The Polynomial Paradigm in Algorithm Design Winter 2020

Lecture 1: Real Rooted Polynomials
Lecturer: Shayan Oveis Gharan Jan 6th

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

1.1 Introduction

Give a univariate (or a multivariate) polynomial p, there are three ways to study p:

By Coefficients: p(t) = aot? + ai;t% ' +--- + aq,
By Zeros: p(t) =ag(t—M)...(t— Aa),

By function values: p:C — C

In this note we typically use letter ¢ for the univariate polynomials and z for multivariate polynomials.

In this course we will see interactions of these three views. How can one change when we change the
others. More generally, we may also discuss how these views change when we do an operation on p such as
differentiation or integration. See the following theorem for a concrete example:

Theorem 1.1 (Gauss-Lucas). If p is a (nonconstant) polynomial with complex coefficients, all zeros of p’

are in the convex hull of the set of zeros of p.

In the following picture the roots of p(z) = z° — 32® + 22 — x + 1 are shown in green and the roots of the
derivative in red.

Proof. The idea is to look at the derivative of the log of p. Say, z is a root of p’ which is not a root of p.
Then,

(logp(2))" = =0,

The last identity Using the zeros lense of looking at p we can write
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where ); is the i-th root of p. Therefore,

d
Z|z—)\|2 Zz—)\|2

Conjugating both sides and rearranging we get

S0, z is a convex combination of the roots of p. O

The logarithmic derivative p’/p goes by many additional names, including the Cauchy Transform, Stieltjes
Transform, and barrier function and plays a recurring theme in this course.

Say p is a multivariate polynomial with n variables. The main underlying ingredient is that all (or most)
class of polynomials that we see in this course have a nice zero free region in the complex plane (C") or the
real plane (R"), in the sense that they do not have any zeros in a large part of the complex or real plane.

The polynomial paradigm says that if a polynomial has a nice zero free region, then we can study interaction
of zeros, coeffficints and function values. This was studied in Math for decades.

Connections to CS and Combinatorics Recently, over the last 15 years, there was a new theme of
using this machinery: Say we have a complicated mathematical object, say a probability distribution or a
combinatorial object. We can encode this object in a complex multivariate polynomial (with exponentially
many coefficients) say by writing down the generating polynomial. If the generating polynomial has a nice
zero free region, then we can use this machinery to reason about the generating polynomial and prove
statements and finally we can prove statements about the underlying object using what we found out for
the generating polynomial.

So, here is the thesis that we propose and follow in this course: One way to understand global properties
of discrete probability distributions is to encode them as polynomials which has nice zero-free regions and
then use the polynomial paradigm to study that.

Given a graph G = (V, E), here are a few fundamental classes of polynomials that we will work with in this
course:

Spanning Tree Polynomial: We have a variable z. for every edge e € E, the spanning tree polynomial

is defined as follows:
Z H Te,

T e€T

where the sum is over all trees in G.

Matching Polynomial: We have a variable z, for every vertex v € V,
Seut I -
M v saturated in M

where the sum is over all matchings of G,
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In the next lecture we will prove nice zero free region properties of the above polynomials. This will imply
that the following univariate versions are real rooted

> AT (1.1)

T

Z(—l)lM‘t‘Ml (1.2)

M

where in the first sum F' C F is an arbitrary subset of edges of G. In the rest of this lecture we study
properties of real rooted polynomials and we use them to study properties of the above polynomials.

1.2 Real-rooted Polynomials

We start by recalling some properties of real-rooted polynomials.

In the following simple lemma we show that imaginary roots of univariate polynomials come in conjugate
pairs.

Lemma 1.2. For any p € R[t], if p(a + ) = 0, then p(a —b) = 0.
Proof. Say p(t) = ZLO a;t%~%. Then,
pla+1) =0 = pla+1b)

d
= Z a;(a + b)?

0

.
a |l

%

= a;(a +b)

~.
(=)

a |l

= ai(a —b)" = p(a —1b).

s
I
=)

1.3 Connection to Sum of Independent Bernoullis

There is a close connection between the real-rooted polynomials and the sum of Bernoulli random variables.
Given a probability distribution p, over [d] = {0,1,...,d} where P, [i| = a;. For Z ~ p,

d
pu(t) =E[t?] = Zait"’.

Lemma 1.3. p,(t) is real-rooted if and only if u can be written as the sum of independent Bernoulli random
variables.
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Proof. Suppose p,(t) is real-rooted. Since the coefficients of p,(t) are non-negative, the roots are non-
positive. Therefore, we can write

where A1,..., g > 0. Since p(1) =1,
d
H 1+ ))

ﬁ; we show that p is the distribution of d Bernoulli random variables where the i-th one
has success probability ¢;. Equivalently, let \; = ;ql

pu(t) = dl)f[<t+ 1_qi)

IT; 1(1+/\‘ i

- Zt'S‘Hl_qz

Hz 17 Sl igs

= > P ]a]l0-a)
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d
= Ztk Z HQiH(l_Qi)~ (1.3)

k=0 S:|S|=ki€S ¢S

Now, let ¢; =

we have

Observe that the probability that exactly k of the Bernoullis occur is exactly equal to ay.

Conversely, if u is the sum of d Bernoullis with success probabilities q1, ..., qq, we can write

ZZd:tk S ITa ] -a)

k=0 S:|S|=ki€S ¢S

Following (1.3), we conclude that p,, is real rooted. O

Consequently, we can use Chernoff types of bound to show that a;’s which are far from the expectation
ZZ:O k - aj, are very small.

Corollary 1.4. Let p be a uniformly random spanning tree of G = (V,E) and F C E fized. Then the
random variable Z = |T N F| is a summation of independent Bernoulli random variables.

Note that the appearance of different edges are certainly not independent!
Proof. The idea is to use the real rooted polynomial of (1.1). In particular, the polynomial

E [+7] = ﬁ S oI
T

is a real rooted polynomial; so E [zZ] = E [#"17*YIFI] where Y7,...,Y|p| are independent Bernoullis. [
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1.4 Log Concavity

Next we show that these sequence are highly concentrated by means of ultra log concavity.

Definition 1.5 (Log Concavity). A sequence {ag,a1,...,aq} of nonnegative numbers is said to be log-concave
if for all 0 < k < d,
ap—1 - app1 < az.

We say the sequence is ultra log concave if for all 0 < k < d,

a3

Note that any log concave sequence of nonnegative numbers is unimodal, i.e., there is a number k£ such that

e Sag—2 S ak—1 S Ak 2 Qg1 > -

Next, we want to show that the coeflicients of a real-rooted degree d polynomial are ultra log concave. This
is also known as the Newton inequalities.

Using the above argument this implies that a sum of independent Bernoulli random variables is a log-concave
probability distribution, that is if a; is the probability that exactly i of them occur, then a;_1 - a;4+1 < a? for
all . Consequently, any such distribution is unimodal.

1.4.1 Closure Properties of Real-rooted Polynomials

In this part we show that the coefficients of a real rooted polynomial with nonnegative coefficients are (ultra)
log concave. The proof uses closure properties of real-rootedness. We start by describing these properties
and then we prove the claim.

Given a real-rooted polynomial, usually it is a non-trivial task to verify real-rootedness without actually
computing the roots. In the next section we will see how the extension of real-rootedness to multivariate
polynomials can help us with this task.

One way to verify real-rootedness of a polynomial p(t) is to start from a polynomial ¢(t) that is real-rooted
and then use a real-rooted preserving operator to derive p(t) from ¢(¢t). Now, let us study some basic
operations that preserve real-rootedness.

i) If p(t) is real-rooted then so is p(c - t) for any nonzero ¢ € R.

ii) If p(¢) is a degree d real-rooted polynomial then so is t¢p(1/t).

iii) If p(t) is real-rooted then so is p’(¢). This follows from the by the Gauss-Lucas theorem.

Lemma 1.6 (Newton Inequalities). For any real-rooted polynomial p(t) = Z?:o a;t’, if ag,...,aq > 0, then
it is ultra log concave, i.e., for any 1 <i<d—1,
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Proof. We apply the closure properties a number of times. First, by the closure of the derivative

di—l
pi(t) = Fp(t)

is real-rooted. This shaves off all of the coefficients ag, . .., a;—2. By (ii),
pa(t) =t pi(1/1)
is real rooted. This reverse the coefficients. By (iii)

d(i—i— 1
p3(t) = qa—i1P2 (t)

is real-rooted. This shaves off all of the coefficients a;12, . .., aq. So, p3(t) is a degree 2 real-rooted polynomial,

d' [ a;_ 2a; a;

(L) G GR)

The above polynomial is real-rooted if and only if its discriminant is non-negative. This implies the lemma.
O

As an immediate application, recall the claim the matching polynomial, see (1.2), is real rooted. This implies
that for any graph G = (V, E), the sequence mg, m1, ..., my, where m; is the number of matchings of size 4
in G, is an ultra log-concave sequence.

Remark 1.7. Newton was trying to characterize the set of real-rooted polynomials via inequalities satisfied
by their coefficients. It turns out the ultra log-concavity does not characterize real-rootedness (i.e., it is
necessary but not sufficient). However, it does characterize another natural class of polynomials, namely: a

nonnegative sequence ao, . ..,aq is ULC iff there are convex compact sets A and B in R? such that
d .
Z a;t' = Vol(tA+ B)
i=0

where Vol is the Lebesque measure in R and tA+ B is the Minkowski sum. This was shown by Shephard in
1960 (see [She60)]).

1.5 Approximation Roots
Given a polynomial

p(t) =t + a4+ bag = (t—M1) . (E— M)
Viéte in 1580s showed that

a = - Z i
i=1
Ay = Z)\Z)\j,

aq = (—1)d H )\i
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These are called elementary symmetric polynomials in A, ..., A\g (up to absolute values). In particular,
ek()‘lv e '7)‘d) = Z HA’L
se(y)i€s

Let my be the moment functions of the roots, i.e.,

d
mk(Alw";Ak) = Z)\']LC
=1

Newton and Girard in 1600s observed that one can calculate the moment functions from elementary sym-
metric polynomials, and thus from the coefficients of p.

k—1
mk(/\h ceey /\d) = (—1)k_1k‘€k()\1, ey )\k) + Z(—l)k_l_iek_i(/\l, ey )\d)mi()\l, ey )\d).
=1

For example, m; = e; and
mo = e1m; — 2es,

and so on. Also, observe that to compute the k-th moment function we just need to know ej,...,ex or
ai,...,ai. The following corollary is immediate:

Corollary 1.8. Given the first k coefficient ao,...,ar of a real rooted polynomial p = . a;t**. For
any € > 0, if k > log(d)/e then we can approximate the largest root of p (in absolute value) within 1 + €
multiplicative factor.

Proof. Wlog assume k is even. Given ag,...,ar we can compute my = Zle Ak Say Ap is the largest root
of p in absolute value. It follows that
Ml <y < dfal*

Therefore,
M| < mx < dVF )\

But since k > log(d) /e, d*/* < e as desired. O

1.6 Testing Real Rootedness

In general, we can compute the roots of a polynomial up to a very good accuracy. But, how can we test if a
given polynomial is real rooted?

Theorem 1.9 (Hermite-Sylvester). A polynomial p(t) = Hle(t — ;) s real rooted iff the corresponding
Hankel matriz H € R¥? js PSD. H is a symmetric matriz where for any i, 7,

Hij=miyjo.
Since given p we can compute the moments in polynomial time, this reduces testing real-rootedness of p to

PSD-ness of H. To test the latter we compute the characteristic polynomial of H, det(¢tI — H). So, it is
enough to test if det(tI — H) has a negative root. We use the following fact:

Fact 1.10. A real-rooted polynomial p has all non-positive roots iff all coefficients of p are positive. Similarly,
it has all non-negative roots iff its coefficients alternate in sign.

This gives a strongly polynomial time algorithm to test if a given polynomial p is real rooted.
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