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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

A multivariate polynomial p ∈ C[z1, . . . , zn] is H-stable (or stable for short) if p(z1, . . . , zn) 6= 0 whenever
(z1, . . . , zn) ∈ Hn where

H = {c ∈ C : =(c) > 0}

is the upper-half of the n-dimensional complex plane. We say p is real stable if all coefficients of p are real.
Unless otherwise specified, all polynomials that we work with in this course have real coefficients.

Fact 2.1. A univariate polynomial p ∈ R[t] is real rooted iff it is real stable.

This simply follows from the fact that the roots of p come in conjugate pairs. So, if p has a root t with
=(t) < 0, we have t̄ is also a root with =(t̄) > 0.

The above definition can be hard to understand; so, instead we discuss an equivalent definition.

Lemma 2.2. A multivariate polynomial p ∈ R[z1, . . . , zn] is real stable iff for every point a ∈ Rn>0 and
b ∈ Rn, the univariate polynomial p(at+ b) is not identically zero and is real rooted.

For example, z1 − z2 is not real stable because for a = (1, 1) and b = (0, 0)

Proof. ⇒: Fix a ∈ Rn>0 and b ∈ Rn. If p(at+ b) is identically zero, then for zj = aji+ bj , p(z1, . . . , zn) = 0
so p is not real stable. Otherwise, say p(at + b) has a root t with =(t) 6= 0. Then, since p(at + b) has real
coefficients by Lemma 1.2 (see first lecture), we can assume =(t) > 0. Write t = ci+ d; then for

zj = ajt+ bj = ajci+ bj + daj

p(z1, . . . , zn) = 0 so p is not real stable.

⇐: Suppose p is not real stable; then there exists (z1, . . . , zn) ∈ Hn that is a root of p. Set aj = =(zj) and
bj = <(zj) then aj > 0 for all j so p(at+ b) is not identically zero and it must be real rooted. But t = i is a
root of p(at+ b) which is a contradiction.

See Figure 2.1 for applications of the above lemma.

Let us discuss several examples of real stable polynomials

Linear Functions: A linear polynomial p = a1z1 + · · ·+ anzn is real stable iff a1, . . . , an ≥ 0. To see this
note that if all zi have positive imaginary value then any positive combination also has a positive imaginary
value and thus is non-zero.

Elementary Symmetric Polynomial: For any n and any k the elementary symmetric polynomial
ek(z1, . . . , zn) =

∑
S∈(n

k)
∏
i∈S zi is real stable. I leave this as an exercise.
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Figure 2.1: Left diagram shows zeros of the polynomial 1− xy and the right diagram shows zeros of 1 + xy
in the plane R2. Note that in the left figure any line pointing to the positive orthant crosses the zeros at two
points so 1− xy is real stable but this does not hold in the right figure so 1 + xy is no real stable.

Non-example The polynomial z21 + z22 is not real stable; for example let z1 = eπi/4 and z2 = e3πi/4.

One of the most important family of real-stable polynomials is the determinant polynomial.

Lemma 2.3. Given PSD matrices A1, . . . , An ∈ Rd×d and a symmetric matrix B ∈ Rd×d, the polynomial

p(z) = det

(
B +

n∑
i=1

ziAi

)

is real stable.

Proof. By Lemma 2.2, it is enough to show that for any a ∈ Rn>0 and b ∈ Rn

p(b+ ta) = det

(
B +

n∑
i=1

biAi + t

n∑
i=1

aiAi

)

is real-rooted. First, assume that A1, . . . , An are positive definite. Then, M =
∑n
i=1 aiAi is also positive

definite. So, the above polynomial is real-rooted if and only if

det(M) det

(
M−1/2

(
B +

n∑
i=1

biAi

)
M−1/2 + tI

)

is real-rooted. The roots of the above polynomial are the eigenvalues of the matrix M ′ = M−1/2(B+ b1A1 +
· · ·+ bnAn)M−1/2. Since B,A1, . . . , An are symmetric, M ′ is symmetric. So, its eigenvalues are real and the
above polynomial is real-rooted.

If A1, . . . , An � 0, i.e., if the matrices have zero eigenvalues, then we appeal to the following theorem.
This completes the proof of the lemma. In particular, we construct a sequence of polynomial with matrices
Ai+I/2

k. These polynomials uniformly converge to p and each of them is real-stable by the above argument;
so p is real-stable.
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Lemma 2.4 (Hurwitz [Hur95]). Let {pk}k≥0 be a sequence of Ω-stable polynomials over z1, . . . , zn for a
connected and open set Ω ⊆ Cn that uniformly converge to p over compact subsets of Ω. Then, p is Ω-stable.

Definition 2.5 (d-homogeneous). A polynomial p ∈ R[z1, . . . , zn] is d-homogeneous if p(λz1, . . . , λzn) =
λdp(z1, . . . , zn) for any λ ∈ R.

How general are these real stable polynomials and where should we look for them?

Theorem 2.6 (Choe, Oxley, Sokal, Wagner [COSW02]). The support of any multi-affine homogeneous real
stable polynomial corresponds to the set of bases of a matroid (more generally, the support corresponds to a
jump system).

For example, the support of a an elementary symmetric polynomial correspond to the set of bases of a
uniform matroid whereas the non-stable polynomial z1z2 + z3z4 does not correspond to bases of a matroid.

2.1 Closure Properties

In general, it is not easy to directly prove that a given polynomial is real stable or a given univariate
polynomial is real rooted. Instead, one may use an indirect proof: To show that q(z) is (real) stable we can
start from a polynomial p(z) where we can prove stability using Lemma 2.3, then we apply a sequence of
operators that preserve stability to p(z) and we obtain q(z) as the result.

In a brilliant sequence of papers Borcea and Brändén characterized the set of linear operators that preserve
real stability [BB09a; BB09b; BB10]. We explain two instantiation of their general theorem and we
use them to show that many operators that preserve real-rootedness for univariate polynomials preserve
real-stability for of multivariate polynomials.

We start by showing that some natural operations preserve stability and then we highlight two theorems of
Borcea and Brändén.

The following operations preserve stability.

Product If p, q are real stable so is p · q.

Symmetrization If p(z1, z2, . . . , zn) is real stable then so is p(z1, z1, z3, . . . , zn).

Specialization If p(z1, . . . , zn) is real stable then so is p(a, z2, . . . , zn) for any a ∈ R. First, note that
for any integer k, pk = p(a + ı2−k, z2, . . . , zn) is a stable polynomial (note that pk may have com-
plex coefficients). Therefore by Hurwitz theorem 2.4, the limit of {pk}k≥0 is a stable polynomial, so
p(a, z2, . . . , zn) is stable.

External Field If p(z1, . . . , zn) is real stable then so is q(z1, . . . , zn) = p(λ1 · z1, . . . , λn · zn) for any positive
vector w ∈ Rn≥0. If q(z1, . . . , zn) has a root (z1, . . . , zn) ∈ Hn then (λ1z1, . . . , λnzn) ∈ Hn is a root of
p so p is not real stable.

Inversion If p(z1, . . . , zn) is real stable and degree of z1 is d1 then p(−1/z1, z2, . . . , zn)zd11 is real stable.
This is because the map z1 7→ −1/z1 is a bijection between H and itself.

Differentiation If p(z1, . . . , zn) is real stable then so is q = ∂p/∂z1. This follows from Gauss-Lucas theorem.
If q(z1, . . . , zn) is not real stable it has a root (z∗1 , . . . , z

∗
n). Define f(z1) = p(z1, z

∗
2 , . . . , z

∗
n). Then, f ′(z1)

has a root inH. But the roots of f ′(z1) are in the convex hull of the roots of f(z1) we get a contradiction
because the complement of H is convex.
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In the rest of this course we write ∂z1 as a short hand for ∂p/∂z1.

We can continue this list and try to discover more and more closure properties. Borcea and Brändén proved
a remarkable result characterizing all linear operators that are stability preserving. Here, we don’t discuss
their theorem in full generality but we discuss one of the main applications of their theorem which is being
used in almost all applications.

Let T : R[z1, . . . , zn]→ R[z1, . . . , zn] be an (differential) operator on polynomials with real coefficients defined
as follows: ∑

α,β∈N≥0

cα,βz
α∂β

For example, 1− z1∂z2. In the above zα =
∏n
i=1 z

αi
i and ∂β =

∏n
i=1 ∂

βizi.

Define FT ∈ R[z1, . . . , zn, w1, . . . , wn]

FT (z1, . . . , zn, w1, . . . , wn) =
∑

α,β∈N≥0

cα,βz
α(−w)β .

Note that FT is a polynomial with 2n variables.

Theorem 2.7. T is an stability preserver operator, i.e., it maps any real stable polynomial to another real
stable polynomial, iff FT is real stable.

For example, the operator 1 − ∂z1 is stability preserver, because 1 + w1 is real stable. Also, 1 + z2∂z1 and
1− ∂z1∂z2 are stability preserver.

For a non-example, 1+∂z1∂z2 and 1−∂z1∂z2∂z3 are not stability preserver. This is because (1+∂z1∂z2)(z1z2) =
z1z2 + 1 is not real stable.

As a direct consequence we show that the Multi-Affine-Part (MAP) operator is stability preserving. Given
a polynomial p, MAP(p) zeros out every monomial of p with a square and keeps all multilinear monomials.
For example,

MAP(1 + 2x+ xy + x2y + z3) = 1 + 2x+ xy.

Lemma 2.8. MAP is a stability preserving operator.

Proof. Given a polynomial p ∈ R[z1, . . . , zn]. We can write MAP as the following differential operator

MAP(p) =

n∏
i=1

(1− z′i∂zi)|z1=···=zn=0.

Now, observe that (1−z′i∂zi) is stability preserving. Furthermore, setting all zi = 0 is also stability preserving.

2.2 Applications

Given a graph G = (V,E), our first application is to show that the matching polynomial

µG(z1, . . . , zn) =
∑
M

(−1)|M |
∏

i sat in M

zi (2.1)
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is real stable. For observe that
p(z1, . . . , zn) =

∏
{i,j}∈E

(1− zizj)

is real stable. Now observe that µG = MAP(p). So, µG is real stable.

As a consequence the univariate matching polynomial∑
M

(−1)|M |t|M |

is real rooted. This follows by symmetrizing the polynomial in (2.1), i.e., set zi = t for all i and noting that
any univariate real stable polynomial is real rooted.
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