Recent Advances in Approximation Algorithms

Spring 2015

Problem Set 1

Deadline: April 8th in class

- 1) In this exercise we overview basic facts about eigenvalues of graphs.
 - a) Show that if G is d-regular then the largest eigenvalue of the adjacency matrix of G is equal to d.
 - b) Show that a d-regular graph is bipartite if and only if the smallest eigenvalue of the adjacency matrix is -d.
 - c) Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of the adjacency matrix of a d-regular graph G. Show that $d \lambda_1, \ldots, d \lambda_n$ are the eigenvalues of the Laplacian of G.
- 2) In this exercise we want to prove the Cayley's theorem, that is the number of spanning trees of a complete graph on n vertices is n^{n-2} . Show that all of the non-zero eigenvalues of the Laplacian of a complete graph is n. Use this to show that a complete graph has n^{n-2} spanning trees.
- 3) Show that if $A \leq B$ then the *i*-th eigenvalue of A is at most the *i*-th eigenvalue of B.
- 4) Observe that for any PSD matrix A, $\det(A) \geq 0$. This is because all eigenvalues of A are nonnegative and $\det(A)$ is just the product of the eigenvalues of A. A minor of a matrix $A \in \mathbb{R}^{n \times n}$ is a square submatrix $A_{S,T}$ where |S| = |T| but S is not necessarily equal to T. We say A is totally positive if $\det(A_{S,T}) \geq 0$ for any square minor $A_{S,T}$ of A.
 - a) Recall that a principal minor of A is a square submatrix $A_{S,S}$ for some $S \subseteq [n]$, i.e., a minor $A_{S,T}$ where S = T. Show that if A is PSD then $\det(A_S) \geq 0$ for all principal minors of A.
 - b) Show that a PSD matrix is not necessarily totally positive.
 - c) Use the Cauchy-Binet formula to show that for any pair of totally positive matrices $A, B \in \mathbb{R}^{n \times n}$, AB is also totally positive.
- 5) Say G = (V, E) and H = (V, E') are unweighted graphs on the same vertex set V.
 - a) show that if $L_G \leq L_H$, then for any $S \subseteq V$,

$$|E(S, \overline{S})| \le |E'(S, \overline{S})|,$$

where $E(S, \overline{S}), E'(S, \overline{S})$ are the sets of edges in the cut (S, \overline{S}) in G, H respectively.

b) Show that the converse of the above statement is not necessarily true, i.e., construct G, H such that $|E(S, \overline{S})| \leq |E'(S, \overline{S})|$ for all $S \subseteq V$ but $L_G \not \preceq L_H$.

Bonus point: Construct an example where $|E(S,\overline{S})| \leq |E'(S,\overline{S})|$ for all $S \subseteq V$ but $L_G \not\preceq \Omega(n)L_H$.