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Lecture 18 & 19: MSS and Spectrally Thin Trees
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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this lecture we use the extension of Marcus, Spielman and Srivastava result to prove an upper bound of
polyloglog(n) on the integrality gap of the Held-Karp relaxation for ATSP. The materials of this lecture is
based on the work of Oveis Gharan and Anari [AO15]. The following is the main technical theorem.

Theorem 18.1. Any k-edge connected graph has a O(polyloglog(n)/k)-thin spanning tree.

Throughout this lecture we assume that G is an (unweighted) k connected graph.

The following theorem that follows from an extension of MSS that we discussed in Lecture 15 is our main
tool.

Theorem 18.2. Given a graph G = (V,E) and a set F ⊆ E such that (V, F ) is k-edge connected. If we

assign a vector xe to any edge e ∈ F such that ‖xe‖2 ≤ ε and∑
e∈F

xex
ᵀ
e � I,

then there exists a tree T ⊆ F such that ∥∥∥∥∥∑
e∈T

xex
ᵀ
e

∥∥∥∥∥ ≤ O(ε+ 1/k).

Let us start with some simple ideas. First, let xe ∝ be normalized such that
∑
e xex

ᵀ
e � I, e.g., let xe = L

†/2
G be.

Then, by the above theorem, if for every edge

‖xe‖2 = beL
†
Gbe = Reff(e)

is small, then G has a spanning tree T where∥∥∥∥∥∑
e∈T

xex
ᵀ
e

∥∥∥∥∥ =
∥∥∥L†/2G LTL

†/2
G

∥∥∥ ≤ O(1/k + max
e

Reff(e)).

Such a tree is (spectrally) thin.

Unfortunately, the above idea does not work in general because many edges of G may have large effective
resistance. In other words, k-connectivity does not imply small effective resistance. In fact, the converse of
this is true as we saw in Problem 4 of Assignment 2.

The second idea is to utilize Theorem 18.2, and let F be the edges of small effective resistance. It follows
that if F has several edges in every cut, then G has a spectrally thin tree. Such a claim is not totally out of
the question. This is because the average effective resistance of the edges of G is O(1/k).

avge Reff(e) =
n− 1

|E|
≤ n− 1

nk/2
= O(1/k),

18-1
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Figure 18.1: In this figure every vertical edge has effective resistance about 1 − k2/n which is about 1 for
small values of k. In other words, if we send one unit of electrical flow from u1 to v1 then at least 1− k2/n
of the flow would go along the edge (u1, v1), or in other words the energy of the flow is very close to 1. This
is because Reff(v1, vn/k) = Reff(u1, un/k) ≈ n/k2. Although there are k parallel paths from u1 to v1 they
are very far from each other so Reff(u1, un/k) is very large. So, the above graph has no spectrally thin tree

where the inequality uses that the degree of every vertex is at least k since G is k-connected. So, by choosing
the right constants, we can make sure that F has at least 99% of the edges of G. Although this does not
show that F has at least Ω(k) edges in every cut, it shows that F has an Ω(k)-connected subgraph with at
most n/10 connected components. Using Theorem 18.2 we can show that G has a linear size spectrally thin
forest. Recall that we already proved this statement in Lecture 13 using the techniques of [BSS14].

Unfortunately, we can not expect F to have at several edges in every cut. Consider the graph Figure 18.1.
In this graph every vertical edge has effective resistance very close to 1. So, there is a cut with no edge of
small effective resistance. We can make this example much worse by constructing a k-connected graph with
vertex set V = V1∪V2∪· · ·∪V` for ` ≈ n/poly(k) such that every edge between Vi’s have effective resistance
very close to 1.

As we mentioned in Lecture 13, when there are no edges of small effective resistance in a cut (S, S) of G
then G has no spectrally thin tree. For example, in the graph of Figure 18.1 say

T = {(u1, v1), (u1, u2), . . . , (un−1, un), (v1, v2), . . . , (vn−1, vn)}. (18.1)

Although T is 1/k-(combinatorially) thin, it is only 1 − k/n-spectrally thin. Consider the vector x corre-
sponding to red numbers written next to each vertex. It is easy to see that

xᵀLTx ≈ 1 +O(k/n),

xᵀLGx ≈ 1 +O(k2/n).

So, T is not spectrally thin.

In general, as alluded to in Lecture 13, the spectral thinness of any spanning tree is at least the maximum
effective resistance of edges of T .

Lemma 18.3. For any graph G = (V,E), the spectral thinness of any spanning tree T ⊆ E is at least
maxe∈T ReffLG

(e).

Proof. Say the spectral thinness of T is α, i.e., LT � α · LG. Obviously, by the downward closedness of
spectral thinness, the spectral thinness of any subset of edges of T is at most α, so, for any edge e ∈ T ,

beb
ᵀ
e = Le � LT � α · LG.
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Figure 18.2: Here we added k shortcut edges between each consecutive pair of vertical edges of Figure 18.1.
The size of every cut is at most twice of what it was before. But, the effective resistance of every black edge
is O(1/

√
k). It is easy to see that in this graph the Hamiltonian path vn, vn−1, . . . , v1, u1, u2, . . . , un is an

O(1/
√
n) spectrally thin tree.

But, the spectral thinness of an edge is indeed its effective resistance. More precisely, multiplying L
†/2
G on

both sides of the above inequality we get

L
†/2
G beb

ᵀ
eL
†/2
G = L

†/2
G L{e}L

†/2
G � α · L†/2G LGL

†/2
G � α · I.

Since the matrix in the LHS has rank one, its only eigenvalue is equal to its trace; therefore,

Tr(L
†/2
G beb

ᵀ
eL
†/2
G ) = bᵀeL

†
Gbe = Reff(e) ≤ α.

So, to prove Theorem 18.1 we have to get rid edges with large effective resistance. The basic idea is simple
and similar to what we discussed in the last lecture. Observe that edges of G have small effective resistance
if there are many short paths between the endpoints of each edge of G, in that case when we send on unit of
electrical flow between the endpoints of an edge the electricity would distribute equally on the short paths
so the energy would be much smaller than 1 (see Lectures 4 and 5 for the properties of effective resistance).
On the other hand, k-connectivity is equivalent to having many edge disjoint paths between each pair of
vertices of G. Unfortunately, these paths may be long, as in the example of Figure 18.1, so the effective
resistances are not necessarily small. The basic idea is to use a semidefinite programming to shortcut the
long paths in order to reduce the effective resistances while not changing the structure of cuts of G. This is
analogous to the correction of the cycle graph that we talked about in Lecture 17.

For example, if we add k shortcut edges between each consecutive pair of vertical edges as shown in Fig-
ure 18.2, then the effective resistance of every vertical edge will be O(1/

√
k). Call this new graph H. In

addition, the size of every cut in H is at most twice of what it was in G. Now, the tree T of (18.1) that was
not a spectrally thin tree with respect to G, is O(1/

√
k) spectrally thin with respect to H

LT � O(1/
√
k)LH .

But, since the size of every cut of H is at most twice of G, LT is also O(1/
√
k) (combinatorially) thin with

respect to G.

Now, the main question that we should answer is how to choose these shortcut edges, and if we can always
reduce the effective resistance of edges without violating the size of the cuts.

18.1 Bounded Degree Spanning Trees

In this section we use the above idea to give a simple proof that any k-edge-connected graph has a tree that
is thin only with respect to the degree cuts.
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Lemma 18.4. Any k-edge connected graph G = (V,E) has a spanning tree T ⊆ E such that for any v ∈ V ,

dT (v) ≤ O(1/k)dG(v),

where dT (v), dG(v) are the degree of v in T and G respectively.

Let T1, . . . , Tk/2 be k/2 edge disjoint spanning trees of G and let z be the average of these trees,

z =
1

k/2

k/2∑
i=1

1Ti
.

Note that z is in the spanning tree polytope by definition.

In two beautiful works Goemans [Goe06] and Lau-Singh [LS15] show that for any point z in the spanning
tree polytope there is an integral spanning tree such that for any vertex v,

dT (v) ≤ 1 +

⌈∑
e∼v

z(e)

⌉
.

Since the fractional degree of every vertex in z is O(dG(v)/k) this proves the above lemma. The seminal
work of [LS15] exploit the iterated rounding method in a clever way. Here, we would like to give a spectral
proof of the above lemma using the technique that we mentioned in the previous section.

The idea is to add edges to G and construct a new graph H where the effective resistance of every edge of
G is O(1/k) in H and then use Theorem 18.2. Since we are only interested in thinness with respect to the
degree cuts it is enough that

|EH({v}, {v})| ≤ 2|EG({v}, {v})|,
for every vertex v. This makes our life much very easy. Let D = (V,E′) be a complete graph on V where
the weight of every edge is k

n−1 and let H = G+D, i.e., the edges of H is just a union of the edges of G,D.

First, since the (fractional) degree of every vertex is k in D, and by k-connectivity of G the degree of every
vertex of G is at least k, the above equation holds obviously. Secondly, the effective resistance of each pair
of vertices in D is O(1/k). To see that first note that the effective resistance of each pair of vertices in a
complete graph on n vertices is O(1/n) because there are n−1 edge disjoint paths of length at most 2. Since
D is k/(n− 1) fraction of a complete graph, the effective resistances are O(1/k). But, by the monotonicity
property of effective resistance, the effective resistance of each pair of vertices in G+D can only be smaller,
so for any edge e ∈ E,

ReffH(e) ≤ O(1/k).

Now, let xe = (LG + LD)†/2be for any edge e ∈ E. Then

‖xe‖2 = be(LG + LD)†be ≤ O(1/k),

and ∑
e∈E

xex
ᵀ
e = (LG + LD)†/2

∑
e∈E

beb
ᵀ
e (LG + LD)†/2 = (LG + LD)†/2LG(LG + LD)†/2 � I.

Therefore, by Theorem 18.2, there is a spanning tree T ⊆ E such that

LT � O(1/k)LH .

Since, the degree of every vertex in H is k+dG(v)/k, the degree of every vertex of T is at most O(1+dG(v)/k)
as desired.

Note that although the tree T is O(1/k)-(spectrally) with respect to H it may have almost all edges of some
of the cuts of G. This is because there is no guarantee on the sizes of the cuts of H which are not singleton
cuts.
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18.2 The Main Idea

The main idea is to construct a graph D such that the value of every cut D(S, S) is at most G(S, S)

LD �C LG

and such that in every cut of G there are at least k edges with small effective resistance with respect to D.
Recall that similar to the previous lecture we write, A �C B to denote

1ᵀ
SA1S ≤ 1ᵀ

SB1S ,∀S ⊆ V.

Then, we let F ⊆ E to be the edges of small effective resistance and we use D to assign a vector xe =
(LD+LG)†/2be to every edge of G. It is easy to see that these vectors have small norm and are sub-isotropic.
So, by Theorem 18.2 there is a spanning tree T that is spectrally thin with respect to D +G,

LT � O(1/k)LG + LD,

But since LD �C LG, any spectrally thin tree of G+D is combinatorially thin with respect to G,

LT �C O(1/k)LG.

We would like to think of D as a demand graph of a multicommodity flow with congestion 1 on the edges of
G. This is how we bypass the spectral thinness barrier. The graph D symmetrizes the spectrum of G, i.e.,
reduces the effective resistance of edges while preserving its L1 structure, i.e., the cut structure, Although
G does not necessarily have a spectrally thin tree, G+D does. This is analogous to using multicommodity
flows to bypass the limitation of Cheeger’s inequality in approximating the sparsest cut as we discussed in
the last lecture.

The following is the main theorem of [AO15] that we would like to prove.

Theorem 18.5. For any k & log(n)-connected graph G = (V,E), there is a PD matrix 0 ≺ D �C LG and
a set F ⊆ E such that (V, F ) is Ω(k)-connected and for any edge e ∈ F ,

ReffD(e) = bᵀeD
−1be ≤ Õ(1/k).

Note that in the above theorem D is not a graph, it is rather a PD matrix. It turns out that for our purpose
of constructing vectors xe as the input of Theorem 18.2 that is enough, we can simply let xe = (LG+D)−1be.
We will see later how generalizing to a matrix can help us proving the above theorem.

The lower bound Ω(log(n)) on k is because of a limitation of the techniques in [AO15]. It is expected that
the above theorem holds for any value of k not depending on n. Such a result would give improved bound
on the integrality gap of the Held-Karp relaxation.

It is now evident that if the optimum value of the above theorem implies Theorem 18.1 using Theorem 18.2.
So, from now on we will only talk about the above theorem.

The main question that we need to answer is how to construct D,F or to prove their existence. Building the
ideas of ARV, we can write a SDP to minimize the effective resistance by finding a multicommodity with
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congestion 1 on the edges of G. Let kmin{.} be the k-th smallest number in a set.

min γ

subject to kmin{e ∈ (S, S) : bᵀeL
†
Dbe} ≤ γ, ∀S ⊂ V,

LD =
∑
u,v

∑
P∈Pu,v

yPLu,v∑
P :e∈P

yP ≤ 1 ∀e,

yP ≥ 0 ∀P.

(18.2)

Unfortunately, the above program is not convex. First, note that bᵀeL
†
Dbe is a convex function of LD as we

saw in Problem 5 of Assignment 2. But the minimum (or the kmin) of a set of number is a concave function.
So, let us relax this constraint by reducing the maximum effective resistance of edges.

min γ

subject to bᵀeL
†
Dbe ≤ γ, ∀e ∈ E,

LD =
∑
u,v

∑
P∈Pu,v

yPLu,v∑
P :e∈P

yP ≤ 1 ∀e,

yP ≥ 0 ∀P.

Note that bᵀeL
†
Dbe ≤ γ if and only if

γ · bᵀebe = γ · Le � LD.
So, in a sense the above convex program is very similar to the dual of ARV. We want to route a flow in G
such that every edge is spectrally thin with respect to the demand graph. In ARV we wanted to route a flow
such that the complete graph Kn is spectrally thin with respect to the demand graph.

Since we are looking for existential results we can simplify the above SDP, instead of looking for a D that is
routable in G we can simply impose a constraint LD �C LG. In addition, as alluded to above, D does not
have to be a graph, it is sufficient that D is PD.

min γ

subject to max
e∈E

bᵀeD
−1be ≤ γ,

D �C LG,

D � 0.

(18.3)

Unfortunately, the optimum value of the above SDP can be very close to 1 even if G is log(n)-connected. As
we will see this is mainly because we relaxed the kmin{.} constraint to a max{.}. If G is the k-connected
graph shown in Figure 18.3, and k ≤ h = log(n), for any PD matrix D �C LG, there is an edge with effective
resistance very close to 1.

Theorem 18.6. The optimum of (18.3) is Ω(1) for the k-connected graph of Figure 18.3 when k ≤ log(n).

We prove the above theorem by constructing a solution of large value for the dual of (18.3). We emphasize
that the graph of Figure 18.3 is also a bad example for using electrical flows to solve maximum flow problems
as is done in the seminal work of Christiano, Kelner, Madry, Spielman and Teng [Chr+11]. If we send log(n)
units of electrical flow from vertex 0 to 2h then most of the flow would go through the long edges connecting
the two. So, the electrical flow has a congestion of log(n) where as the maximum flow would have a congestion
of 1.
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Figure 18.3: This graph has 2h+ 1 vertices labeled with {0, 1, . . . , 2h}. There are k parallel edges connecting
each pair of consecutive vertices. In addition, for any 1 ≤ i ≤ h and any 0 ≤ j < 2h−i there is an edge
{j · 2i, (j + 1) · 2i}.

18.3 The Dual of SDP (18.3)

In this section first we write the dual of (18.3) and then we use it to prove Theorem 18.6.

First, we show SDP (18.3) satisfies Slater’s condition, i.e., that (18.3) has a nonempty interior which implies
that the duality gap is 0. It is easy to see that D = 1

2LG + 1
3n2 J is a positive definite matrix that satisfies

all constraints strictly. In particular, since G is connected, for any set S, 1ᵀ
SLG1S ≥ 1, so

1

3n2
1SJ1S ≤

1

3
<

1

2
1ᵀ
SLG1S .

Therefore, 1ᵀ
SD1S < 1ᵀ

SLG1S for all S. Hence, Slater’s condition is satisfied, and the strong duality is
satisfied and the primal optimum (see Lecture 7 for more information).

For every t ∈ T we associate a Lagrange multiplier we corresponding to the constraint bᵀeD
−1be ≤ γ,

and for every set S we associate a nonnegative Lagrange multiplier yS corresponding to the constraint
1ᵀ
SD1S ≤ 1ᵀ

SLG1S . The Lagrangian is defined as follows:

g(w, y) = inf
D�0,γ

γ +
∑
e∈E

we
(
bᵀeD

−1be − γ
)

+
∑
S⊂V

yS(1ᵀ
SD1S − 1ᵀ

SLG1S)

Differentiating g(w, y) w.r.t. γ we obtain that ∑
e∈E

we = 1. (18.4)

Let

A := BᵀWB =
∑
e

webeb
ᵀ
e ,

Z :=
∑
∅⊂S⊂V

yS1S1
ᵀ
S .

where as usual B has the vectors be as its rows,

B =

 be1...
bem


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and W is the diagonal matrix of the edge weights.

Note that by definition A and Z are symmetric PSD matrices. So, the Lagrangian simplifies to

g(A,Z) = inf
D�0

A •D−1 + Z •D − Z • LG,

subject to
∑
e we = 1. Now, we find the optimum D for fixed A,Z. First, we can assume that A and Z

are nonsingular. This is without loss of generality by the continuity of g(.) and because the assumption∑
e we = 1 can be satisfied by adding arbitrarily small perturbations. Differentiating with respect to D we

obtain
D−1AD−1 = Z.

Since, A,D are nonsingular there is a unique solution to the above equation,

D = Z−1/2(Z1/2AZ1/2)1/2Z−1/2

This is the solution which makes A •D−1 = Z •D. It is easy to see such a solution is an optimal solution
[SLB74]. Using

D−1 = Z1/2(Z1/2AZ1/2)−1/2Z1/2,

we have

A •D−1 + Z •D = Tr(AZ1/2(Z1/2AZ1/2)−1/2Z1/2) + Tr(Z1/2(Z1/2AZ1/2)1/2Z−1/2)

= 2 Tr((Z1/2AZ1/2)1/2).

Therefore,
g(A,Z) = 2 Tr((Z1/2AZ1/2)1/2)− Z • LG

Let γ∗ be the optimum value of (18.3). By the strong duality,

γ∗ = sup
w,y≥0,

∑
e we=1

g(A,Z) = sup
w,y≥0,

∑
e we=1

2 Tr((Z1/2AZ1/2)1/2)− Z • LG.

To make the notation simpler, from now on we assume
∑
e w

2
e = 1 and we let W be the diagonal matrix of

these new weights that are square root of what we had before. With this notation

Z1/2AZ1/2 = Z1/2BᵀW 2BZ1/2.

Recall that for any (nonsymmetric) matrix C, the nonzero eigenvalues of CCᵀ are the same as the nonzero
eigenvalues of CᵀC (this follows from the SVD docomposition). So, the nonzero eigenvalues of Z1/2BᵀWWBZ1/2

are the same as the nonzero eigenvalues of W 1/2BZBᵀW 1/2. In addition, Z •LG scales linearly with y while
Tr((WBZBᵀW )1/2) scales with

√
y. Optimizing the scaling of y we have,

γ∗ = sup
w,y≥0,

∑
e w

2
e=1

2 Tr((WBZBᵀW )1/2)− Z • LG = sup
w,y≥0,

∑
e w

2
e=1

Tr((WBZBᵀW )1/2)2

Z • LG
.

Observe that although for a fixed W the quantity at the middle is convex, the RHS is no longer a convex
function, because we are maximizing a quadratic form. But, we would like to work with the RHS quantity
because it is scale free.
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Cut Metrics. Write Z = XᵀX where X ∈ R2n×n and each row of X corresponds to a vector yS1S for a
set S ⊆ V . Such a matrix X defines a weighted cut metric on the vertices of G. Let Xv be the v column of
X. We have

‖Xu −Xv‖1 =
∑
S

yS |1S(u)− 1S(v)| = P [u and v are in different sides] .

It is easy to see that any weighted cut metric can be embedded into an unweighted cut metric simply by
having multiple copies of each cut. For example, a cut metric of the form 3

41S1
+ 1

41S2
can be written as

follows (
3
41S1
1
41S2

)
=

1

4


1S1

1S1

1S1

1S2

 .

Since Z is scale free, we can drop the scaler 1/4. So, in general, we can assume X ∈ {0, 1}h×n for an h
possibly larger than 2n. To have a good intuition, the mapping X is embedding our graph into the vertices
of a giant hypercube. With such a normalization we have the following useful identity

‖Xu −Xv‖1 = ‖Xu −Xv‖22 , ∀u, v ∈ V. (18.5)

We can write the objective as follows

γ∗ = sup
w,

∑
w2=1,X∈{0,1}n×h

Tr((WBXᵀXBᵀW )1/2)2∑
u∼v ‖Xu −Xv‖2

where in the denominator we used that

Z • LG =
∑
u∼v
‖Xu −Xv‖2 ,

as we shown in the last lecture.

The Nuclear Norm. So, all we need to do is to relate Tr((WBXᵀXBᵀW )1/2) to the properties of the
mapping X. The main difficulty is to deal with the eigenvalues of the square root of WBXᵀXBᵀW.

First observe that the eigenvalues of (WBXᵀXBᵀW )1/2 are the same as the singular values of the matrix
XBᵀW (see Problem 4 of Assignment 4 for the properties of the singular values of a matrix). Unlike
symmetric matrices, Tr(XBᵀW ) is not equal to the sum of its singular values. Sum of the singular values of
a matrix is also known as the nuclear norm of that matrix and it has many applications in sparse recovery
and compressed sensing (see e.g., [RFP10]),

Tr((WBXᵀXBᵀW )1/2) = ‖XBᵀW‖∗ .

As mentioned above ‖XBᵀW‖∗ 6= Tr(XBᵀW ). But under the best rotation of the matrix in the space, the
trace will give us the sum of the singular values. See part (f) of Problem 4 of Assignment 4 for the proof.
That is we have,

‖XBᵀW‖∗ = sup
unitary U

U •XBᵀW

Therefore,

γ∗ = sup
w≥0,

∑
e w

2
e=1

X∈{0,1}h×n,unitary U

(U •XBᵀW )2∑
{u,v}∈E ‖Xu −Xv‖22
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Cauchy-Schwarz. Finally, we can translate U •XBᵀW into the metric language. Let e1, . . . , em be the
edges of G and let bei = 1ui − 1vi . The matrix XBᵀ has E columns where the i-th column is Xui −Xvi .
The matrix XBᵀW also has E columns where the i-th column is wei(Xui −Xvi).

XBᵀW =

(
we1(Xu1

−Xv1)

∣∣∣∣we2(Xu2
−Xv2)

∣∣∣∣ . . . ∣∣∣∣wem(Xum
−Xvm)

)
Therefore,

γ∗ = sup
w≥0,

∑
e w

2
e=1

X∈{0,1}h×n,unitary U

(
∑m
i=1 wei(UXui − UXvi)i)

2∑m
i=1 ‖Xui

−Xvi‖
2 , (18.6)

where (UXui
− UXvi)i denotes the i-th coordinate of the vectors UXui

− UXvi .

Finally, using the Cauchy-Schwarz inequality we can write

γ∗ = sup
w≥0,

∑
e w

2
e=1

X∈{0,1}h×n,unitary U

(∑
e∈E w

2
e

)
·
∑m
i=1(UXui

− UXvi)
2
i∑m

i=1 ‖Xui −Xvi‖
2

The other side of the above equality follows by letting

wei ∝ (UXui
− UXvi)i.

such that
∑
e w

2
e = 1. The following theorem follows.

Theorem 18.7. Let E = {e1, . . . , em} be the edges of G, where for each i, ei = {ui, vi}. The dual of (18.3)
is as follows

sup
X∈{0,1}h×n,

unitary U∈Rh×h

∑m
i=1(UXui

− UXvi)
2
i∑m

i=1 ‖Xui
−Xvi‖

2 = sup
X∈{0,1}h×n,

orthonormal ze1 ,...,zem

∑m
i=1〈zei , Xui

−Xvi〉2∑m
i=1 ‖Xui

−Xvi‖
2 . (18.7)

As a sanity check observe that the optimal value of the dual is always at most 1. This is because for any
edge and any unit vector zei by Cauchy-Shwarz,

〈zei , Xui −Xvi〉2 ≤ ‖Xui −Xvi‖
2
.

18.4 Intuitions on the Dual

In this section we give several intuitions on the properties of the dual and we will prove Theorem 18.6.

Two Player Game. It is instructive to think of a two player game: Say the first player chooses a matrix
D, or a demand graph of a multicommodity flow that is routable in G such that maxe ReffD(e) is small;
the second player wants to show that the maximum effective resistance is large w.r.t. D, so he chooses the
potential vector corresponding to the largest effective resistance as his proof. The optimum strategy for the
second player is to show that there are weights we for the edges and a set of vectors pe such that the sum of
the potential differences of the endpoints of all edges e scaled by we is large, i.e.,(∑

e

we〈pe, be〉

)2

is large. The second player encodes the potential vectors in the cut metric X and uses orthonormal vectors
ze to denote the coordinates of the potential vector chosen for each edge e. Note that the weights we are
not present because of an application of Cauchy-Shwarz inequality in (18.7).
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Geometric View. Let us also understand the dual geometrically. Since X is a cut metric, it maps the
vertices of G to a huge hypercube. Think of the z1, . . . , zm as the coordinate system of the space. The
objective is to find a coordinate system of the space such that the sum of the square of the projections of
the edges on the corresponding coordinates is as large as possible

max
orthonormal z1,...,zm

m∑
i=1

〈zei , Xui −Xvi〉2,

while the sum of the squared length of the edges under X is equal to 1.

The reason that we have a cut metric in the dual is because of the constraint

D �C LG

in the primal. If instead we had a multicommodity flow constraint, then analogous to ARV relaxation, in
the dual we would have had a L2

2 metric. Recall that X : V → Rh is a L2
2 metric if for each triple of vertices

u1, u2, u3,
‖Xu1

−Xu2
‖2 ≤ ‖Xu1

−Xu3
‖2 + ‖Xu3

−Xu2
‖2 .

Note that a proof that only exploits the squared triangle inequality can assume that zei = 1i for all i. This
is because the L2 distances are invariant under a unitary transformation (see Problem 4 of Assignment 4).
Therefore,

sup
X is L2

2,U is unitary

∑m
i=1(UXui − UXvi)

2
i∑m

i=1 ‖Xui
−Xvi‖

2 = sup
Y is L2

2

∑m
i=1(Yui

− Yvi)2i∑m
i=1 ‖Yui

− Yvi‖
2 ,

where Y = UX. As we will see both of the positive statements Lemma 18.8 and Proposition 18.10 only
assume that X is a L2

2 metric.

In the rest of this section we prove two simple statements about the dual and then we prove Theorem 18.6.
Let us start with an easy example.

Lemma 18.8. For any k-connected graph G and 1 ≤ j ≤ m,
min bᵀejD

−1bej ,

D �C LG,

D � 0

 = sup
X∈{0,1}h×n,‖zej‖=1

〈zej , Xuj
−Xvj 〉2∑m

i=1 ‖Xui
−Xvi‖

2 ≤ O(1/k),

i.e., we can always reduce the effective resistance of any edge of G to 1/k without violating the size of the
cuts.

Proof. The proof is relatively simply. First note that in the worst case the vector zej is parallel to Xuj −Xvj .

Therefore, the numerator is exactly
∥∥Xuj −Xvj

∥∥2. The proof simply follows from the triangle inequality of
the cut metrics.

Since G is k-connected there are k edge disjoint paths from uj to vj . For any such path P we have∑
e`∈P

‖Xu`
−Xv`‖

2 ≥
∥∥Xuj −Xvj

∥∥2 .

The above claim can also be proved relatively easy in G. Since G is k-connected we can simply shortcut the
k edge disjoint paths connecting the endpoints of ej and have these k edges in D. Then ReffD(ej) = 1/k as
desired and D �C LG because it is routable in G.

In the next example, we show that the optimum of (18.7) is Ω(1) if G is a simple cycle.
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Lemma 18.9. The optimum of (18.7) is Ω(1) if G is a cycle of length n.

Proof. All we need to do is to construct a dual solution of large value. Let v1, . . . , vn be the vertices of G
and for each i, ei = vi, vi+1. Now Xvi ∈ {0, 1}n be the vector where the first i− 1 coordinates are 1 and the
rest are 0. In other words, X is just an average of all threshold cuts of G.

It follows that for any i,
Xvi+1

−Xvi = 1i.

In addition,
n∑
i=1

∥∥Xvi+1 −Xvi

∥∥2 = 2n.

Finally, let z{i,i+1} = 1i for all i. Then,

〈z{i,i+1}, Xvi+1 −Xvi〉2 = 1,

for all 1 ≤ i < n. Therefore, the optimum of (18.7) is at least n/2n = 1/2.

Although the statement of the above lemma is in a sense obvious the proof gives a simple rigorous argument
of the fact.

Next, we prove Theorem 18.6.

Proof of Theorem 18.6. We define a mapping similar to the previous lemma. For vertex i, let Xi be the
vector where the first i coordinates are 1 and the rest are 0. Then,∑

e

‖Xbe‖2 = n · k + n · h

Next, we show that for a carefully chosen orthonormal vectors {ze}e∈E ,
∑
e〈ze, Xbe〉2 = Θ(n · h). Assuming

k ≤ h this completes the proof.

Now, we need to construct orthonormal vectors one for each edge. We only assign vectors to the long edges.
For each 1 ≤ j ≤ h, we assign a vector to each edge {0, 2j}, {2 · 2j , 3 · 2j}, {4 · 2j , 5 · 2j}, . . . where for every
the vector that we assign to {2i · 2j , (2i+ 1) · 2j} is defined as follows:

z{2i·2j ,(2i+1)·2j} =
[ 1 2i·2j (2i+1)·2j (2i+2)·2j

0 . . . +1√
2j

. . . −1√
2j

. . . 0 . . .
]

and we leave the rest of edges of layer j unassigned (or we may assign an arbitrary vectors orthogonal to
all other vectors to them). The following matrix shows the vectors that we are using. Observe the vectors
z{u,v} are orthonormal.


1 n/4 n/2 3n/4

z{0,n}
+1√
n

. . . +1√
n

. . . +1√
n

. . . +1√
n

. . .

z{0,n/2}
+1√
n

. . . +1√
n

. . . −1√
n

. . . −1√
n

. . .

z{0,n/4}
+
√
2√
n

. . . −
√
2√
n

. . . 0 . . . 0 . . .

z{n/2,3n/4} 0 . . . 0 . . . +
√
2√
n

. . . −
√
2√
n

. . .


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Now we are ready to bound the numerator.

h∑
j=1

∑
e={2i·2j ,(2i+1)·2j}

〈ze, Xbe〉2 =

h∑
j=1

∑
e={2i·2j ,(2i+1)·2j}

2j

=

h∑
j=1

n/2 = n · h/2.

The lemma follows from the fact that the numerator is at least the above quantity.

18.5 Reducing the Average Effective Resistance

As we mentioned earlier, the main challenge in proving Theorem 18.5 is that (18.2) is not a convex program.
The closest we can get to the objective of this program is by minimizing average effective resistance over
subsets of edges. In the following proposition we show that we can reduce the average effective resistance of
any arbitrary subset of edges of G. But, unfortunately, this is not enough to bypass the log(n) barrier.

Proposition 18.10. For k-connected graph G = (V,E) and any set F = {e1, e2, . . . } ⊆ E we have
min Ee∼F beD−1be,

D = LG +
∑
u,v

∑
P∈Pu,v

yP (Lu,v − LP ),

yP ≥ 0.

 = sup
X is L2

2 metric

1
|F |
(∑

ei∈F 〈1i, Y bei〉
)2∑

e∈E ‖Y bei‖
2 ≤ O

(
1√
k

)
,

where we use E[.] to denote the average under uniform distribution.

Note that we haven’t shown the above supremum is the dual to the CP in the LHS but the proof immediately
follows from the proof of Theorem 18.7. We also would like to point out that with a more careful analysis
one can show an upper bound of Õ(1/k) on the value of the above convex program.

We emphasize that the proof of the above proposition does not exploit that X is a cut metric and it holds
when X is just an L2

2 metric. It is instructive to find a primal proof of the above statement. That is to
construct a multicommodity flow whose demand graph reduces the average effective resistance of the edges
of F .

Our main tool to upper bound the dual is by constructing disjoint balls. Suppose we have disjoint L2
2 balls

B1(Xv1 , r1), . . . , B`(Xv` , r`) each centered at one of the vertices. Since G is k connected there at least k edge
disjoint paths from vi to outside of the ball Bi. By the squared triangle inequality, the sum of the squared
length of the edges of each of these paths is at least ri. Since B1, . . . , B` are disjoint this argument does not
over count any of the edges of G. Therefore,

∑̀
i=1

ri · k ≤
∑
e∈E
‖Xbe‖2 .

See Figure 18.4 for an example.

Fact 18.11. For any X : V → Rh that satisfies the squared triangle inequality and any set of disjoint balls
B1, . . . , B` centered at vertices of G such that the radius of Bi is ri we have

∑̀
i=1

ri · k ≤
∑
e∈E
‖Xbe‖2 .
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Figure 18.4: Since there are k edge disjoints paths connecting the center of each ball to the outside, by the
triangle inequality, the sum of the squared length of the edges of the graph is at least k times the sum of the
radii of the balls.

Therefore, to prove the above proposition it is enough to construct many disjoint balls such that the sum of

their radii is at least 1/
√
k of 1

|F |
(∑

ei∈F 〈1i, Y bei〉
)2

. We use the following lemma to construct these balls.

Lemma 18.12. For any Y : V → Rh and F = {e1, e2, . . . } ⊆ E such that

(Eei∈F 〈1i, Y bei〉)
2

=

(
1

|F |
Tr(Y Bᵀ

F )

)2

≥ α ·
‖Y Bᵀ

F ‖
2

F

|F |
= α · Eei∈F ‖Y bei‖

2
,

for some 0 < α < 1 where ‖.‖F is the Frobenius norm, there are b disjoint L2
2 balls with (L2

2) radius r such
that the center of each ball is an endpoint of an edge of F and

b · r & α · |F | · (Eei∈F 〈1i, Y bei〉)
2
.

Proof. For a radius r > 0, run the following greedy algorithm to construct disjoint balls. Scan the endpoints
of the edges in an arbitrary order; for each point Yu, if the L2

2 ball B(Yu, r) doesn’t touch the balls that we
have already construct, add B(Yu, r). Suppose we manage to select b balls. We say the algorithm succeeds
if the lemma’s conclusions is satisfied. In the rest of the proof we show that this algorithm always succeeds
when r & (Eei∈F 〈1i, Y bei〉)

2
.

Let σ1, . . . , σ|F | be the singular values of Y Bᵀ
F . In the next claim, we show that if the above algorithm finds

b balls for a value of r, that implies an upper bound on the singular values of Y Bᵀ
F .

Claim 18.13. For any r > 0, if the above greedy algorithm finds b disjoint balls of radius r, then

r ≥ 1

16|F |

|F |∑
i=b+1

σ2
i .

Proof. First, we construct a low-rank matrix C ∈ Rh×|F | assuming b is small. Then, we use the following
theorem to prove the claim.
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Theorem 18.14 (Hoffman-Wielandt Inequality). For any A,B ∈ Rn×n with singular values σ1 ≤ σ2 ≤
. . . , σn and σ′1 ≤ σ′2 ≤ · · · ≤ σ′n we have,

n∑
i=1

(σi − σ′i)2 ≤ ‖A−B‖
2
F .

Let Yw1
, . . . , Ywb

be the centers of the chosen balls. For any endpoint v of an edge in F , let c(v) be the
closest center to Yv, i.e.,

c(v) := argminwi
‖Ywi

− Yv‖22
We construct a matrix C ∈ Rh×|F |; say bei = 1ui

− 1vi , we let Yc(ui) − Yc(vi) be i-th column of C. By
definition, rank(C) ≤ b.

First, notice that

‖Y Bᵀ
F − C‖

2

F =
∑

{ui,vi}∈F

∥∥(Yui
− Yvi)− (Yc(ui) − Yc(vi))

∥∥2
2

≤
∑

{ui,vi}∈F

(∥∥Yui − Yc(ui)

∥∥
2

+
∥∥Yvi − Yc(vi)∥∥2)2

≤
∑

{ui,vi}∈F

2
∥∥Yui − Yc(ui)

∥∥2
2

+ 2
∥∥Yvi − Yc(vi)∥∥22 ≤ 16r · |F |,

where the first inequality follows by the triangle inequality and the last inequality follows by definition of

greedy algorithm, i.e.,
∥∥Yv − Yc(v)∥∥22 ≤ 4r for all endpoints of edges of F . Therefore, by Theorem 18.14,

16r · |F | ≥ ‖Y Bᵀ
F − C‖

2

F ≥
|F |∑

i=b+1

σ2
i .

where the second inequality uses the fact that rank(C) ≤ b.

First, by the lemma’s assumption,

1

|F |

|F |∑
i=1

σ2
i =

1

|F |
‖Y Bᵀ

F ‖
2

F ≤
1

α

(
Tr(Y Bᵀ

F )

|F |

)2

≤ 1

α

(∑|F |
i=1 σi
|F |

)2

. (18.8)

Note that the last follows by the characterization of the nuclear norm (see Problem 4 of Assignment 4).
The above inequality is the inverse of the Cauchy-Shwarz inequality on the singular vectors of Y Bᵀ

F . In
particular, for α = 1, the RHS is always less than or equal to the LHS and the quality occurs when the
singular values of Y Bᵀ

F are equal. Therefore, for values of α bounded away from zero the singular values of
Y Bᵀ

F are “almost” equal, so, using the above lemma we can argue that the number of balls b is large which
completes the proof.

Let C > 4 be a constant and suppose we have found b balls for

r =
1

C
(Eei∈F 〈1i, Y bei〉)

2

b ≤ α

C
· |F |.

We will reach a contradiction with the Lemma’s assumption. Note that if b ≥ α|F |/C, then, r · b &
α · |F | · (Eei∈F 〈1i, Y bei〉)

2
and we are done. By the above claim,

1

|F |

|F |∑
i=b+1

σ2
i ≤ r =

1

C
(Eei∈F 〈1i, Y bei〉)

2 ≤ 1

C

 1

|F |

|F |∑
i=1

σi

2

(18.9)
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where the second inequality follows by the lemma’s assumption. Therefore, 1

|F |

|F |∑
i=1

σi

2

≤ 2

(
1

|F |

b∑
i=1

σi

)2

+ 2

 1

|F |

|F |∑
i=b+1

σi

2

≤ 2b

|F |2
b∑
i=1

σ2
i +

2

|F |

|F |∑
i=b+1

σ2
i

≤ 2α

C · |F |

b∑
i=1

σ2
i +

2

C

 1

|F |

|F |∑
i=1

σi

2

where the second inequality follows by Cauchy-Schwarz, the third inequality uses (18.9) and the definition
of b.

But for C > 4, we have

1

2

 1

|F |

|F |∑
i=1

σi

2

<
2α

C · |F |

|F |∑
i=1

σ2
i .

This is contradiction with (18.8) (and the lemma’s assumption). This completes the proof of Lemma 18.12.

We remark that the dependency on α in the conclusion of the above lemma can be improved to αε at the
cost of 1/ε2 loss. We refer interested readers to [AO15, Lemma 5.2].

Now, we are ready to prove Proposition 18.10.

Proof of Proposition 18.10. Fix an L2
2 metric X. If

1
|F |
(∑

ei∈F 〈1i, Y bei〉
)2∑

e∈E ‖Y bei‖
2 ≤ O(1/

√
k),

then we are done. So, assume the LHS is at least α for some α = O(1/
√
k). By Lemma 18.12, we can

construct b L2
2 balls of radius r such that

b · r & α · |F | (Eei∈F 〈1i, Y bei〉)
2

But, by Fact 18.11 we have

b · r · k ≤
∑
e∈E
‖Y be‖2 .

The proposition follows from the above two inequality.

If we repeatedly apply the above proposition we can reduce the maximum effective resistance of the edges
of G to log(n)/

√
k, and if we use the optimized statement we can reduce it to Õ(log(n)/k). Such a result

is the best possible for the graph G illustrated in Figure 18.3 as we proved in Theorem 18.6. However, it is
not possible to use the statement of the above proposition to prove Theorem 18.5.

Perhaps, the next idea that come to mind is to minimize the average effective resistance over all cuts of G,
i.e., to show that the optimum of the following convex program is small.

min γ,

Ee∈E(S,S)ReffD(e) ≤ γ, ∀S ⊂ V,

D �C LG,

D � 0.

(18.10)
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Unfortunately, the same example of Figure 18.3 shows that the optimum of the above program can be Ω(1)
even if G is log(n)-connected.

Nonetheless, in the next section, we show that we can reduce the average effective resistance of all the degree
cuts of G. Unlike the proof of this section, we will take advantage of the L1 structure of X.

We also note that using the ideas of the above theorem we can prove the following statement.

Theorem 18.15. For any k-connected graph G, we have
min max

u,v
ReffD(u, v),

D = LG +
∑
u,v

∑
P∈Pu,v

yP (Lu,v − LP ),

yP ≥ 0.

 ≤
polylog(n)

k
,

i.e., we can reduce the maximum effective resistance of all pairs of vertices of G to O(polylog(n)/k).

As an interesting application of the above theorem, one can route a multicommodity flow in a cycle (of
length n) to reduce the effective resistance of all pairs of vertices of G to O(log2 n).

18.6 Reducing the Average Effective Resistance of Degree Cuts

In the following theorem we show that we can reduce the average effective resistance of all of the degree cuts
(a.k.a., singleton cuts) of G. This is the first step towards proving Theorem 18.5. The proof of the following
theorem has many of the ideas of the main proof. The proof of Theorem 18.5 is tedious and beyond the
scope of this course. We just point out that the high-level idea is to decompose the given k-connected graph
G into expanders and use repeated application (of a stronger variant) of the following theorem to reduce
the effective resistance of all of the degree cuts of the expanders. This is sufficient to prove Theorem 18.5
because in an expander there are at least k edges of small effective resistance in every cut if the average
effective resistance of all the degree cuts is small.

Theorem 18.16. For any k-regular k-connected graph G,
min γ,

Ee∼vbeD−1be ≤ γ ∀v,
D �C LG,

D � 0.

 = sup
X∈{0,1}h×n

{ze}e∈E are orthonormal

∑
v∈V (Ee∼v〈ze, Xbe〉)2∑
v∈V Ee∼v ‖Xbe‖2

≤ Õ(1/
√
k).

One of the interesting consequences of the above theorem is the existence of thin edge covers.

Theorem 18.17. For any k-connected graph G there is a set T ⊆ E such that each vertex v is incident to
at least one edge of T and that T is Õ(1/

√
k)-thin w.r.t. G.

Note that unlike Theorem 18.5 the conclusion of the above theorem holds for any arbitrary value of k that
does not depend on n.

Proof. Let γ∗, D∗ be the optimum of primal of Theorem 18.16. Let

F = {e : bᵀeD
−1be ≤ 2γ∗}.
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By the constraints of the SDP, F has at least k/2 edges incident to every vertex of G. For every edge e ∈ F ,

let xe = (LG +D)−1/2be. Observe that for any edge e ∈ F , ‖xe‖2 ≤ 2γ∗.

Let V = {v1, . . . , vn}. Let µ be a strong Rayleigh distribution on multisets {E1, E2, . . . , En} where Ei is
a uniformly random edge of F incident to vi. It follows that the marginal probability of each edge is at
most 2/k because every vertex hast at least k/2 edges in F . Therefore, by the extension of [MSS13] that we
discussed in Lecture 16, there is a sample of µ such that

n∑
i=1

bᵀEi
bEi
� O(γ∗)D + LG �C O(γ∗)LG

The conclusion of the theorem follows by that γ∗ = O(1/
√
k) as shown in Theorem 18.16.

In the rest of this section we prove Theorem 18.16. Fix X and orthonormal vectors {ze}e∈E . Define

U =

{
v :

(Ee∼v〈ze, Xbe〉)2

Ee∼v ‖Xbe‖2
≥ α

}
,

be the set of “bad” vertices for some α = C√
k

. If U = ∅, then there is nothing to prove and we are done. So,

we just need to take care of the bad vertices.

We show that ∑
v∈U

(Ee∼v〈ze, Xbe〉)2 ≤ α ·
∑
v∈V

Ee∼v ‖Xbe‖2 . (18.11)

Note that in the RHS we have the sum of the squared length of all edges of G.

Let s = maxv∈U Ee∼v〈ze, Xbe〉. We partition the vertices of U into log(n) groups, where for each i,

Ui = {v ∈ U : Ee∼v〈ze, Xbe〉 ≈ s/10i}.

If there is any vertex where Ee∼v〈ze, Xbe〉 � s/n2 we simply remove v from U as it has no contribution in
the LHS of (18.11).

Let Fi = ∪v∈UiE({v}, {v}) be the union of edges incident to vertices of Ui. By Lemma 18.12, for each i,
there is a family Bi of disjoint L2

2 balls of radius ri all centered at endpoints of edges of Fi such that

|Bi| · ri & α · 1

|Fi|

(∑
e∈Fi

〈ze, Xbe〉

)2

� α · |Ui|
|Fi|

·
∑
v∈Ui

(∑
e∼v
〈ze, Xbe〉

)2

,

= k · α
∑
v∈Ui

(Ee∼v〈ze, Xbe〉)2 . (18.12)

where the second equation follows by the definition of Ui and the third equation follows by the k-regularity
of G. Summing up the above over all i,∑

i

|Bi| · ri & k · α ·
∑
v∈U

(Ee∼v〈ze, Xbe〉)2 .

So, to prove (18.11) all we need to show is that∑
i

|Bi| · ri .
∑
v∈V

Ee∼v ‖Xbe‖2 . (18.13)
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L1 translation. Next, we translate the above goal into an L1 statement. Since X is a (unweighted) cut

metric, for any edge e, ‖Xbe‖2 = ‖Xbe‖1. In addition, if we replace each (L2
2) ball in Bi with an L1 ball of

the same radius ri and the same center, the balls of Bi remain disjoint. To see that note that for any two
balls B1(Xv1 , ri), B2(Xv2 , ri) ∈ Bi, since B1, B2 are disjoint,

‖Xv1 −Xv2‖ ≥ 2
√
ri,

so
‖Xv1 −Xv2‖1 = ‖Xv1 −Xv2‖

2 ≥ 4ri.

So, all we need to show is for families of disjoint L1 balls B1,B2, . . . defined as above∑
i

k · |Bi| · ri .
∑
v∈V
‖Xbe‖2 . (18.14)

Another Bad Example. First observe that if there is only one family of balls in this sequence, i.e.,
Bi = ∅ for i ≥ 2, the above inequality follows immediately by Fact 18.11. The main challenge is that balls
in different Bi’s may intersect.

For a vertex v ∈ Ui let Bi,v be the balls of Bi that are centered at neighbors of v. We assume that for each
v ∈ Ui,

|Bi,v| · ri & k · α (Ee∼v〈ze, Xbe〉)2 (18.15)

and we remove v from U − i and the balls of Bi,v from Bi if v does not satisfy this constraint. By (18.12),
the LHS of (18.14) is (almost) invariant under this removal. For the simplicity of the argument we assume
that for each v ∈ U , and all edges f ∼ v,

‖Xbf‖2 ≈ Ee∼v ‖Xbe‖2 . (18.16)

The above assumption can be justified with a simple bucketing argument that incurs a log(k) loss, we omit
the details.

Before proving (18.14) we want to emphasize the importance of the above construction of Bi,v’s. In general, if
we do not assume a specific structure on the balls of Bi other than they are disjoint (18.14) is not necessarily
true, see Figure 18.5 for a bad example.

Compact Bags of Balls. We say a family of disjoint L1 balls B is compact, if the sum of the radii of the
balls in B is at least 10 times the L1 diameter of the centers of balls of B. In the following claim we show
that (18.14) holds if all of the sets Bi,v are compact.

First, let us prove that these sets are compact. Fix v ∈ Ui; since the balls of Bi are centered at neighbors of
v, by the assumption (18.16), the L1 diameter of Bi,v is at most

2Ee∼v ‖Xbe‖2 ≤
2

α
(Ee∼v〈ze, Xbe〉)2 .

using the definition of Ui. But, by the pruning assumption (18.15), the sum of the radii of balls of Bi,v is at
least

|Bi,v| · ri & k · α (Ee∼v〈ze, Xbe〉)2 .

So, for a large enough C, Bi,v is compact.

The following standalone claim holds for any sequence of family of compact bags balls.
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0 1 2 3 4 5 6 7 8 2h

Figure 18.5: Consider the natural L1 mapping of this graph where vertex i is mapped to the number i.
Consider h layers of L1 balls as shown where the radii of all balls in layer i is 2i and they are disjoint.
Although the sum of the radii of all balls in this family is n · h, the sum of the L1 length of the edges of G
is n · (h+ k).
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Figure 18.6: Construction of Hollowed ball. When a compact bag of balls lie inside an inserted ball B, i.e.,
the big red ball in the left, we decompose B into two hollowed balls that do not intersect any of the balls in
the give compact set as shown in the right.

Claim 18.18. Let G be a k-connected graph. Let B1,B2, . . . be a sequence of families of L1 balls such that
balls in Bi are disjoint, they have radius ri and they are all centered at the vertices of G such that for each
i ≥ 2, ri ≤ ri−1/10. If for each i, we can decompose Bi into bags Bi,v where each bag Bi,v is compact, then,∑

i

k · |Bi| · ri ≤
∑
e

‖Xbe‖1 . (18.17)

Proof. As usual, if there is only family B1 we are done by Fact 18.11. The idea is to decompose the space
into hollowed balls. An L1 hollowed ball B(Xv, r‖r′) is the set of points at distance r to r′ of v,

B(Xv, r‖r′) = {y : r ≤ ‖Xv − y‖1 ≤ r
′}.

We say the width of the above hollowed ball is r′ − r. From now on we also use the term hollowed ball to
refer to an ordinary L1 ball. Observe that the statement of Fact 18.11 naturally extends to any family of
disjoint hollowed balls.

So, all we need to do is to construct a disjoint family of hollowed balls such that the sum their widths is
at least a constant factor of the LHS of (18.17). Here is the idea. We inductively insert the balls in the
family for i = 1 → ∞. Say we already have an L1 ball B ∈ Bi. By definition any other ball of Bi does not
intersect B. Now, suppose a bag of balls Bi+1,v lies completely inside B (see the left of Figure 18.6). Then,
we decompose B into two hollowed balls that do not intersect with balls of Bi+1,v and we insert all balls of
Bi+1,v (see the right of Figure 18.6).

This operation decreases the sum of the widths of the (hollowed) balls by at most twice the diameter of the
centers of balls of Bi+1 and increases it by at least |Bi+1,v| · ri. Since Bi+1,v is compact, in total, the sum
of the widths of all of the (hollowed) balls increases by at least |Bi+1,v| · ri/2. Therefore, by the end of this
construction we get a family of disjoint (hollowed) balls where the sum of their widths is within a constant
factor of the LHS of (18.17) as desired.
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