Counting and Sampling Winter 2020

Lecture 11: Log Concavity and Convex Programming
Lecturer: Shayan Oveis Gharan Feb 21st

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this lecture we see applications of (completely) log-concave polynomials in convex optimization and
approximate counting.

11.1 Log Concavity and Counting

We say a probability distribution p : 20" — R>¢ is (completely) log-concave if the generating polynomial g,,
is (completely) log-concave.

Recall that the entropy of u is defined as

The following theorem is the main result of this section:

Theorem 11.1. p : 2"l — R>g be a homogeneous log-concave probability distribution. For 1 < i < n, let
wi =Pg,[i € S]. Then,

- 1 . 1
wilog — < H(p) < wilog — 4+ (1 — ;) log .

Observe that the right inequality simply follows by the sub-additivity of entropy and it holds for any prob-
ability distribution u: Say Xi,..., X, be random variables where X; is the indicator random variable of 7.
Then,

H(p) = HX1) +H(X|X1) 4+ H(Xn| X1y ooy Xpo1)

n

1
< H(Xy) +H(X2) + o+ HX) =Zulog; + (1= pi) log .
i=1 t v

So, we get an equality above if p is an independent Bernoulli distribution where the success probability of
the ¢-th Bernoulli is p;.

So, the main non-trivial part is the proof of the left inequality.

Proof. The proof simply follows by log-concavity and the Jensen’s inequality. First, let us recall Jensen’s
inequality: Let u be a probability distribution on 2", z : 2[" — R™ be a function that associates a vector
to every set S C [n] and f : R™ — R be a concave function, then

> uS)fxs) < f <Z M(S)xs> . (11.1)
S S
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To use the above inequality we let u be the given log-concave probability distribution. So, we just need to
define zg = (zs1,...,2s,) for any set S. For any set S C [n] let

L ifie s
Tg; =41 )
0  otherwise.

Also, for a vector z = (z1,...,x,) define

f(x) =log g, (z) = log Z u(S

Firstly, we need to evaluate each side of (11.1). For a set T' C [n] observe that

fler) = logZu(S)(xT)S
logZu H —]I [i € T

€S

= logu(T Hi

zET

Therefore, we can rewrite the LHS of (11.1) as follows:

ZN(S)JC(QUS) = Zu )log u(S Z ZlOg*
S 5

€S

- +Z <1og) S uS)

S:eSs

> pilog f — H(p).
i Hi
To finish the proof of the theorem it is enough to show that the RHS (11.1) is 0. First, let us evaluate

> s 1(S)xs. For a coordinate i
1
> ouS)rsi= Y p(S) —=1
s S:ies Hi

Therefore, the RHS of (11.1) is exactly
F1,.,1) =log > u(S) =logl =0
g

as desired. ]

Note that if g is the uniform distribution over the bases of a matroid M = ([n],Z) we can also show

zn: (1 — i) log ¢

The idea is to take work with the dual of M. Given a matroid M = ([n],Z), the dual, M*, is a matroid on
the same ground set [n] where B is a base of M™* iff B is a base of M. So, if M has rank r, then M™* has
rank n — r. Furthermore, we can write

i

gy =21 zngm (/21,0051 20).
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It is well-know that for any matroid M, its dual is also a matroid, so gp;« is also a completely log-concave
polynomial. It then follows that the marginal of distribution p* uniform over the bases of M* are 1 —
By 1 — i but H(p®) = Hip).

Using these two facts, it follows that #(p) can be approximated within a multiplicative factor 2 by 7" | u; log i—}-

S (1 — ;) log +2—. This shows that uniform distributions over bases of a matroid are “too far” from
i=1 1—p;

independent distributions.

11.2 An Application in Combinatorics

Theorem 11.2. Let M = ([n],Z) be a matroid of rank r. Suppose that M has k disjoint bases By, ..., By,
i.e., for any i,j, BN Bj = 0. Then, M has at least k" many bases.

Proof. Let u be the uniform distribution over the bases of M. Then, H(u) = log #B. So, we just need to
prove H(u) > rlogk.

Consider the vector z = 1p, +---+1p,. We claim that there is a probability distribution v with marginals =
such that g, is log-concave. Since x € Newt(g,,), by Theorem 5.2, there is an external field (Ay,...,A,) >0
such that the marginals of A * p is equal to x. Since g, is a log-concave polynomials, and log-concave
polynomials are closed under external field, gy« is also log-concave. So, we can let v = X * p.

To be precise, if z is not in the interior of Newton polytope of g, we can find a sequence of external field
vectors Al,..., such that the marginals of u * A\! converges to = as t — oco. In such a case, we let v be
limy o Af * . By the closure of log-concave polynomials under taking limits, g, is log-concave.

Since g, is log-concave, by Theorem 11.1,

- 1 1
H(V)ZZVilog—: Z Elogk:rlogk.
i=1 Vi e u-UBy
Finally, the theorem follows from the fact that u has the largest possible entropy among all distributions
supported over the bases of M. So, H(u) > H(v) > rlogk as desired. O

As an immediate corollary, a complete graph G with n vertices has at least n/2 — 1 disjoint spanning trees.
So, the above theorem implies that a complete graph has at least (n/2 — 1)"~! many spanning trees.

11.3 Counting the number of Bases of a Matroid

One of the fundamental open problems in the field of counting is counting the number of bases of a general
matroid. Note that in some special cases we can do this exactly: For example if M is a graphic matroid
where for a given graph G = (V, E), E is the set of elements of M and a set S C E is independent if it does
not have any cycle, then the bases correspond to the set of spanning trees of GG, and we can exactly count
the number of spanning trees of any given graph by computing the determinant of the Laplacian matrix of

G.

In the next lectures, we will see how to use Markov chains to approximately sample (and count) bases of a
matroid.

In this section, we give a deterministic algorithm for this task:
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Theorem 11.3 (AOV17). There is a deterministic polynomial time algorithm that for any matroid M (E,T)
given oracle access to I gives a e” approzimation to the number of bases of M where r is the rank of M.

Let p be the uniform distribution over all bases of M. Firstly, observe that H(u) = log#B. Therefore,
3y pilog Yo (1—pa) log =

1
e mi gives an approximation of the number of bases up to a multiplicative error e
So, let us upper bound the latter quantity. Observe that

iz (1= pa)log = H(l — )" 0r) < He’“ =e". (11.2)
i=1 '

The inequality follows by the fact that for any
(1-2)" 0P < VO<z <1 (11.3)
and the last identity follows by linearity of expectation.

Therefore, to prove Theorem 11.3 all we need to do is to compute pq,...,pu,. But the natural way to
compute the marginal probabilities is to compute the partition function. So, it seems that we haven’t
made any progress. We claim the optimum value of the following convex program gives an additive O(r)
approximation to H(u):

n 1 n 1
log — 1— ;)1
max ;a ogai—&-;( ;) R — (11.4)

s.t. «ae€P(M).

Here, P(M) = Newt(gys) is the matroid base polytope, i.e., it is the convex hull of the indicator vectors
of all bases of M. Note that the objective function of this convex program is concave so we can solve this
program in polynomial time. Furthermore, as we discussed

Let o be an optimum solution. Observe that the ideal marginal probabilities p1, ..., i, is a feasible solution
to the above program. Therefore,
n

1
> 11 — 1-— zl
1 - iglu og i—i—( i) log

> H(p). (11.5)

n 1
Zailog——i—(l—ai)log >
i=1 @i 1-— 27

So, to prove Theorem 11.3 it is enough to show that the optimum of the above program is at most H(u)+O(r).

Since z is in Newt(g,,), similar to the proof of Theorem 11.2, there a log-concave distribution v : 2l R>g
with marginals z (again by Theorem 5.2, there is an external field A = (Aq,...,\,) such that g,.» has
marginals z).

Since g, is log-concave and has marginals x, by Theorem 11.1,

n
1
H(v) > Z a; log o
i=1 i

Since the uniform distribution over all bases has the largest possible entropy we also get H(p) > H(v) >
> a;log . Finally, we can write

n

<H(p) Y =H(w) +r

i=1

< H(p) + Zn(l — ;) log . L

= 1 1
Zai log— + (1 — ;) log
(67 1 im1 — Q4

—
i=1 ¢

where the last inequality follows by (11.3). This together with (11.5) finishes the proof of Theorem 11.3.
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11.4 Counting Common Bases of Two Matroids

Theorem 11.4. Given two matroids My = ([n],Z1), M2 = ([n],Z2) by independence oracle of rank r. There
is a deterministic polynomial time algorithm that counts the number common bases to My, Ms up to a
multiplicative factor of c”, for some constant ¢ > 1.

The algorithm is a natural extension of the algorithm in the previous section:

- IO 1
log — 1—a;)l
max Za ogai—&—Z( oz)ogliai
=t =l (11.6)
s.t. € P(My)

o€ P(Mg)

We will see that the optimum solution of the above program gives an additive O(r) approximation to
log |B(My) N B(M3)|. As a consequence, it follows that if there are k disjoint bases in the intersection of
My, My, then |B(M7) N B(Ms)| > (k/c)" for some constant ¢ > 1 (independent of k, ). This can be seen as
a generalization of the van-der-Waerden conjecture to matroid intersection.

Next, we discuss main ideas to prove Theorem 11.4. Let x be an optimum solution of the convex program
11.6. Let p be the uniform distribution over the bases in B(M;) N B(Ms3). Then, obviously p1, ..., 1y, is a
feasible solution to the above program. So, H(un) < > ; H(«a;), where H(;) = o log ai +(1—ay)log 1jai .
So, the main non-trivial part is to show that

H(w) > 3 Hlas) — ). (11.7)
i=1

The following theorem, which can be seen as a generalization of Gurvits’ machinery to completely log-concave
polynomials is the main technical part of the proof:

Theorem 11.5. Let p € Ry1,...,Yn, 21, -- -, 2n] be a multilinear completely log-concave polynomial. Then,
for any o € [0,1]™,

n

H(alh + azi )p|y:z:0 > (I)(a) inf p(ya Z)

y,2>0 O‘Zl_a’
i=1 Y Yy

where ®(«) is defined as follows:

n

o(a) = (a/*)" =] (%)

=1

We do not discuss the proof of the above theorem here. The proof is a generalization of Theorem 6.1. We
can follow an inductive proof similar to Gurvits’ theorem. The main non-trivial part is the base case where
p is a bi-variate polynomial. There the proof mainly follows from Problem 4 of HW2, i.e., that a multilinear
bivariate polynomial a + by + cz + dyz is completely log-concave iff 2bc > ad.

To use the above theorem, let g, , gar, be the generating polynomial of matroids My, My respectively. Recall
that M3 is the dual of the matroid Ms.

Having defined the above quantities, we let

p(ylw",ynazla"'azn) :ng(yla'",yn)gMg*(Zla"'azn)'
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Crucially observe that

n

BOMy) 1 B(OMy)| = [[@y, + 02)ply—s—o0-
i=1
This is because []}_,(8y, + 0-,) zeros out any monomial of p where the sum of the degree of y;, z; is not 1.
Now, to invoke Theorem 11.5 we need to show that p is completely log-concave. This is a non-trivial fact,
and it follows from the following lemma:

Lemma 11.6. For any two homogeneous completely log-concave polynomials p,q € R[z1,. .., z,], p-q is also

completely log-concave.

Following the above discussion, we have

o 9y () gz (2)
log ® f ———=—2_ 7
og ®(a) 250 yorzl-o

. 1
D) +2 Zai log o
i=1 ¢

n 1 n
= Zailog; —220@
i=1 v i=1

= Z’H(ai)—QT—Z(l—ai)lOg :

i=1

H(p) = log |B(My) N B(M)|

Y

Y

> Z H(cy) — 3r.
i=1
where the first inequality follows by the following fact, and the last inequality follows by (11.3). This proves
(11.7) as desired.
Fact 11.7. For any o € Newt(gar, ),

9uq (y)

Proof. Let pq be the uniform distribution over bases of M;. Recall that by Lecture 5, A = argmin, e

gives a distribution Axp, with generating polynomial gasu, (Y15- -+, Yn) = guy (M1Y1, - - ., AnYn) with marginals
at,...,a,. But since gy, is completely log-concave by Theorem 11.1 H(Ax* uqy) > Y0 | a;log ai But on
the other hand, O

11.5 Future Directions

One natural question is if one can prove an analogue of Theorem 11.4 for matchings in general graphs. The
following long-standing open problem was posed by Lovasz and Plummer:

Conjecture 11.8. Given a k-reqular k-edge connected (general) graph G = (V, E) with n vertices. Prove
that G has at least Q(k)™ many perfect matchings.

An analogous algorithmic question is if there is a deterministic algorithm c¢"-approximation algorithm for
counting the number of matchings in general graphs. The questions is if we can prove some form (complete)
log-concavity that can be used to approximately count matchings in general graph.
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