Recent Advances in Approximation Algorithms

Spring 2015

Assignment 3

Deadline: May 11th

You are free to collaborate to solve these assignments.

- Problem 1) Given a feasible solution x of the Held-Karp relaxation of ATSP and a partitioning V_1, \ldots, V_k of V. Design a polynomial time algorithm that finds an Eulerian subgraph $F \subseteq A$ such that for any $1 \le i \le k$, $|\delta_F^+(V_i)| \ge 1$ and that $c(F) \le c(x)$. In the special case where each V_i is singleton, this problem is known as the cycle cover problem.
- Problem 2) Carathéodory's theorem says that any feasible point of a linear program in \mathbb{R}^n can be written as a convex combination of at most n + 1 of its vertices. Use this theorem to show that any point in the interior of a bounded linear program (with finite number of vertices) can be written as a convex combination where each vertex has a positive coefficient.
- Problem 3) In this question we want to show that a 2k-dimensional hypercube has a O(1/k)-thin spanning tree. We say a graph G = (V, E) has an ϵ -thin spanning tree if there is a tree T where for any $S \subseteq V$,

$$|T(S,\overline{S})| \le \epsilon \cdot |E(S,\overline{S})|.$$

Note that this is a slightly different definition compared to one we talked about in class, here G is an integral graph. We can obtain such a graph from a fractional spanning tree z simply by choosing large enough number C such that $C \cdot z$ is (almost) integral and then add Cz(u, v) parallel edges between each pair of vertices u, v. You get extra credit if you find a different construction of thin trees of a hypercube with a different proof.

- a) In the class we alluded to the fact that testing a thinness of a tree is not an easy problem, we are not aware of a polynomial size certificate for exactly testing the thinness. In this part we give a certificate for upper bounding thinness. Suppose G has a set of cycles C_1, C_2, \ldots, C_ℓ such that
 - Each cycle has exactly one edge of T, and each edge of T is an at least β cycles.
 - Each edge not in T is in at most α cycles.

Show that T is α/β -thin

b) Next, we construct a connected thin connected graph. We decompose H_{2k} into 2^k subcubes where each of them is uniquely determined by the first k bits, i.e., for $0 \le x < 2^k$ we use H_x to denote all vertices where their k leftmost digits is x. Let h = k/2 (assume k is even) and define the weight function $w : [2^k] \to [h]$

$$w(b_{k-1}\dots b_1b_0) = \sum_{i=0}^{k-1} b_i \cdot i \mod h.$$

It has been shown that H_k can be composed into k/2 edge disjoint Hamiltonian paths. Assuming this result let T_1, \ldots, T_h be these Hamiltonian paths. For each $0 \le x < 2^k$ add all edges of $T_{w(x)}$ in H_x to T_1^* . Use part (a) to show that T_1^* is O(1/k) thin with respect to H_{2k} .

c) Let H'_x be the k-dimensional of vertices where their k rightmost bits is x. Similar to case b construct T_2^* by including edges of $T_{w(x)}$ in H'_x to T_{*2} . Show that $T_1^* + T_2^*$ is a connected O(1/k) thin subgraph of H_{2k} .

Problem 4) In this part we want to write the dual of

min
$$\log \det X^{-1}$$

subject to $a_i^{\mathsf{T}} X a_i \leq 1$, $\forall 1 \leq i \leq m$

for vectors $a_1, \ldots, a_m \in \mathbb{R}^n$ over the space of PD matrices $X \in \mathbb{R}^{n \times n}$. This program is known as the minimum volume covering ellipsoid problem.

- a) First show that the strong duality holds.
- b) Show that for an invertible (symmetric) linear map X + tB,

$$\frac{d}{dt}\det(X+tB) = \det(X+tB)\operatorname{trace}((X+tB)^{-1}B).$$

- c) Use (b) to show that $\nabla \log \det(X) = X^{-1}$.
- d) Let λ_i be the Lagrange dual variable to the constraint $a_i^{\mathsf{T}} X a_i \leq 1$. Show that the dual is as follows:

$$\max \quad \log \det \left(\sum_{i=1}^{m} \lambda_i a_i a_i^{\mathsf{T}} \right) + n - \sum_{i=1}^{m} \lambda_i$$
$$\lambda \ge 0.$$

You don't need to worry about the constraint $X \succ 0$ when you write the dual. This is possible because when we calculate the gradient we assume that the matrix X is in the domain of PD matrices.

- Problem 5) Prove the Gauss-Lucas theorem, that is for any univariate polynomial p(z) the roots of dp/dz can be written as a convex combination of the roots of p(z).
- Problem 6) Fix a set of real numbers $\lambda_1, \ldots, \lambda_n$ and let t be an indeterminant. Use the properties of real stable polynomials to show that

$$\sum_{S \in \binom{n}{k}} \prod_{i \in S} (1 + t\lambda_i)$$

is real rooted.