Polynomial Paradigm in Algorithms Winter 2020

Lecture 12-15: Simplicial Complexes
Lecturer: Shayan Oveis Gharan Feb 24th

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

Parts of this lecture and the next are based on talks by Irit Dinur and Yotam Dikstein at Simon’s Program
on High dimensional expanders.

The basic object that we work with is a simplicial complex that we call X. Unless specified otherwise, we
assume X is defined on a ground set of elements [n]. More concretely, X C 2[" is a simplicial complex if it
is a downward closed family of sets. We call sets o € X, faces of X. For a face o, the dimension of ¢ is one
less than the number of elements in o,

dim(o) := |o| — 1.

The dimension of X is defined to be the largest dimension of any face of X:

dim(X) := maxdim(o).

ceX

For X of dimension d, we write X(—1), X(0),...,X(d) to denote faces of dimension —1,...,d in X. Note
that X(—1) = {0} as the () is the only face of dimension —1 in X.

We say a simplicial X is pure if for any face o € X, there is a face 7 € X such that ¢ C 7 and dim(7) =
dim(X). All complexes that we will work with are pure. We call a face 7 € X such that dim(7) = dim(X
a top face or a maximal face of X.

One of the main goals of this lecture is to define what it means for X to be a high dimensional expander.
Normally, one may study expander graphs as a family of regular graphs. But, for the reason that will become
clear shortly, we need to also study expansion when the graph is not regular.

12.1 Assigning Weights to Top Faces

We start by assigning weights to top faces of X. Consider the natural 2-dimensional complex defined by
the following graph where we have a face for every vertex, edge and triangle. Say, we assign a uniform

distribution to triangles. This induces a distribution on edges where the probability of an edge {a, b} is the
probability that by choosing a random triangle and knocking down a vertex we get {a,b}. This implies for
example

P[{a.b}] = P[{a,b,c}]P[{a,b}[{a,b,c}] = % 9

Wl =

12-1
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Similarly, we have P [{b, c}] = 2/9. We also get a distribution over vertices: For example, P [a] = P [a|{a,b}]+
Plal{a,c}] = 1/9 whereas P [d] = 2/9.

More generally, if we start with a distribution II; over faces of dimension d, it induces a distribution IT;_4
over faces of dimension d — 1 and so on where each time we knock out a vertex from the given face uniformly
at random. Note that we can also construct II; from II;_; as follows: First we sample o ~ II;_1, then
among all faces 7 D o of dimension d we choose one proportional to its probability in II,.

For 0 < k < d, we abuse notation and write o ~ X (k) to denote that o is sampled from the distribution ITj.

Definition 12.1 (1-skeleton of a Complex). Given a d dimensional complex X defined on ground elements
[n], the 1-skeleton (or the graph of X ) is the undirected weighted graph with vertex set X (0) = [n], edge set
X(1) and the weight of every edge e = {i,j} is 1 ({4, 5}).

In reality, we do not know how to construct high dimensional expanders such that all these distributions are
uniform and that is a reason that we have to study spectral expansion for non-regular graphs.

Let me immediately point a simple connection between these complexes and generating polynomials. Given
a complex X on elements [n] and dimension d with distribution II; on top faces; we can define the d + 1-
homogeneous generating polynomial of X as follows:

gX(zl>~-~aZn) = Z Hd(J)ZU.

oceX:dim(o)=d

So, IT;_1, the underling distribution on faces of dimension d — 1, corresponds to the coefficient of
n
1
—0,, .
(ko)
=1

12.2 Links

Given a vertex 1 € X, we define the link of i as
X,={o:0U{i} e X,i¢ o}
Note that the link of 7 is also a simplicial complex.

In other words, we look at every face of X that has i and we knock out i to obtain a face of X;. You should
think of a link as a generalization of the neighborhood of a vertex in a graph.

In the above example, X, = {{b,c}, {b},{c},D}. At higher dimensions we can also look at the links of high
dimensional faces. More generally, we can look at the link of any face 7 as

X,={o:0UT€ X, 0Nt =0}

One of the main property of these high dimensional expanders is that if we know “expansion” properties of
these local neighborhoods, we can deduce global “expansion” properties of the whole complex.

12.3 Spectral Link Expansion

What does it mean for a link to be spectrally expanding? For start, we want every link to be connected.
First of all, since we start from a weighted complex, every link is also a weighted complex.
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Given a vertex i, the distribution IT; on d-faces of X imposes a distribution on top faces of X; that corresponds
to the coefficients of the following polynomial:

azl ax
So, we write o ~ X;(k) to denote that o U+ is sampled from I conditioned on .

We will say a complex is spectral expander if every link is an spectral expander. In other words, if all of
these “local” structures are expanding. One amazing property of the links is that we can write the whole
complex as a convex combination of the links.

This fact essentially corresponds to the following FEuler identity for homogeneous polynomials:

gx = Z 2102, 9x
;

12.3.1 Spectral Expanders
Let G be the underlying graph of X, i.e., G is the 1-skeleton of X. In this section we see what it means for
G to be a spectral expander.
For two functions f,g: X(0) — R, define
(f,9) = EiNX(O) [f(@)g(i)],

where recall that ¢ ~ X (0) means that 4 is sampled from the distribution Iy on the vertices of X. We can
look at the random walk operator on G that says if I am at vertex ¢, I choose an edge incident to ¢ with
probability proportional to its weight:

Ui~ 1] = PU{i.3Hi)] = gy

Having this, we can define the transition probability operator P : RX(0) — RX(0) a5 follows: For a function
f:X(0) = R, define

Pf(i) =B [fG)] = ZP i — 5] £(5)-

It follows that P is self-adjoint with respect to the above inner product, i.e., for any two f,g: X(0) = R,

(f,Pg) =Ei[f(0)Pg(i)] = Ei [f()Eqijy1i [9] ()] = Eqigy [F(D)9(h)] = (Pf, 9)- (12.1)

i.e., we are using that the following two operations are equivalent:

e First choose an edge then a vertex in it

e First choose a vertex and then an edge that contains this vertex.

As a corollary the matrix P has n eigenfunctions. The top eigenfunction is the all-ones function and all
eigenvalues of P are between —1,+1.
Definition 12.2. A graph G is a two sided A-expander if the eigenvalues

1<), << A=1

if =A< An, Ao <A We say G is a one-sided A-expander if Ao < A.
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12.3.2 Back to Simplicial Complexes

The following definition is the key in this area:

Definition 12.3 (High Dimensional Spectral Expander). A d-dimensional complex X is a two-sided -
spectral expander if the graph underlying link of every face o € X (i) for i < d — 1 is itself a two-side
A-spectral expander.

Where does this definition come from? First, it does not seem such a thing is realizable. First of all, it is not
hard to see that the complete complex is a O-spectral expander. This is because the underlying graph of the
link of any face is also a complete graph, the second eigenvalue of the random walk of a complete graph is
ﬁ. More generally, if we choose a random complex with a high enough density we get a high dimensional
expander. One non-trivial question is if there is sparse high dimensional expanders? Such objects were
first constructed by Lubotzky Samuels and Vishne. More recently, Kaufman and Oppenheim provided a

“simpler” group theoretic construction:

Theorem 12.4. Given d > 2 and a prime power q where \/q > d — 1 there exists in finite sequence of
simplicial complexes X', X2, ... such that the number of vertices goes to infinity, each X* is a m—

one spectral expander and that every vertex of each complex is in at most f(q,d) many d-dimensional faces
(independent of the number of underlying vertices in the complez).

Fact 12.5. Given a complex X, let A be the (weighted) adjacency matriz of the 1-skeleton of X. There is
a normalizing constant C' > 0 such that A = (dgl)v2gX|Z:1,

Proof. First note that for any edge {3, j},

azi 82]‘ gXlz:1 = Z Hd(a)

o{ijleo

3 P[{ivj}la}nd@_) P[{i, 5}

()

as desired. O

o:{ijreo (dgl)

Fact 12.6. Given a d-dimensional complex X on elements [n], let P be the random walk operator on 1-
skeleton of X (as defined above). Then,

1. _
P =~ diag(Vgx) ™' Vigx.

where all differential operators are evaluated at z = 1, and diag maps a vector v € R™ to a diagonal n X n
matriz with v on the diagonal.

Proof. Fix 1 <i,j <n. Then,

U0 NP kY 3 Viex (k) dVgx(i)

as desired. The first equality uses the previous fact, and the last equality uses Euler’s identity:

Z 20.,(0.,9x) = d0.,g9x

J

as g, is d + 1-homogeneous. O
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Lemma 12.7. Given a d-dimensional complex X on [n] and random walk operator P,
1 . _
() = (ding(Vax) V2 1oz )

Proof. Without loss of generality assume that gx|.—1 = 1. It follows that
V2loggx = Vgx — (Vgx)(Vgx)".

Therefore,

1 - 1. - 1
- diag(Vx) 'V log gy = P — - diag(Vgx) Y(Vgx)(Vgx)T =P — gl(Vgx)T~

Recall that 1 is the largest eigenfunction of P. But,
d + 1
(v.gX Z 621 gX

Therefore, subtracting él(Vg x )T from P reduces the eigenvalue 1 of the all-ones eigenfunction to —1/d and
the rest of the eigenvalues remain invariant. The lemma’s statement follows. O

As an immediate consequence of the above lemma we can write gx is log-concave at 1 iff Ao(P) < 0. Let
me state another consequence:

Lemma 12.8. A d-dimensional complex X is a one-sided 0-spectral expander iff gx is log-concave (over
RZ0)-

Proof. Suppose gx is log-concave. Fix a face 7 € X (k) for k < d — 2. Then (up to a normalizing constant),
the generating polynomial of gx, = 07gx. Since gx is log-concave, by HW2 Problem 5, it is completely
log-concave; so gx, is log-concave. Therefore, V2 log gx. |.—1 =< 0. But by the previous lemma, this implies
that Ay(Pr) < 0 as desired.

Conversely, suppose X is a one-sided 0O-spectral expander. By Theorem 8.15, to show gx is log-concave we
need to verify

i) For any 7 of dimension at most d — 2, that 9" ¢gx is in-decomposable.

ii) For any 7 of dimension d — 2, 9"gx is log-concave.

We start by checking the first condition: For 7 of co-dimension at least 2. If 7 ¢ X, then 9"gx = 0 so there
is nothing to prove. Otherwise, we know underlying graph of X, is a 0-spectral expander. So \y(P;) < 0.
But this implies that the underlying graph of X, is connected. So, gx, = 0"¢gx is in-decomposable. Now,
for 7 of co-dimension 2, X, being 0-spectral expander implies A\y(P;) < 0. But by the previous lemma this
implies V2log gx, =<0 as desired. O

Since the support of any homogeneous multilinear log-concave polynomial correspond to bases of a matroid
(see corollary 10.6), we obtain that the top faces of any one-sided O-spectral expander correspond to bases
of a matroid.
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12.4 Oppenheim’s Trickling Down Theorem

Next, we prove the following theorem due to Oppenheim:

Theorem 12.9. Let X be a d-dimensional complex. Suppose for all vertices i,

1) X; is a one-sided A-spectral expander.

it) The 1-skeleton of X is connected.

Then, the 1-skeleton of X is a lfA-spectml expander.

Roughly speaking, in the case d = 2, the above theorem says the following: Say we are given a graph G such
that the local neighborhood of every vertex is a very good expander. If G is also connected, then G is a very
good expander.

Note that the second assumption is also necessary as we can just let G be the union of two very good
expander. In such a case even though the local neighborhood of every vertex is a very good expander the
whole graph is far from an expander.

By a repeated application of the above theorem we obtain the following theorem:

Theorem 12.10. Let X be a d-dimensional complex such that

1. For any 7 € X (d — 2), X, is one-sided \-spectral expander.

2. For any 7 € X (k) where k < d — 2, the underlying graph of X, is connected.
Then, X is a one-sided %-spectml expander.

Note that for the case A = 0 the above theorem is special case of theorem 8.15.
In the rest of this section we prove Theorem 12.9 using a well-known technique called Garland’s method.
First, we state the localization lemmas that correspond to the Garlands method:

Lemma 12.11. Suppose f,g: X(0) — R. Then,

(f,9) = Eivx o) [{fi, 9i) x,]
where f; is the restriction of f to the vertices link of i, i.e., for any j € X;(0), fi(4) = f()).
Proof. Observe that

Ejx) [f(9()] = Egjy~xBiqgf)gli)
= Eiux)Egy:if()9()
Eiox 0y [(fis 9i) x.] -

where in the second inequality we used that the following two operations are the same: (1) First sample an
edge {, j}, then choose j uniformly at random, (2) First sample 4, then an edge {i,j} incident to ¢ and then
pick the “other” vertex j. O
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Lemma 12.12. For f,g: X(0) = R,

(Pf,9) = Epex0) [(PrSrs 9r) x5

where Py is the transition probability matriz corresponding to the 1-skeleton of the link of k.

Proof. First, by (12.1) we can write

(Pf,g) = E{z’,j}NX(l) [f(1)g(5)]
= Epjm~x@Bigyiiimnf(09()
= Erx0Eijmxf(0)9()
= EroxEij3~x00)f(9)9(5)
= Epox(0)(Prfrs 9r) x, -
where we used that the following two operations are the same: (1) Choose a random triangle {i, j, k} ~ X (2)

and drop one of them uniformly at random, (2) Choose a random vertex k ~ X (0), choose a random triangle
{i,J,k} ~ X (2) among all those that have k, drop k to get {i,5}. O

Now, we are ready to prove Theorem 12.9. Let G be the 1-skeleton of X. Since G is connected, the second
eigenvalue of P is smaller than 1. Let v be an eigenvalue of P other than than the top eigenvalue, i.e.,
v < 1. Let f: X(0) — R be the corresponding eigenfunction, i.e., Pf = v f. Since eigenfunctions of P are
orthogonal, f is orthogonal to the top eigenfunction, the all ones function, i.e., (f,1) = 0. . Furthermore,
assume that f is normalized such that (f, f) = 1.

It follows that
v =(Pf, f) =Eivx(0) (Pifi, fi)] s (12.2)

where we used the localization lemma 12.12. Now, for a second, suppose for all 7, f; is orthogonal to 1;,
then by the assumption of the theorem,

(Pifis fi) < M fill*.
Therefore,
Eivx(0) (P fis )] € Eioxo) [AFilI?] = Al FI1.

where the equality follows by another application of the localization lemma 12.11. So, we get v < A. But
this this assumption is too good to be true, the fact that f is orthogonal to all-ones does not imply that
even a part of the support of f is orthogonal to all-ones in that part.

Instead, we decompose f; as follows:
fi =il + fit,

1;) = 0. Since ||1;||x, = 1, we can simply let «; = (f;, 1;). We can then write,

Einx©)(Pifi, fiy = Eiox)(Pfis, [i5) + (il i)

EiNX(O))‘”fiL”Q + Eijwx0)(fi, 1;)°

Eivx AL+ (1= X {(fi, 1)?

A (1= NE;wx o) (fir 1:)? (12.3)

1

7

where (

I IA

I” =

where in the first equality, we used that (1;, fi*) = 0, and in the second inequality we used that || f;
2 L2
ai + ||

But

)

(fi» 1)) = Ejux,0)f () = Pf(3)
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Therefore,
Eivx(0)(fi; 1:)* = Binx(0)Pf(i) - Pf(i) = (Pf,Pf) =~°.
Putting the above equation together with (12.2), (12.3) we obtain

YEAF (=AY
Solving the above for v we obtain either v > 1 or v < ﬁ as desired. This completes the proof of
Theorem 12.9.

12.5 High Dimensional Walks

Given a d-dimensional simplicial complex X defined on [n] equipped with a distribution distribution II; on
top faces, we can define a random walk on faces in X (k). Fix 0 < k < d—1. Given a face 0 € X(k),
the up-down-walk is defined as follows: First we choose 7 € X (k + 1) condition on o. Then, we remove a
uniformly random element of 7 to get o’ € X (k). We write P*" to denote the transition probability matrix
of this walk.

So, this operator acts as follows: Given a function f: X (k) — R, for any o € X (k),
PR f(0) = Eiox, (0)Eorjougiy f(0).

Observe that this walk is lazy, i.e., starting from o € X (k), with probability %ﬁ, we return back to o, and
we get o/ = 0.

Similarly, we can define the down-up walk, P¥V where for a given o € X (k), we first knock down a uniformly
random element of o, i.e., we choose 7 € X (k — 1)|o, and then we go up and choose o’ € X (k)|r.

Example 12.1 (k = 0 Case). In the above definition consider k = 0 case. Then, P°" is exactly the half-lazy
random walk on the 1-skeleton of X. Namely, given a vertex i, first we choose an edge {i,j}|i, then we drop
one of i,j uniformly at random. So, we return back to i with probability 1/2. So, we can write

1
PN =Zp41/2. 124
2

On the other hand, P° is just the constant operator. Starting from a vertex i, first we remove i and get to
0, then we choose j ~ X(0). In particular, for f: X(0) — R,

P f(i) = E;x0)f(4)-

Observe that
Ao(P) = M\ (P — I/2 — P"). (12.5)

The proof is similar to the proof of Lemma 12.7.

Example 12.2 (Matroid Case). For a well-defined example, we explain these walks on the independence
complex of a matroid. Let M = ([n],Z) be a matroid of rank r + 1. Define a simplicial complex X on
ground set [n] where o C [n] is a face of Xy iff o € Z. Observe that Xy is a simplicial complex simply
because the downward closed property of independence sets. Furthermore, X is pure because of the exchange
property: Namely, given any independent set o € cI we can add elements to o to turn it into a base. So, the
top faces of Xy; are bases and Xpy; has rank r. We let 11,. be the uniformly distribution over bases of M.

Since gar = gx,, S a log-concave polynomial, by Lemma 12.8, Xar is a one-sided 0-spectral expander. Now,
consider the down-up walk P : Given a face o € Xp(r), i.e., a base, first we drop an element, say i, of o
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uniformly at random, i.e., we go to an independent set o —{i} of rank r. Then, among all bases o' D o —{i}
we choose one uniformly at random. This walk is called the bases exchange walk. Observe that we can run
this walk for any given matroid having access to an independence oracle. In this section, we will study second
eigenvalue of P and we will use that in the following section to generate a uniformly random base of a

matroid.

Lemma 12.13. For 0 < k < d — 1 define M* such that P*" = L Etlprk

k+2 + k+2

M(MFE—PRY)y < max A (Pr),

reX (k—1)

Then, Then,

where P is the random walk operator on the 1-skeleton of link of 7. In particular, if X is a A-spectral

expander, then for all 0 < k < d—1, we have

A (MF — PEYY <

Proof. Let f: X (k) — R. Then,

<Mkf7f> = ET~X(]€—1)<MTfT7fT>

= Erx@g-nEix, (0 (]EjNXO(TU{i})f(j)> - f(@)

= ]ETNX(k—l)E(i,j)NXT(l)f(j)f(i)
= Ewa(k71)<PTf7 f>

where in the first equality we simply used the localization lemma, and as usual f; is the restriction of f to

the link of 7. Similarly, we can write

<Pk\/f7f> = ETNX(k71)<P7]j:va7fT>

= Er x@x-nEi~x, (0 (EjNXo(‘r)f(j)> f(9)

= ETNX(k—1)<P7(—)VfTa fT>

It then follows that

<(Mk_ka)fT7fT> = ETNX(k*l)((PT_P‘I(')\/)fT7fT>
< Eroxgen (P
< max Mo(Pr) | f]l

TeEX(k—1)

where the inequality follows by (12.5). This completes the proof of the lemma.

A stronger version of the above lemma was recently proved by Alev Levi and Lau:

Theorem 12.14. For 0 < k <d—1 and M* = P* — _L_ be the non-lazy up-down walk we have

k+2

Mk — PP < P.)- (I - P
—ITg TGIJ?&X—l))\z( ‘r) ( )7

where we write A <, B when for any f € X(k) = R, (Af, ) < (Bf, f).

Lemma 12.15. For any 0 < k < d, spectrum(P*=") = spectrum(P*), where by spectrum I mean the set

of non-zero eigenvalues of the given operator.

Having the above two lemmas, we can bound the second eigenvalue of P*" inductively.
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Corollary 12.16. If X is a O-spectral expander, then \a(P*\) <1 — T}m

Proof. We prove by induction. Firstly, since A2(P) < 0, by (12.4) we have \y(P°") = 1/2. Now, suppose

1
No(PF1My <1 - ——
2( )< kE+1

By Lemma 12.15, we get that

1
By definition of M¥*,
I k+1
Pk:/\ — Pk\/ Mk_Pk\/ )
k+2+k+2( +( )
Therefore,
1 k+1
Ao (PFN) < —— + —— (Mo (PFY) + A (MF — PFY
2(P*7) < k+2+k+2( 2(PY) + i ( )
1 k+1 1 1
< 1— =1- —
S vz T Eeet e Y Kto

where in the second inequality we used that, since X is a 0-spectral expander, by Lemma 12.13, so A\;(M* —
PV <. O

Having the above fact it follows that for any d-homogeneous multilinear log-concave polynomial p € R>¢[z1, .. .

the corresponding d — 1-dimensional simplicial complex is a 0-spectral expander and the the Ay (P?~1V) <
1—1/(k+1). In the next section we will see that by simulating the down-up chain we can evaluate p at any
point in RY,,.

If X is a A-spectral expander it follows from the above proof that

1 E+1
AQ(P’“)§1——+L

k+2 2 A

This implies that if A = O(1/k?) the second eigenvalue is bounded away from 1 and the walk mixes rapidly
as we will discuss in the following section.

Following the recent work of Levi and Lau the following stronger theorem holds:

Theorem 12.17. Let X be a d-dimensional simplicial complex and for any 0 <k < d—2 let

A = max Ao(Py).

oceX (k)
Then,
1 k—1
Py <1-— —— 1—\g).
A2(P™) < P E)( Ak)

In particular, if for all k, Aq_ < O(1)/k then the second eigenvalue of P*" is bounded away from 1 and the
walk mixes rapidly.

s Zn]
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12.6 Mixing Time and Approximate Counting

Given a d-dimensional A-spectral expander X Suppose we are given a function f : X (k) — R and we want
to estimate

Eoux i f(o) = (f,1). (12.6)
One way to estimate this quantity is to run the up-down (or down-up) Markov chain started from a fixed
state o € X (k). The question is how long we should run the Markov chain so we can approximate the above
quantity?

Theorem 12.18. Let Q = PVk. For any o € X(k), € > 0 and any function f € X (k) — R we have
Q" f(o) —Ef| <ellfI%,
if
1 1
. log (; - MaXge X (k) Hk(a))
- 1-— )\Q(P\/k)

Say f: X(k) — [0,1]. Then, (f, f) < 1. Having this, we can simply estimate Ef within an additive € error
(with probability 1 — &) by averaging f(7), where 7 is the ¢-th state that the chain lands on, for O(Z log d)
many independent samples.

Proof. Let F' = Eqx ) f(c). We write

max |Q'f(o) — F|

< S
ceX (k) - agl)?é) I (o)

1
Jnax gy Borx Q' (0) — FIP
. (Q'f — F1,Q"'f — F1).

oeX (i) TTi (o)

Eonx(i)|Q'f(0) = F

IN

where the second inequality follows by the Cauchy-Schwarz inequality and Now, let gi,...,g;x(x) be the
eigenfunctions of ) with corresponding eigenvalues Ay > -+ > A x(x). Recall Ay = 1 and g; = 1. Also
that Q! have exactly the same eigenfunctions with eigenvalues ¢, .. ")‘fx(k)r Therefore, we can write

f=2f 909
(Q'f - F1,Q'f —F1) = (Qf.f) —2F(f.1) + F*(1,1)

= (Q*f. f) - F?
|X (k)|
= Y NYfg) - F?
i=1
|X (k)
= Z )‘22t<f7 gz>2
i=2
< A
where in the second equality we used (12.6) and that ||1|| = 1. We will use without proof that all eigenvalues
log( 1 -max, ) T
of Q = P*V are non-negative, i.e., the matrix is PSD. Therefore, for t > g(f 1_/\26(;<f,:)n’“(”)) we have
1
t 20 £112 2
ma —F| <A ma. <e-
ma [Q'f() ~ Fl < 3| max s < - |

as desired. O
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Using the above tool let me explain how to use it to count the number of bases of a matroid.

Theorem 12.19. There is a randomized algorithm that for any given matroid M = ([n],Z) of rank r + 1
counts the number of bases of M within 1 £ n multiplicative factor in time polynomial in n,r,1/1.

Proof. First, construct an r dimensional simplicial complex as explained in Example 12.2 with uniform
weights on the top faces, i.e., bases. Fix an element n. Observe that either Plo ~ X(r)jn €0 > 1/2 or
Plo~ X(r)]n ¢ o > 1/2. Without loss of generality assume the former. Consider the following function
f:X(r) — {0,1}, where for any o € X (r),

flo)=1n € o).

Since || f|| < 1 by the previous theorem we can run a Markov chain starting from an arbitrary state o € X (r)
to find an estimate Z of E [f] = P, [n € o] within € additive error for e < n/10n, i.e.,
Z—-e<E[fl]<Z+e

All we need to do is to run the chain for m many times for ¢ > r + 1log(2|X (r)|) which is a polynomial
in n,r,1/n and calculate the fraction of the states at time ¢ have n. Since P, [n ¢ o] > 1/2 this gives a
1+ 2e = 1 £+ n/5n multiplicative error of the same quantity, i.e.,

(I=n/5n)E[f]| < Z < (1+n/5n)E[f].

Now, we recursively find an estimate N that is a 1+7(1 — 1/n) multiplicative approximation of the number
of bases of M/{n}, i.e.,

(1=n(1—1/n))#Base of M/{n} < N < (1+n(1—1/n))#Base of M/{n}

Since the number of bases of M is equal to number of bases of M/{n} divided by P [n], we can just output
N/Z as an estimate. It follows from the above two inequalities that

(L= X(r)| < N/Z < (1+n)|X(r)|

as desired. 0
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