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In this lecture we finally prove the Kadison-Singer conjecture. First, we recall the main statement of the
theorem.

Theorem 15.1 (Marcus, Spielman, Srivastava [MSS13b]). Given a set of vectors v1, . . . , vm ∈ Rd in isotropic

position, if max1≤i≤m ‖vi‖2 ≤ ε, then there is a 2 partitioning S1, S2 of [m] such that for each j ∈ {1, 2},

1/2−O(
√
ε) ≤

∥∥∥∥∥∥
∑
i∈Sj

viv
ᵀ
i

∥∥∥∥∥∥ ≤ 1/2 +O(
√
ε)

Recall that we are interested in Kadison Singer’s theorem to prove the existence of (spectrally) thin trees.
The following is a direct corollary of the above theorem.

Corollary 15.2. Any graph G has an O(maxe∈G Reff(e))-spectrally thin tree.

Proof sketch. e sketch the main idea of the proof. Let ε = maxe∈E Reff(e). First we need to construct an

isotropic set of vector. For any edge e ∈ E we let ve = L
†/2
G be. It is easy to see that

∑
e∈E vev

ᵀ
e = I and

‖ve‖2 = Reff(e). So, by the above theorem, the edges of G can be partitioned into two sets E1, E2 such that
for j ∈ {1, 2},

(1/2−O(
√
ε))LG � LEj � (1/2 +O(

√
ε))LG.

The left inequality implies that the effective resistance of each edge of e ∈ E1 with respect to LE1
is about

2Reff(e). So, we can recursively divide E1, E2 into two subgraphs until the effective resistance are close to
1. after log(1/ε)− o(log(1/ε)) divisions we get to a O(ε) thin (connected) subgraph of G.

The general strategy to prove the above theorem is very similar to what we did in the previous lecture. We
define random vectors based on v1, . . . , vm and we show that in the corresponding random matrix there is a
point of small norm. Perhaps the simplest

We construct random vectors r1, . . . , rm ∈ R2d where for each 1 ≤ i ≤ m, ri =
√

2

(
vi
0d

)
with probability

1/2 and ri =
√

2

(
0d

vi

)
with probability 1/2. Observe that this implies that for each i, E ‖ri‖2 = 2 ‖vi‖2. In

addition,
m∑
i=1

Erirᵀi =

(
2
∑m
i=1 viv

ᵀ
i 0

0 2
∑m
i=1 viv

ᵀ
i

)
= I2d

Therefore, we can reformulate Theorem 15.1 in terms of the random vectors r1, . . . , rm as follows. The
following is indeed the main theorem of [MSS13b].

Theorem 15.3 (Marcus, Spielman, Srivastava [MSS13b]). If ε > 0 and r1, . . . , rm are independent random
vectors in Rd with finite support such that

m∑
i=1

Erirᵀi = I,
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and for all i,
E ‖ri‖2 ≤ ε,

then

P

[∥∥∥∥∥
m∑
i=1

rir
ᵀ
i

∥∥∥∥∥ ≤ (1 +
√
ε)2

]
> 0.

It is easy to see that the above theorem implies Theorem 15.1. Letting r1, . . . , rm be as defined above, we
get that there exists a point in the support, i.e., a partitioning S1, S2 of [m] where S1 are the coordinates i

where ri =
√

2

(
vi
0d

)
and S2 are the rest of the coordinates, such that(

2
∑
i∈S1

viv
ᵀ
i 0

0 2
∑
i∈S2

viv
ᵀ
i

)
� (1 +

√
2ε)2I2d.

This implies that for j ∈ {1, 2}, ∥∥∥∥∥∥
∑
i∈Sj

viv
ᵀ
i

∥∥∥∥∥∥ ≤ (1 +
√

2ε)2

2
.

Since v1, . . . , vm are in isotropic position, the minimum eigenvalues of each of the above matrices is at least
1− (1 +

√
2ε)2/2. This proves Theorem 15.1.

Let us conclude this section by a few remarks about the above theorem. The first remark is about the
importance of the isotropic assumption in the above theorems.

Remark 15.4. Observe that the isotropic assumption is not necessary for Theorem 15.3. Even if r1, . . . , rm
are sub-isotropic, i.e., if

∑m
i=1 Erir

ᵀ
i � I, then the conclusion holds. To see that, observe that given sub-

isotropic vectors r1, . . . , rm we can add several other (deterministic) vectors of small norm such that the
whole set is in the isotropic position. Then, by the above theorem there is a point of small norm in the
support of the probability distribution. But removing the artificially added vectors can only decrease the
norm of the point in the support. On the other hand, the isotropic assumption is crucially used in the proof
of Theorem 15.1 (using Theorem 15.3).

The second remark is about the limitation of the method of interlacing polynomials.

Remark 15.5. As we alluded to in the previous lecture, the main (existential) step of the proof is that for
any set of (univariate) real rooted polynomials p1, . . . , pm that have a common interlacer, there is 1 ≤ i ≤ m
such that the maximum root of pi is at most the maximum root of p1 + · · · + pm. Similar arguments show
that for any k ≥ 1 there exists 1 ≤ ki ≤ m such that the k-th largest root of pki is at most the k-th largest
root of p1 + · · ·+ pm.

The main disadvantage of this argument is that it gives a bound only on a single root. For example, it is not
possible to say that there is 1 ≤ i ≤ m such that the maximum root of pi is at most the maximum root of
the sum and the smallest root of pi is at most the smallest root of the sum. That is the reason that Marcus,
Spielman and Srivastava in their main theorem 15.3 only upper bound one root, i.e., the maximum root, of
a point in the support of the distribution of independent random vectors.

Our last comment is about the style of the proof of the above theorem. Recall that in the last lecture we
proved a seemingly similar statement where the covariance matrices Erirᵀi are multiplies of the identity so
they commute. This implies that all of the expected characteristic polynomials are simple linear transfor-
mation of the type (1−D) of univariate real rooted polynomials. In the above statement we need to study
sums of independent rank 1 matrices which are from non identically distribution random vectors. Because
of this we need to work with multivariate real stable polynomials. The proof correspondingly need to use
multivariate differential operators and multivariate barrier functions.
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15.1 Extensions and Applications of Theorem 15.3

Before getting to the proof of the above theorem we talk about the extensions and applications of the above
theorem. The first extension of Theorem 15.3 is by Brändén [Bra14] who used the techniques in [MSS13b]
to prove upper bound on the maximum root of hyperbolic polynomials (as opposed to the characteristic
polynomials) defined on rank 1 vectors1 on the closure of the hyperbolicity cone. We will not elaborate on
this and we refer interested readers to [Bra14] for details.

As we mentioned earlier, our main motivation in studying [MSS13b] is for the application in existence of
(spectrally) thin tree. It turns out that Corollary 15.2 is not strong enough for our applications in bounding
the integrality gap of the Held-Karp relaxation. We need to prove a stronger version of the above theorem.
Apart from this specific application it is quite interesting to understand the importance of the independence
assumption in the statement of the above theorem. In other words, under what families of distributions on
the random vectors v1, . . . , vm can we expect to have a point of small norm in the support of the distribution.
The following theorem partially answers this question, roughly speaking the above theorem holds for any
(homogeneous) strong Rayleigh distribution of vectors.

Theorem 15.6 (Anari, Oveis Gharan [AO14]). Let µ be a homogeneous strongly Rayleigh probability dis-
tributions on [m] such that the marginal probability2 of each element is at most ε1, and let v1, . . . , vm ∈ Rd
be vectors such that

m∑
i=1

viv
ᵀ
i = I,

and for all i, ‖vi‖2 ≤ ε2. Then,

PS∼µ

[∥∥∥∥∥∑
i∈S

viv
ᵀ
i

∥∥∥∥∥ ≤ O((ε1 + ε2)

]
> 0.

Similar to Remark 15.4 even if v1, . . . , vm are sub-isotropic in the above theorem, i.e., if
∑m
i=1 viv

ᵀ
i � I, still

the conclusion holds because we can fill up the space with vectors of small square norm and zero marginal
probability. The main advantage of the above theorem compared to Theorem 15.3 is that we can conclude
there is a set of small norm in the support of µ. As alluded to in Remark 15.5, method of interlacing
polynomials only gives a bound on one eigenvalue, this is the reason that restricting the family of feasible
solutions to those in the support of µ is nontrivial.

It is an interesting question to find out other families of probability distributions that satisfy the conclusion
of the above theorem. In this course we will not prove the above theorem and we refer interested readers to
[AO14].

Next, we explain an application of the above theorem in the thin basis problem and then we use that to
prove a weak sufficient condition for the existence of spectrally thin trees in a graph G.

Corollary 15.7 (Thin Basis Problem). Given a set of vectors v1, . . . , vm ∈ Rd in sub-isotropic position,

m∑
i=1

viv
ᵀ
i � I,

if max1≤i≤m ‖vi‖2 ≤ ε, and the set {v1, . . . , vm} contains k disjoint bases, then there exists a basis T ⊆ [m]
such that ∑

i∈T
viv

ᵀ
i � O(ε+ 1/k)I.

1Suppose h is a hyperbolic polynomial with respect to e ∈ Rd. We say x has rank 1 with respect to h if the univariate
polynomial h(x− te) has only one nonzero root.

2Recall that the marginal probability of i is PS∼µ [i ∈ S].
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Proof. For any basis T of v1, . . . , vm let

µ(T ) = det(
∑
i∈T

viv
ᵀ
i ),

be the square of the volume of the vectors in T . First, observe that µ is a strong Rayleigh distribution. This
is because

det(

m∑
i=1

ziviv
ᵀ
i ) =

∑
T

µ(T )zT ,

where as usual zT =
∏
i∈T zi. In addition µ is a homogeneous distribution because any basis T has exactly

d vectors. To use Theorem 15.6 we only need to make sure that the marginal probability of each vector is
small. It is easy to see that if

∑m
i=1 viv

ᵀ
i = I, then for any i, P [i ∈ T ] = ‖vi‖2 ≤ ε. However, when we have

the sub-isotropic assumption this is no longer the case. In fact by the Matrix tree theorem that we discussed
in Lecture 3 for any i,

P [i ∈ T ] = vᵀi

 m∑
j=1

vjv
ᵀ
j

−1 vi,
which may be very close to 1.

So, we need to perturb the distribution µ(.) to decrease the marginal probabilities, this is very we crucially
use the fact that {v1, . . . , vm} contains k disjoint bases. Let T1, . . . , Tk be these bases.

The idea is to use the maximum entropy convex program to assign weights w(i) to each vector vi with and
then to choose each basis T with probability µ′(T ) = µ(T )

∏
i∈T w(i). Such a distribution is an external

field operator on µ, so µ′ is strong Rayleigh. The only nontrivial step is to choose the weights such that the
marginal probability of each vector is at most O(1/k). To do that, we use the maximum entropy convex
program.

min
∑
T

µ(T )w(T ) logw(T )

subject to
∑
T :i∈T

µ(T )w(T ) = 1/k ∀i ∈
k⋃
i=1

Ti,

p(T ) ≥ 0.

(15.1)

Since T1, . . . , Tk are k disjoint bases the point T1

k + · · ·+ Tk
k is inside the convex hull of the indicator vectors

of the all bases of {v1, . . . , vm}. So, the above convex program is feasible. To make sure that the Sleator
conditions hold we need to make sure that the point T1

k + · · ·+ Tk
k is in the interior of this convex hull; that

is achievable by slightly moving this point away from the faces of the polytope.

Using KKT conditions similar to Lecture 7 we can show that the optimum w(.) is a product distribution,
that is we can assign nonnegative weights to the vectors such that for any base T , w(T ) =

∏
i∈T w(i).

An implication of the above corollary is that if a graph G has edges with effective resistance very close to 1
but in any cut of G there are several edges with small effective resistance, then G has a spectrally thin tree.

Corollary 15.8. Given a graph G = (V,E), let F = {e : Reff(e) ≤ ε}. If (V, F ) is a k-edge connected
subgraph of G, then G has a spanning tree T ⊆ F such that

LT � O(ε+ 1/k)LG.

Proof. Let ve = L
†/2
G be for each e ∈ F . Then, by the definition of F , for each edge e ∈ F ,

‖ve‖2 = beL
†
Gbe = Reff(e) ≤ ε.
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In addition, ∑
e∈F

vev
ᵀ
e = L

†/2
G

(∑
e∈F

beb
ᵀ
e

)
L
†/2
G = L

†/2
G LFL

†/2
G � L†/2G LGL

†/2
G = In−1,

where the matrix inequality follows by the fact that for any symmetric matrix C, if A � B then CAC � CBC.
Now, by Corollary 15.7

As we will see in the future lectures, the above corollary is a major tool in the recent improved bounds on
the integrality gap of the Held-Karp LP relaxation for Asymmetric TSP.

15.2 Expected Characteristic Polynomial

The general strategy to prove Theorem 15.3 is similar to what we did in the last lecture. First, we show that

Edet(tI − r1rᵀ1 − · · · − rmrᵀm)

is a real rooted polynomial, then we show that there is a point in the support of the independent distribution
whose largest root is at most the largest root of the above polynomial. Finally, we use an extension of the
barrier argument to upper bound the the maximum root of the above expected characteristic polynomial is
small.

In this section we write the expected characteristic polynomial in terms of (multivariate) differential opera-
tors. Let us open up the above polynomial. Using Theorem 3.2 of Lecture 3 we can write

Edet(tI − r1rᵀ1 − · · · − rmrᵀm) =

d∑
k=0

td−k(−1)kE

 ∑
S∈([m]

k )

det
k

(∑
i∈S

rir
ᵀ
i

)
=

d∑
k=0

td−k(−1)k
∑

S∈([m]
k )

Edet
k

(∑
i∈S

rir
ᵀ
i

)
(15.2)

Note that the above identities crucially use that each rir
ᵀ
i is a rank 1 matrix. Observe that similar to the

previous lecture each term Edetk(
∑
i∈S rir

ᵀ
i ) is a linear function of Erirᵀi . Therefore, similar to the previous

lecture, the above equation does not depend on the actual vectors in the support of r1, . . . , rm. However,
the previous analysis was significantly easier, we had Edetk(

∑
i∈S rir

ᵀ
i ) = d!/(d− k)! for any set S of size k

because Erirᵀi = I for all i. This made the description of the mixed characteristic polynomial simpler.

Suppose for each 1 ≤ i ≤ m,

ri =


vi,1 with prob pi,1

vi,2 with prob pi,2
...

vi,`i with prob pi,`i .

If we use a univariate mixed characteristic polynomial,

f(D) det(tI − Er1rᵀ1 − · · · − Ermrᵀm).

for some differential operator f(D), we get k-th order determinants involving multiple vectors in the support
of a single random vector ri, e.g., det3(v1,1v

ᵀ
1,1 + v1,2v

ᵀ
1,2 + v2,1v

ᵀ
2,1). But there is no such term in (15.2). So,

we use multivariate polynomials to eliminate any such term. Here is the idea: Suppose we scale every vector
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in the support of ri with an indeterminant zi. Then, any bad term will have indeterminants with exponents
more than 1, for example the above det3(.) will scale by z21z2. Now, we can just eliminate any non-multilinear
monomial, simply by differentiating and zeroing out the indeterminants, e.g., if we differentiate by ∂1∂2 and
the we let z1 = z2 = · · · = 0 then the monomial z21z2 will map to zero.

We use the following mixed characteristic polynomial

m∏
i=1

(1− ∂i) det(tI − z1Er1rᵀ1 − · · · − zmErmrᵀm)
∣∣∣
z1=···=zm=0

,

where as usual ∂i = ∂/∂zi. Now, for any set S ⊆ [m] of size k (suppose S = {1, 2, . . . , k} after renaming the
vectors) we have(

k∏
i=1

∂i

)
det

(
tI −

m∑
i=1

ziErirᵀi

)∣∣∣
z1=···=zm=0

= td−k
∑

j1∈[`1],...,jk∈[`k]

(
k∏
i=1

pi,jj

)
det
k

(
k∑
i=1

vi,jiv
ᵀ
i,ji

)

= td−kEdet
k

(
k∑
i=1

rir
ᵀ
i

)
,

where the second identity uses the independence of r1, . . . , rk. The RHS is exactly what we had in (15.2).
So, we get the following lemma.

Lemma 15.9. If r1, . . . , rm are independent random vectors then

Edet(tI − r1rᵀ1 − · · · − rmrᵀm) =

m∏
i=1

(1− ∂i) det(tI + z1Er1rᵀ1 + · · ·+ zmErmrᵀm)
∣∣
z1=···=zm=0

.

We call the polynomial in the RHS the mixed characteristic polynomial and we denote it by I[Er1rᵀ1 , . . . ,Ermrᵀm](t).

Remark 15.10 (Computability of Mixed Polynomial). It turns out that the coefficients of the mixed char-
acteristic polynomial can be #P-hard to compute exactly. Because of that the proof that we elaborate in this
lecture is not algorithmic. The #P-hardness follows by carefully choosing the random vectors r1, . . . , rm such
that the coefficients of the expected characteristic polynomial are the number matchings of sizes 1, . . . ,m in a
bipartite graph of 2m vertices. Here, we do not give more details and we refer interested readers to [MSS13a].

We can extend the above lemma and write the expected characteristic polynomial when the vectors r1, . . . , rm
are coming from a strong Rayleigh distribution.

Lemma 15.11. For v1, . . . , vm ∈ Rd and a homogeneous strong Rayleigh distribution µ : 2[m] → R+,

tdµ−dET∼µ

[
det

(
t2I −

∑
i∈T

2viv
ᵀ
i

)]
=

m∏
i=1

(1−∂2i )

(
gµ(t+ z1, . . . , t+ zm) · det

(
tI +

m∑
i=1

ziviv
ᵀ
i

))∣∣∣∣
z1=···=zm=0

,

where gµ is the generating polynomial of µ (see Lecture 11 for the definition), and dµ is the degree of gµ, or
equivalently the size of the samples of µ.

We will use µ[v1, . . . , vm](t) to denote the polynomial in the RHS of the above. Let us open up the LHS of
the above equation.

ET∼µ

[
det(tI −

∑
i∈T

viv
ᵀ
i )

]
=

dµ∑
k=0

tdµ−k(−1)k
∑

S∈([m]
k )

PT∼µ [S ⊆ T ] det
k

(∑
i∈S

viv
ᵀ
i

)
.
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Note that because of the (negative) dependence between the underlying elements of µ, we can not simply
write a term P [T ∼ µ]S ⊆ T detk(

∑
i∈S viv

ᵀ
i ) as expectation of an independent distribution. The idea is to

note that PT∼µ [S ⊆ T ] is simply the coefficient of zS in the polynomial gµ(t1 + z), and, detk(
∑
i∈S viv

ᵀ
i )

is the coefficient of zS in det(tI +
∑m
i=1 ziviv

ᵀ
i ). Since gµ(t1 + z) and det(tI +

∑m
i=1 ziviv

ᵀ
i ) are multilinear

polynomials, if we apply take the partial derivative
∏
i∈S ∂

2
i and then we zero out all variables, the product

of the above two terms survive,

∏
i∈S

∂2i (gµ(t+ z1, . . . , t+ zm) · det(tI +

m∑
i=1

ziviv
ᵀ
i )) = td+dµ−2kPT∼µ [S ⊆ T ] · det

k

(∑
i∈S

viv
ᵀ
i

)
.

The above lemma simply follows by taking the sum over all sets of size at most dµ.

Let us give an explicit example of µ[v1, . . . , vm](t).

Example 15.12. Let G be the ` dimensional hypercube, µ be the uniform distribution on all spanning trees

of G and vei = L
†/2
G bei for any edge ei. Let Y be the transfer current matrix that we studied in the first few

lecture, i.e., Yei,ej = beiL
†
Gbej . Then, for any set S of k edges,

det
k

(∑
ei∈S

veiv
ᵀ
ei

)
= det(YS) = PT∼µ [S ⊆ T ] .

Therefore,

ET∼µ

[
det(tI −

∑
ei∈T

veiv
ᵀ
ei)

]
=

n−1∑
k=0

tn−1−k(−1)k
∑

S∈([m]
k )

det(YS)2.

For example, for k = 1, the inner sum in the RHS is equal to
∑
e Reff(e)2. It turns out that although we

know a lot about the effective resistance of edges and their sums, we know very little about sum of square of
effective resistance (or in general

∑
(S∈[m]

k ) det(YS)2). In part (c) of Problem 4 of Assignment 2 we proved

upper bounds on sum of square of effective resistance of edges in a k connected graph. That is one of the few
examples that we know how to analyze these sums, but there is a lot to be done in this direction.

15.3 Interlacing

First, observe that the mixed characteristic polynomial I[A1, . . . , Am](t) is real rooted for any set of matrices
A1, . . . , Am. This simply follows by the closure properties of real stable polynomials that we discussed in
Lecture 10. First,

det(tI + z1A+ · · ·+ zmAm)

is real stable by Lemma 10.10. Second,

m∏
i=1

(1− ∂i) det(tI + z1EA1 + · · ·+ zmAm)

is real stable by the closure property of the operators 1− ∂i. Finally, I[A1, . . . , Am](t) is real stable just by
the closure of specialization operators, i.e., z1 = · · · = zm = 0 preserves real stable. Since I[A1, . . . , Am](t)
is univariate, it must be real rooted.

Lemma 15.13. For any PSD matrices A1, . . . , Am, I[A1, . . . , Am](t) is real rooted.
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Similarly, we can argue that µ[v1, . . . , vm](t) is real rooted. To start recall that the product of any two real
stable polynomials is real stable, since µ is strong Rayleigh, gµ is real stable, so

gµ(t+ z1, . . . , t+ zm) · det(tI + z1v1v
ᵀ
1 + · · ·+ zmvmv

ᵀ
m)

is real stable. Note that if p(z1, . . . , zm) is a real stable polynomial then so is p(t+ z1, . . . , t+ zm) for a new
variable t. Therefore, µ[v1, . . . , vm](t) is real stable by the closure property of 1− ∂2i operators. Take a look
at Lecture 11 to see general form of differential operators that preserve real stability.

The following is the main statement of this section

Lemma 15.14. With positive probability,

λmax(det(tI − r1rᵀ1 − · · · − rmrᵀm)) ≤ λmax(Edet(tI − r1rᵀ1 − · · · − rmrᵀm)).

Similar to the previous lecture we iteratively round r1, . . . , rm. So, we show the first step and the rest simply
follows by induction.

Lemma 15.15. With positive probability,

λmax(Er2,...,rm det(tI − r1rᵀ1 − · · · − rmrᵀm)) ≤ λmax(Er1,...,rm det(tI − r1rᵀ1 − · · · − rmrᵀm)).

Similar to the previous lecture all we need to do is to show that the polynomials Er2,...,rm det(tI−r1rᵀ1−rmrᵀm)
have a common interlacer and then the above lemma follows by Claim 14.13 of Lecture 14.

To show that these polynomials have a common interlacer we use Theorem 10.25 (Lecture 10) by Dedieu.

Theorem 15.16. Two real rooted polynomials p, q have a common interlacer if and only if for any a, b ≥ 0,
ap+ bq is real rooted.

Note the difference with Obrechkoff, Dedieu theorem that we used in the last lecture, if ap+ bq is real rooted
for any a, b ∈ R then p, q are interlacing. In other words, one can read the above theorem as that real rooted
polynomials that interlace a polynomial p form a convex set.

Let v1.1, . . . , v1,`1 be the vectors in the support of r1. By the above theorem all we need to show is that for
any nonnegative numbers a1, . . . , a`1 ,

`1∑
i=1

a1,iEdet(tI − v1,ivᵀ1,i − r2r
ᵀ
2 − · · · − rmrᵀm),

is real rooted. But then we can simply define a new random vector r′1 where r′1 = v1,i with probability a1,i.
Then by Lemma 15.13, I[Er′1r′1

ᵀ
, . . . ,Ermrᵀm](t) is real rooted so the above polynomial is real rooted.

15.4 Multivariate Barrier Argument

In this section we upper bound the largest root of the mixed characteristic polynomial.

Lemma 15.17. Let A1, . . . , Am be PSD matrices such that
∑m
i=1Ai = I and Tr(Ai) ≤ ε for all i. Then the

largest root of I[A1, . . . , Am](t) is at most (1 +
√
ε)2.

First observe that

I[A1, . . . , Am](t) =

m∏
i=1

(1− ∂i) det

(
m∑
i=1

ziAi

)∣∣∣∣
z1=···=zm=t

.
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Figure 15.1: An example of the roots of a degree 4 homogeneous real stable polynomial in R2.

This is because tI +
∑m
i=1 ziAi =

∑m
i=1(zi + t)Ai, so instead of letting zi = 0 we can let zi + t = t.

The polynomial
m∏
i=1

(1− ∂i) det

(
m∑
i=1

ziAi

)
is real stable, so for vector e ∈ Rm>0 if we substitute z = x − te we get a real rooted polynomial. To prove
the above lemma we need to find the maximum root for e being the all 1 vector and x = 0.

The general strategy is similar to what we had in the previous lecture. First of all, the polynomial

det

(
m∑
i=1

ziAi

)

is a real stable homogeneous polynomial. So, the largest root along the all 1 vectors is zero. The simple way
to see this is to note that A1 + · · ·+Am = I so if z1 = · · · = zm = t > 0, then det(z1A1 + · · ·+ zmAm) = td.
But, indeed any homogeneous real stable polynomial has the positive orthant in the hyperbolicity cone of the
all 1 vector. So, any homogeneous real stable polynomial p(z) has no root for any z ∈ R>0. See Figure 15.1
for the structure of the roots of a homogeneous real stable polynomial in R2.

When we apply the 1−∂i operators, we loose the homogeneity and the largest root can get bigger and bigger.
In the last lecture we proved that for any real rooted polynomial p, the largest root of (1 −D)p is at most
1/(1 − α) bigger than the largest root of p. Such a bound is not good in our case because 1/(1 − α) ≥ 1.
Since we apply m differential operators such a bound can only give an upper bound of m on the largest root.

Here, we will use the fact that indeed we are dealing with multivariate (real stable) polynomials. So, the
upper barrier should not be a single number, because along every direction along the positive orthant we
see a different set of roots. Instead, the upper barrier of a real stable polynomial p(.) will be a point in
z ∈ Rm such that for any point z′ ≥ z, p(z′) > 0, where z′ ≥ z if for all 1 ≤ i ≤ m, z′i ≥ zi. For example, in
Figure 15.1, the all zero vector is an upper barrier. The goal is to show that for a carefully chosen starting
upper barrier z = t1 of det(z1A1 + · · ·+ zmAm) whenever we apply a 1− ∂i operator all we need to do is to
shift the upper barrier along the direction 1i by 1/(1− α), for an appropriate choice of α. If we prove that
then by the time that we get to

∏m
i=1(1 − ∂i) we have moved the upper barrier by 1/(1 − α) along the all

ones direction. This means that the largest root of the expected characteristic polynomial is smaller than
1/(1− α) + t. At the end of the day we will have t =

√
ε+ ε and α = ε/t ≈

√
ε.
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We will use barrier functions analogous to what we had in the last lecture. For any 1 ≤ i ≤ m we define

Φpi (z) =
∂ip(z)

p(z)
.

Fix z2, . . . , zm, then p(z) is a univariate real rooted polynomial of z1. So,

q(z1) = p(z1, z2, . . . , zm) =

d∏
i=1

(z1 − λi).

Then, similar to the previous lectures,

Φpi (z) =

d∑
i=1

1

z1 − λi
.

We will go over the details, we just elaborate new ideas of the proof. The main lemma of this part of the
proof is the following.

Lemma 15.18. Suppose p(z1, . . . , zm) is a real stable polynomial and z is an upper barrier of p. If

δ ≥ 1

1− Φpj (z)
,

then
Φ

(1−∂j)p
i (z + δej) ≤ Φpi (z).

We emphasize that once we apply 1− ∂j just by shifting the upper barrier along 1j a little bit we can make
sure that none of the barrier functions increase. We will not talk about the proof of the above lemma because
of the similarity with the last lecture, instead we prove an essential step of the proof, namely monotonicity
and convexity of barrier functions.

Recall that the univariate barrier arguments that we discussed in the last two lectures we proved a univariate
version of the above lemma where we used two essential properties of the barrier functions, monotone
decreasing, and convexity. The proof of the above lemma also exploits these two properties, but we need to
show it between every pair of variables.

Lemma 15.19. Suppose p is real stable and z is an upper barrier of p. Then for all 1 ≤ i, j ≤ m and δ ≥ 0,

Φpi (z + δej) ≤ Φpi (z),

Φpi (z + δej)− δ∂jΦpi (z + δej) ≤ Φpi (z).

Note that if i = j then the above lemma is almost trivial, because 1/t − λi is a monotone decreasing and
convex function as we also argued in the last lecture. In particular, although p is multivariate, in this case we
can just think of p as a univariate real rooted polynomial and the same proof follows. So, suppose i 6= j. The
above lemma is the main place that we use the real stability of the polynomial p throughout the multivariate
barrier argument. Roughly speaking, the above lemma follows from nice properties of the structure of the
roots of real stable polynomials Take a look at Figure 15.2 for an example. Perhaps it is easiest to observe the
above properties just by looking at the largest root of p. It is not hard to see that the diagram of the largest
roots is convex (this is the same as the convexity of the hyperbolicity cone that we discussed in Lecture 10).
Because of that when we move away from the origin along one coordinate, the largest root decreases.

There are several proof of Lemma 15.19. Perhaps the most elementary one is by Tao [Tao14]. The proof that
we discuss here uses the characterization of real stable bivariate polynomials that we discussed in Lecture
10.
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Figure 15.2: In this figure the barrier function Φp2 at point z is simply
∑m
i=1

1
z2−λi . Observe that when we

increase z1, λi decreases for all i, so Φpi (z + δej) is a decreasing function of δ.

Lemma 15.20. If p(z1, z2) is a bivariate real stable polynomial of degree exactly d, then there exist d × d
PSD matrices A, B and a symmetric matrix C such that

p(z1, z2) = ±det(z1A+ z2B + C).

Now, we are ready to prove Lemma 15.19. Proof of Lemma 15.19. Let z be the upper barrier, fix all variables
except zi, zj and let

±det(ziBi + zjBj + C) = p(z1, . . . , zm).

First, we argue that ziBi + zjBj +C � 0. First, note that since p is a degree d polynomial ziBi + zjBj must
have full rank. So, ziBi + zjBj � 0. Now, if ziBi + zjBj + C 6� 0, then we can slightly increase zi, zj and
make the smallest eigenvalue 0 which makes the determinant 0. But, because z is an upper barrier that is
not possible, so ziBi + zjBj + C � 0.

Let M = ziBi + zjBj + C and note that M an invertible mapping of zi, zj . Now, let us write down Φpi (z).

Φpi (z) =
∂ip(z)

p(z)

=
∂i det(M)

det(M)

=
det(M) Tr(M • ∂iM)

det(M)
= Tr(M •Bi).

In the third equality we used part (b) of Problem 4 of Assignment 3. Also, observe that the above shows
that the barrier function is nonnegative because Tr(AB) ≥ 0 for any two PSD matrices (see Problem 2 of
Assignment 2).

Now, to prove the monotonicity it is enough to differentiate the above function

∂jΦ
p
i (z) = Tr(M •Bi)

= Tr(−M−1∂jMM−1Bi)

= −Tr(M−1BjM
−1Bi).

The second equality uses Lemma 15.21 below. But the RHS is always nonpositive. This is because
M−1BjM

−1 � 0 and Bi � 0, so Tr(M−1BjM
−1Bi) ≥ 0. So, Φpi (z) is a nonincreasing function of j.
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Finally, to prove the convexity we show that the derivative of the above is nonnegative.

∂j Tr(−M−1BjM−1Bi) = −Tr(∂j(M
−1Bj)M

−1Bi)− Tr(M−1Bj∂j(M
−1Bi))

= Tr(M−1BjM
−1BjM

−1Bi) + Tr(M−1BjM
−1BjM

−1Bi).

Similar to above, M−1(Bj(M
−1)Bj)M

−1 � 0 and Bi � 0. So, both of the above traces are nonnegative.

Lemma 15.21. For an invertible matrix A which is a differentiable function of t,

∂A−1

∂t
= −A−1(∂tA)A−1.

Proof. Differentiating both sides of the identity A−1A = I with respect to t, we get

A−1
∂A

∂t
+
∂A−1

∂t
A = 0.

Rearranging the terms and multiplying with A−1 gives the lemma’s conclusion.
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