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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this lecture we will use the characterization theorems of completely log-concave polynomials from the
last lectures to better study matroids and properties of log-concave polynomials. First, we note that sim-
ilar to log-concave polynomials, completely log-concave polynomials are also closed with respect to affine
transformations:

Theorem 10.1. Let p ∈ R[z1, . . . , zn] be a completely log-concave polynomial and let T : Rm → Rn be an
affine transformation defined as x 7→ Ax+ b for A ∈ Rn×m≥0 , b ∈ Rn≥0. Then, p(T (y1, . . . , ym)) is completely
log-concave.

The proof of this simply follows from the same statement for log-concave polynomials and the fact that a
directional derivative Dvp(T ) is the same as (DAvp) ◦ T .

10.1 Negative Correlation

We start with the Negative correlation property. As we explained in previous lectures, a uniform distribution
over the bases of a given matroid is not negatively correlated. However, it can be seen that such a distribution
is approximately negatively correlated.

Theorem 10.2. Let M = ([n], I) of rank r and let µ be the uniform distribution over the bases of M . Then,
for any pair of elements i, j,

2Pµ [i]Pµ [j] ≥ Pµ [i, j] .

Proof. As usual, let gµ = 1
#Bases

∑
B base z

B be the basis generating polynomial of µ. Let Q = ∇2gµ|z=1 .
Since gµ is log-concave, ,

0 � ∇2 log gµ|z=1 =
gµ(1) ·Q− (∇gµ(1))(∇gµ(1))T

g2µ(1)
.

Since gµ(1) = 1, it follows that Q � r
r−1 (∇gµ(1))(∇gµ(1))T . Note that for any i, j, Qi,j = P [i, j], further-

more Qi,i = 0 for any i.

Fix 1 ≤ i, j ≤ n and let x ∈ Rn be x = 1i/P [i] + 1j/P [j]. Then,

2
P [i, j]

P [i]P [j]
=
Qi,j +Qj,i
P [i]P [j]

= xi(Qi,j +Qj,i)xj = xTQx

≤ (x∇gµ(1))2 =

(
∂zigµ(1)

P [i]
+
∂zjgµ(1)

P [j]

)2

=

(
P [i]

P [i]
+

P [j]

P [j]

)2

= 4

as desired.
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Using the same idea we can show that Ei,j
[

P[i,j]
P[i]P[j]

]
≤ n

n−1 . In other words, although matroids can have

elements that are positively correlated a random pair of elements i, j are almost negatively correlated.

Here are two conjectures regarding negative correlation in Matroids that is interesting to study:

Conjecture 10.3. Let M = ([n], I) be a matroid, and let µ be the uniform distribution over the bases of
M . Then,

i) For any pair of elements i, j,
Pµ[i,j]

Pµ[i]Pµ[j] ≤ 8/7.

ii) For any element i,

Ej
[

P [i, j]

P [i]P [j]

]
≤ 1 +O(n).

10.2 Support of Log Concave Polynomials

Let p =
∑
κ c(κ)zκ ∈ R≥0[z1, . . . , zn]. Recall the support of p, denoted supp(p), to be the set of κ for which

cκ 6= 0. Furthermore recall that Newt(p) is the convex hull of all κ ∈ supp(p). In this section we want to
better understand the Newton polytope of multi-linear (completely) log-concave polynomials.

Proposition 10.4. If p =
∑
S⊆[n] c(S)zS is log-concave then every edge of Newt(p) is parallel to ±1i or

1i − 1j for i 6= j ∈ [n].

If p is also homogeneous, then every edge of Newt(p) is orthogonal to the all ones vector. So, in particular
they cannot be ±1i. We can combine this with the following useful characterization of the bases of a matroid.
Given a collection of sets of size d, S ⊆

(
[n]
d

)
, let PB denote the convex hull of the indicator vectors of all

sets in B: PB = conv {1S : S ∈ S}.

Theorem 10.5 (Gelfand, Goresky, MacPherson and Serganova). B is the set of bases of a matroid if and
only if all the edges of PB are parallel to 1i − 1j for some i 6= j ∈ [n].

The following statement follows:

Corollary 10.6. The support of any homogenous multilinear log-concave polynomial correspond to bases of
a matroid.

However, unlike real stable polynomials, any matroid can be realized as a support of such a polynomial. So,
we completely understand the support of these polynomials.

The above theorem amazingly defines a geometry for any matroid. Note that if instead of matroids we have
had worked with linear matroids we would not have such a nice characterization of all polytopes with edges
of the form 1i − 1j .

To prove this proposition, we need to understand another closure properties of log-concave polynomials.

Definition 10.7 (Initial Forms). For any w ∈ Rn, we can define the degree p with respect to w,

degw(f) = max
κ∈supp(p)

〈w, κ〉

Also, we define the initial form of p with respect to w,

Inw p =
∑

κ:〈w,κ〉=degw(p)

c(κ)zκ.
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The following lemma is immediate:

Lemma 10.8. If p is log-concave, then for any w ∈ Rn, Inw p is also log-concave.

Proof. for t ∈ R+, define the polynomial

pt(x) = t− degw(p) · p(tw1x1, . . . , t
wnxn).

Note that the limit of pt as t→∞ is exactly Inw(p). Furthermore, since log-concave polynomials are closed
under external fields (λ1, . . . , λn) ∈ Rn≥0, and p = p1 is log-concave on (R+)n, pt is log-concave for any t. The
claim then follows from the fact that the class of log-concave polynomials is closed under taking limits.

Proof of Proposition 10.4. Suppose 1S ,1T ∈ {0, 1}n are vertices of an edge of Newt(p) and let w ∈ Rn be a
vector maximizing this edge, i.e., for any κ 6= 1S ,1T where κ ∈ supp(p) we have

〈w, κ〉 < 〈w,1S〉.

It then follows that Inw p = cSz
S + cT z

T . By Lemma 10.8, Inw p is log-concave.

Note that 1S − 1T = 1SrT − 1TrS , so it suffices show that S r T and T r S both have size at most 1. We
show the the latter and the former can be shown similarly.

Suppose for the sake of contradiction that there exists i, j ∈ T r S such that i 6= j. Consider specializing
Inw f to xk = 1 for all k ∈ (S ∪ T ) r {i, j}; call the result polynomial q(zi, zj). It follows that cS + cT zizj is
log-concave on (R+)2. But then by Problem 4 of HW2 we must have cS ·cT ≤ 0 which implies cS = cT = 0 (as
they are non-negative), i.e., 1S ,1T /∈ supp(p) which is a contradiction. Therefore |T rS| ≤ 1 as desired.

10.3 Mason’s Log Concavity Conjecture

Definition 10.9. We say a sequence a1, . . . , an of non-negative reals is log-concave if

• For any 1 < i < n, a2i ≥ ai−1 · ai+1.

• It has no internal zeros; in other words, the support of a is an interval of Z.

We say this sequence is ultra log-concave if the sequence a1
(n1)

, . . . , an
(nn)

is log-concave. Note that ultra log-

concavity implies log-concavity but not vice versa.

In this section we prove the following conjecture of Mason:

Conjecture 10.10. For any matroid M = ([n], I) let ai be the number of independent sets of rank i. Then,
the sequence a1, . . . , an is ultra log-concave.

Log-concave sequences are always of interest in Mathematics. As alluded to in lecture 1, for any ultra log-
concave sequence a1, . . . , an there exists two convex bodies A,B in Rn such that

∑n
i=0 ait

i = vol(A + tB).
So, this defines a geometry for independence numbers of a matroid.

Before proving the conjecture, first we relate completely log-concave polynomials to ultra log-concave se-
quences.
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Lemma 10.11. Let p ∈ R≥0[y, z] defined as

p(y, z) = a0z
n + a1yz

n−1 + · · ·+ any
n

be a n-homogenous completely log-concave polynomial. Then, for any 0 < i < n,

a2k(
n
k

)2 ≥ ak−1(
d
k−1
) · ak+1(

n
k+1

) .
Proof. Since p is completely log-concave, for any 1 < k < n, the quadratic q(y, z) = ∂n−k−1y ∂k−1z p is log-
concave over R2

≥0. Notice that for any 0 ≤ m ≤ n,

∂n−my ∂mz p = (n−m)! m! am = n!
am(
n
m

) .
Using this for m = k − 1, k, k + 1, we can write the Hessian of q as

∇2q =

[
∂2yq ∂y∂zq
∂y∂zq ∂2zq

]
= n!

ak−1/( n
k−1
)

ak
/(
n
k

)
ak
/(
n
k

)
ak+1

/(
n
k+1

)
 .

Since q is log-concave on R2
≥0, ∇2q has exactly one positive eigenvalue. Therefore, det(∇2q) ≤ 0. This gives

the desired inequality:

0 ≥ det(∇2q) = (n!)2
ak−1(
n
k−1
) · ak+1(

n
k+1

) −( ak(
n
k

))2

as desired.

Let me first say a direction consequence of the above lemma:

Lemma 10.12. Let M = ([n], I) be a matroid and let µ be the uniform distribution over the bases of M .
For any set S, the sequence a0, . . . , an where ai = PB∼µ [|B ∩ S| = i] is ultra log-concave.

Proof. Let gµ = 1
#Bases

∑
B Base z

B be the generating polynomial of µ. Symmetrize gµ as follows: substitute

zi ← y for any i ∈ S and zi ← z for any i /∈ S, and let q(y, z) be the resulting polynomials. It follows that

q(y, z) =

|S|∑
i=0

aiy
iz|S|−i

is a completely log-concave polynomial. So, the statement follows from the previous lemma.

The above lemma shows that although the rank sequence of S is not necessarily a sum of independent
Bernoulli random variables its distribution is highly concentrated similar to sum of Bernoullies. It turns
out that the concentration is not limited to linear functionals. One can prove concentration of Lipschitz
functions using connections to High dimensional expanders that we will explain later.

Theorem 10.13 (Cryan, Guo, Mousa). Let µ : 2[n] → R≥0 be probability distribution such that gµ is d-
homogeneous and completely log-concave. Let f : [n] → R be a 1-Lipschitz function, i.e., for any two sets
S, T of size d, |f(S)− f(T )| ≤ |S∆T |/2. Then,

PS∼µ [|f(S)− E [f ] | ≥ ε] ≤ 2 exp

(
− ε

2

2d

)
.
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This can be seen as a generalization of the strong concentratio

Finally, to prove Conjecture 10.10 we use the following theorem:

Theorem 10.14. For any matroid M = ([n], I), the polynomial

IM (z1, . . . , zn, y) =
∑
I∈I

zn−|I|zI

is completely log-concave.

Note that this is a stronger fact than the basis generating polynomial being completely log-concave as we
can get basis generating polynomial by taking ∂n−ry IM |y=0. But the proof is essentially the same we just
need to prove that all quadratic partial derivates are log-concave polynomials.

Having this in hand, to prove Conjecture 10.10 all we need to do is to symmetrize z1, . . . , zn with z. The
resulting polynomial ∑

I∈I
z|Iyn−|I|

is bi-variate n-homogeneous and completely log-concave. So, the coefficients form an ultra log-concave
sequence.

This also shows that we can not characterize completely log-concave polynomials by the structure of their
roots.
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