has the potential to be
extended to prove Theorem 14.1.

We would like to use the probabilistic method. Let r1, . . . , rn be uniformly random vectors where for all
1 ≤ i ≤ n we have ri =

√
mvj with probability 1/m. Note that Erirᵀi = I. To prove the above theorem, all

we need to say is that with a positive probability∥∥∥∥∥
n∑
i=1

rir
ᵀ
i

∥∥∥∥∥ ≤ O(d+ n).

Theorem 14.4. For any given independent random vectors r1, . . . , rn such that Erirᵀi = I for all 1 ≤ i ≤ n,
with a positive probability, ∥∥∥∥∥

n∑
i=1

rir
ᵀ
i

∥∥∥∥∥ ≤ 2d+ 1 + 2n.

Letting n = d/2 in the above theorem proves Theorem 14.3. Note that the dependency on d is necessary in
the above theorem. In particular, even if n = 1 it may be that every vector in the support of the random
vector r1 as norm at least d.

First Idea: The first idea to prove the above theorem is to show that the expected norm is small,
E ‖
∑n
i=1 rir

ᵀ
i ‖ ≤ O(d + n). But, unfortunately, it may be that only with an exponentially small proba-

bility this norm is small. Let us give an example.

Example 14.5. Suppose for all 1 ≤ i ≤ n, ri = 0 with probability c−1
c and for all 1 ≤ j ≤ d, ri =

√
c · d1j

with probability 1
c·d for some c � 1. It follows that Erirᵀi = I for all i. Observe that any sample of this

distribution has norm c · d except the one where ri = 0 for all 1 ≤ i ≤ n. So, for c ≥ 10 and n < d/2 there
is only one solution to Theorem 14.4, or only one good point in the support of our independent distribution
and that point has an exponentially small probability (1− 1/c)n.

The above example shows the delicacy of the proof of Theorem 14.4. We can also use the above example to
point out the importance of the word independence in the statement of Theorem 14.4. Suppose that in the
above example the point where ri = 0 for all 1 ≤ i ≤ n was not in the support of our distribution. Then,
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obviously any point in the support of the distribution would have norm 2d. Note that such a distribution
is indeed not very far from an independent distribution. As we will see in the future lectures instead of
a product distribution, i.e., an independence assumption, we may as well work with a strongly Rayleigh
distribution and obtain similar quality statements.

Second Idea: The second idea that comes to mind is to show that∥∥∥∥∥E
n∑
i=1

rir
ᵀ
i

∥∥∥∥∥ ≤ O(n),

and then use the independence assumption to show that there exists a point in the support of this distribution
of small spectral norm. First note that E

∑n
i=1 rir

ᵀ
i = nI so the above obviously holds. But, if we only use

this assumption (as opposed to Erirᵀi = I for all i) it may be that r2 = r3 = · · · = rn = 0 with probability 1

and r1 =
√
nd1j with probability 1/d. In that case the best bound that we can get is O(d · n).

Third Idea: The idea of Marcus, Spielman and Srivastava is that instead of averaging the matrices of
the samples of our independent distribution we should average out their characteristic polynomial. This can
help us to use algebraic techniques and in particular the properties of real stable polynomials to prove our
goal. In other words, it is to only consider the eigenvalues when we are averaging out different samples and
just drop the eigenvectors. They defined the expected characteristic polynomial as follows:

Eχ[r1r
ᵀ
1 + · · ·+ rnr

ᵀ
n](t).

In other words, for any point t, the above polynomial is simply the average of the characteristic polynomial
det(tI − r1rᵀ1 − · · · − rnrᵀn) over all points of the independent distribution.

We emphasize that the expected characteristic polynomial is not equal to the characteristic polynomial of the
expected matrix. Note that the characteristic polynomial of the expected matrix is simply (t−n)d but as we
see in the first lemma the expected characteristic polynomial is (1−D)ntd.

Lemma 14.6. Eχ [r1r
ᵀ
1 + · · ·+ rnr

ᵀ
n] (t) = (1−D)ntd

The above lemma gives a lot of information about the expected characteristic polynomial. Perhaps most
importantly, the expected characteristic polynomial is a real rooted polynomial. This simply follows from
the closure properties of the real stable polynomials under the operators 1 −D (take a look at Lecture 10
for more details).

A natural idea that comes to mind is that analogous to idea 2, first show that the largest root of the expected
characteristic polynomial is small and the show that there is a point in the support of the distribution
such that the largest root of its characteristic polynomial is smaller than the largest root of the expected
polynomial. Note that in Idea 2 the proof of the first step was easy but the second step was not necessarily
true. It turns out that in this case we can use the fact that we have an independent distribution and
interlacing properties to prove the second step. Finally, we will use a variant of the barrier argument that
we discussed in the last lecture to prove the first step.

Lemma 14.7. With a positive (possibly exponentially small) probability

λmax(χ[r1r
ᵀ
1 + · · ·+ rnr

ᵀ
n](t)) ≤ λmax(Eχ[r1r

ᵀ
1 + · · ·+ rnr

ᵀ
n](t)).

In fact the proof of the above lemma is algorithmic.
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It remains to bound the largest root of the expected characteristic polynomial or equivalently, the largest
root of (1−D)ntd. The polynomial (1−D)ntd is called the mixed characteristic polynomial in [MSS14] and
we adopt similar terminology.

Perhaps, the easiest way to bound the maximum root of the mixed characteristic polynomial is to note that
this is a constant multiple of a well known polynomial known as associated Laguerre polynomial and the
roots of these polynomials are very well studied [Kra06]. Here, we use a variant of the barrier argument
to analyze the roots, the main reason is that we will use a similar idea when we extend this argument to
multivariate polynomials in order to prove Theorem 14.1.

Lemma 14.8. The largest of the polynomial (1−D)ntd is at most 2d+ 2n.

Roughly speaking, we use the same barrier argument and we show that any time that we apply a 1 − D
operator to any real rooted polynomial this increases the upper barrier no more than 1/(1 − α) where α is
the cumulative distance of the roots to the upper barrier as it is also used in the last lecture.

14.1 The Mixed Characteristic Polynomial

In this part we prove Lemma 14.6.

The main intuition in the proof of Lemma 14.6 is that for all 1 ≤ i ≤ n, the expected characteristic polynomial
is a linear function of the actual realization of ri, therefore, as long as we have an independent distribution
of these random vectors the LHS is only a function of Er1rᵀ1 , . . . ,Ernrᵀn and not the actual realization of the
vectors.

We give two proofs of this lemma, the first one is simpler and in a sense less illuminative, it uses the
determinant rank 1 update formula. Fix a (symmetric) matrix A, for a random vector r satisfying Errᵀ = I
we can write

Eχ[tI −A− rrᵀ] = Edet(tI −A)(1− rᵀ(tI −A)−1r) (14.1)

= det(tI −A)(1− Tr(E[rrᵀ](tI −A)−1))

= det(tI −A)(1− Tr((tI −A)−1)).

Say λ1, . . . , λn are the eigenvalues of A, we can write the RHS as

n∏
i=1

(t− λi)

(
1−

n∑
i=1

1

t− λi

)
= χ[A](t)−

n∑
i=1

∏
j 6=i

(t− λi)

= (1−D)χ[A](t).

Now, the lemma follows by a simple induction on n and noting that (1−D) and E operators are commuting.
In particular,

Edet(tI − r1rᵀ1 − · · · − rnrᵀn) = E[E[det(tI − r1rᵀ1 − · · · − rnrᵀn)|r1, . . . , rn−1]]

= E(1−D) det(tI − r1rᵀ1 − · · · − rn−1r
ᵀ
n−1)

= (1−D)Edet(tI − r1rᵀ1 − · · · − rn−1r
ᵀ
n−1).

Now, we can induct. This completes the first proof.

The second proof is a more direct approach, we write down both sides of the identity of Lemma 14.6 explicitly
and we show that the coefficient of ti is the same in both sides of the equality. Let us start with the RHS it
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is easy to see that

(1−D)ntd =

n∑
k=0

(
n

k

)
(−D)kxd

=

n∑
k=0

td−k(−1)k
d!

(d− k)!

(
n

k

)
. (14.2)

Now, we want to show that the coefficient of td−k in the LHS is the same. First, we recall the reformulation
of the characteristic polynomial that we discussed in Lecture 3.

Fact 14.9. For rank 1 symmetric matrices W1, . . . ,Wn ∈ Rd×d,

det(tI +

n∑
i=1

ziWi) =

n∑
k=0

td−k(−1)k
∑
S∈(n

k)

zS det
k

(∑
i∈S

Wi

)
,

where zS =
∏
i∈S zi.

It follows that

Eχ[r1r
ᵀ
1 + · · ·+ rnr

ᵀ
n](t) =

n∑
k=0

td−k · E

(−1)k
∑
S∈(n

k)

det
k

(∑
i∈S

rir
ᵀ
i

)
Note that as we defined earlier, when we take the expected characterisitic polynomial it means that we take
the average of the coefficients of ti for all 0 ≤ i ≤ d.

Comparing the above with (14.2) and using the linearity of expectation, all we need to show is that for any
S ∈

(
n
k

)
,

Edet
k

(∑
i∈S

rir
ᵀ
i

)
=

d!

(d− k)!
.

The above equality essentially follows from the fact that detk is a linear function of rir
ᵀ
i . To see this

geometrically, recall that detk(
∑
i∈S rir

ᵀ
i ) is the square of the volume of the parallelepiped of {ri}i∈S . The

volume square changes quadratically with ri and linearly with rir
ᵀ
i . Therefore, by linearity of expectation,

the LHS of the above only depends on Erirᵀi for i ∈ S.

We need to sum up the expected determinant of all k × k minors of
∑
i∈S rir

ᵀ
i . There are

(
d
k

)
possibility it

is easy to see that the expected determinant of each one of them is exactly k!. We leave the proof of this as
an exercise.

14.2 Interlacing

Next, we prove Lemma 14.7. Before proving this we prove the Cauchy’s interlacing theorem. It says that for
any (symmetric) matrix A and any vector v, the roots of det(tI−A) interlaces the roots of det(tI−A−vvᵀ).

Lemma 14.10 (Cauchy’s interlacing theorem). For any (symmetric) matrix A and any vector v, det(tI−A)
interlaces det(tI −A− vvᵀ).
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Proof. Recall that for two monic (univariate) polynomials p(t), q(t) if the Wronskian W [p, q] = p′q− pq′ ≤ 0
over R (and the roots of p, q have multiplicity 1) then p interlaces q. See Lecture 10 for applications and
generalizations of the Wronskian. Here, we show that

W [det(tI −A− vvᵀ),det(tI −A)] ≥ 0,

and we leave it as an exercise to verify the case where eigenvalues of A may have multiplicity more than 1.

Equivalently, we show that
d

dt

det(tI −A− vvᵀ)

det(tI −A)
≥ 0 (14.3)

over the entire R. This is because for any p, q the sign of p′q − pq′ is the same as the sign of (p/q)′ =
(p′q − pq′)/q2.

Now, by (14.1), we can write

d

dt

det(tI −A− vvᵀ)

det(tI −A)
=

d

dt

det(tI −A)(1− vᵀ(tI −A)−1v)

det(tI −A)

=
d

dt
(1− vᵀ(tI −A)−1v)

Let λ1, . . . , λn be the eigenvalues of A with corresponding (orthonormal) eigenvectors u1, . . . , un. We can
rewrite the above as follows

d

dt
(1− vᵀ(tI −A)−1v) =

d

dt
−

n∑
i=1

〈v, ui〉2

t− λi

=

n∑
i=1

〈v, ui〉2

(t− λi)2
≥ 0,

as desired.

Having this in hand, we can round r1, . . . , rn inductively.

Lemma 14.11. Fix a (symmetric) matrix A and let r1, . . . , rn are independent random vectors such that
Erirᵀi = I for all i. There is a point in the support of r1 such that

λmax(Er2,...,rn det(tI −A− r1rᵀ1 − · · · − rnrᵀn)) ≤ λmax(Edet(tI −A− r1rᵀ1 − · · · − rnrᵀn)), (14.4)

where the expectation in the LHS is only over random vectors r2, . . . , rn.

It is easy to see that Lemma 14.7 simply follows from the above lemma.

Observe that by Lemma 14.6 the LHS of (14.4) is (1 − D)n−1 det(tI − A − r1r
ᵀ
1 ) and the RHS is (1 −

D)n det(tI − A). We prove the above lemma using the following two claims: First we show that the (real
rooted) polynomials (1 −D)n−1 det(tI − A − r1rᵀ1 ) have a common interlacer. Then we show that for any
set of monic real rooted polynomials p1, . . . , pm that have a common interlacer, there is 1 ≤ i ≤ m such that
the maximum root of pi is at most the maximum root of p1 + · · · + pm. The lemma follows from the fact
that E(1−D)n−1 det(tI −A− r1rᵀ1 ) = (1−D)n det(tI −A).

Claim 14.12. For any point in the support of r1, (1−D)n−1 det(tI−A) interlaces (1−D)n−1 det(tI−A−
r1r

ᵀ
1 ).
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Proof. By Cauchy’s interlacing theorem, for any point in the support of r1, det(tI − A) interlaces det(tI −
A − r1rᵀ1 ). By Obrechkoff, Dedieu theorem that we alluded to in Lecture 10, two real rooted polynomials
p, q (of the same degree) are interlacing if and only if ap+ bq is real rooted for all a, b ∈ R. This implies that
for all a, b ∈ R,

adet(tI −A) + bdet(tI −A− r1rᵀ1 )

is real rooted. By the closure property of real rooted polynomials,

(1−D)(a det(tI −A) + bdet(tI −A− r1rᵀ1 )) = a(1−D) det(tI −A) + b(1−D) det(tI −A− r1rᵀ1 )

is real rooted, so for all point in the support of r1, (1−D) det(tI −A) interlaces (1−D) det(tI −A− r1rᵀ1 ).
Similarly, we can show that (1−D)n−1 det(tI −A) interlaces (1−D)n−1 det(tI −A− r1rᵀ1 ).

The above claim implies that (1 − D)n−1 det(tI − A) is a common interlacer of the polynomials (1 −
D)n−1 det(tI −A− r1rᵀ1 ).

Claim 14.13. Let p1, . . . , pm be degree d real rooted univariate (monic) polynomials that have a common
interlacer. Then, there is 1 ≤ i ≤ m such that the maximum root of pi is at most the maximum root of
p1 + · · ·+ pm

Proof. Perhaps after renaming assuming that p1 has the smallest largest root and let λ1 be the largest root
of p1. Since p1, . . . , pm have a common interlacer, each pi has exactly one root which is at least λ1. In
addition since these are monic, i.e., pi(∞) =∞, pi(λ1) ≤ 0 for all 1 ≤ i ≤ m. Therefore,

p1(λ1) + · · ·+ pm(λ1) ≤ 0.

But, the sum of these polynomials is infinity at t =∞. Therefore, the sum has a root that is at least λ1.

This completes the proof of Lemma 14.7.

14.3 Barrier Argument

In this section we prove Lemma 14.8. First, we define our barrier function: For a (univariate) polynomial
p(t) we define

Φp(t) =
d
dtp(t)

p(t)
.

This definition essentially follows from the barrier function that we talked about in the last lecture. In
particular, if p(t) = det(tI −A) for a matrix A with eigenvalues λ1, . . . , λn, then

Φp(t) =

∑n
i=1

∏
j 6=i(t− λj)∏n

i=1(t− λi)
=

n∑
i=1

1

t− λi
.

We use the same αmax function that we defined in the last lecture. Let α be the upper barrier. For a
polynomial p and a number α we define

αmax(p) := max{t : Φp(t) = α}.

The following is analogous to the barrier function argument that we had in the last lecture.
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Lemma 14.14. For any univariate real rooted polynomial p and α > 0,

αmax((1−D)p) ≤ αmax(p) +
1

1− α
.

Proof. First, we show that

Φ(1−D)p = Φp − DΦp

1− Φp
.

This is mainly an algebraic argument.

Φ(1−D)p =
(p− p′)′

p− p′

=
(p(1− Φp))′

p(1− Φp)

=
p′(1− Φp) + p(−(Φp)′)

p(1− Φp)

= Φp − DΦp

1− Φp
.

Let t = αmax(p). Therefore, it is enough to show that for δ ≥ 1/(1− α),

− DΦp(t+ δ)

1− Φp(t+ δ)
≤ Φp(t)− Φp(t+ δ). (14.5)

Similar to the previous lecture Φp(t) is a convex function of t. Therefore,

Φp(t) ≥ Φp(t+ δ)− δ(DΦp(t+ δ)),

or
Φp(t)− Φp(t+ δ) ≥ −δ(DΦp(t+ δ)).

On the other hand, Φp(t) is a monotone decreasing function of t, so the RHS of above is nonnegative. So,
by (14.5) it is enough to show

1

1− Φp(t+ δ)
≤ δ.

Again using Φp(t) is monotonically decreasing, Φp(t+ δ) ≤ Φp(t) ≤ α as required.

To prove Lemma 14.8 we let α = 1/2. Since td has d roots which are all 1, αmax(td) = 2d+ 1. By the above
lemma each 1−D operator increases t by at most 1

1−α = 2. So,

αmax((1−D)ntd) ≤ 2d+ 1 + 2n.

We note that this is not necessarily the best optimization of the parameters. Lemma 14.8 follows from the
fact that αmax upper bounds the maximum root.
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