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3.1 Gurvits’ Machinery

Given a matrix M ∈ Rn×n≥0 the permanent of M is defined as follows:

per(M) =
∑
σ∈Sn

n∏
i=1

Mi,σi .

This quantity is #P-hard to compute exactly so one can only appeal to approximation algorithms. The
problem has been studied for years. After much effort, Jerrum, Sinclair and Vigoda [JSV04] managed to
design a randomized 1± ε approximation algorithm for this problem that runs in time polynomial in n, 1/ε.

Designing a deterministic algorithm with the same approximation factor remains a fundamental open prob-
lem. This question relates to several fundamental problem in TCS under the umbrella of polynomial identity
testing (PIT). It is believed that one can simulate any polynomial time randomized algorithm with a poly-
nomial time deterministic algorithm. Permanent is perhaps the most fundamental problem which we have
no deterministic approach for.

After a long line of works–see Linial, Samarodnitsky, Widgerson [LSW], Barvinok, Gurvits [Gur02], Gurvits,
Samarodnitsky [GS14] and Anari, Rezaei [AR18]–the best deterministic approximation factor known is
(
√

2)n. Note that if we can design a 2n
ε

approximation algorithm for any ε > 0 then it is possible to improve
the approximation factor to 1± ε.

In this section, we will prove the following result of Gurvits:

Theorem 3.1 (Gurvits [Gur02]). Let p ∈ R[z1, . . . , zn] be a real stable polynomial with non-negative coef-
ficients. Then,

e−n inf
z>0

p(z1, . . . , zn)

z1 . . . zn
≤ ∂z1 . . . ∂znp|z=0 ≤ inf

z>0

p(z1, . . . , zn)

z1 . . . zn
.

In other words, the above theorem shows that we can approximate the coefficient of the monomial z1 . . . zn in

the real stable polynomial p (with non-negative coefficient) with the mathematical program infz>0
p(z1,...,zn)
z1...zn

.

First we show that infz>0
p(z1,...,zn)
z1...zn

can be formulated as a convex programming problem. The idea is to do
a change of variables eyi ↔ zi. Note that since zi > 0 this is a valid change of variables. Furthermore to
minimize the ratio we can equivalently minimize the log of the ratio. So, we claim,

log
p(ey1, . . . , e

yn)

ey1 . . . eyn
= log p(ey1, . . . , e

yn)−
n∑
i=1

yi

is convex. To see this, it is enough to show log p(ey1 , . . . , eyn) is convex, as the second term is linear. To see
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this, recall that log-sum-exp is a convex function i.e.,

log

n∑
i=1

aie
〈bi,y〉

is convex as long as a1, . . . , an ≥ 0 and bi ∈ Rn for all i.

Now, we show how to use this theorem to get an en approximation for permanent. Consider the following
polynomial

p(z1, . . . , zn) =

n∏
i=1

n∑
j=1

Mi,jzj . (3.1)

First, observe that p is real stable since all entries of M are nonnegative and the product of real stable
polynomials is real stable. Second, observe the coefficient of the monomial z1 . . . zn is exactly per(M), i.e.,

∂z1 . . . ∂znp |z=0= per(M).

Therefore, Theorem 3.1 gives an en approximation algorithm to the per(M).

Finally, we use this theorem to prove the van-der-Waerden conjecture:

Theorem 3.2. Let M ∈ Rn×n≥0 be a doubly stochastic matrix, i.e., the sum of the entries in every row and

column is exactly 1. Then, per(M) ≥ e−n.

Proof. By Theorem 3.1 we can write

per(M) ≥ e−n inf
z>0

p(z1, . . . , zn)

z1 . . . zn

where p is the same polynomial as in (3.1). So it is enough to show infz>0
p(z1,...,zn)

≥ z1 . . . zn. To see this we
use the weighted AM-GM inequality.

Theorem 3.3 (Weighted AM-GM Inequality). Let a1, . . . , an ≥ 0 and λ1, . . . , λn ≥ 0 such that
∑
i λi = 1.

Then, ∑
i

λiai ≥
∏
i

aλii .

By the above theorem we can write

p(z1, . . . , zn) =

n∏
i=1

n∑
j=1

Mi,jzj ≥
n∏
i=1

n∏
j=1

z
Mi,j

j =

n∏
j=1

z
∑n
i=1Mi,j

j =

n∏
j=1

zj ,

as desired. The inequality follows by (weighted) AM-GM and the fact that every row of M adds up to 1 and
the last equality follows by the fact that every column of M adds up to 1.

Before proving Theorem 3.1 let us first gain some intuition. The right side of the inequality is trivial and it
holds for any polynomial with non-negative coefficients. This is because if we let p =

∑
α∈N≥0

cαz
α, then

inf
z>0

p(z1, . . . , zn)

z1 . . . zn
= c1,1,...,1 + inf

z>0

∑
α∈N≥0

cα
zα

z1 . . . zn
≥ c1,1,...,1,

as desired.
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Now, the left side of the inequality crucially uses the fact that p is real stable. For example, consider the
non-stable polynomial z21 + z22 . Then,

inf
z>0

z21 + z22
z1z2

= inf
z>0

z1
z2

+
z2
z1
≥ 2,

where as the coefficient of z1z2 is 0.

We start the proof of Theorem 3.1 by proving a univariate version of the theorem. This not only will serve
as the base of the induction, but will also give us some clues on how to approach the main theorem.

Lemma 3.4. For any real rooted polynomial f ∈ R[t] with nonnegative coefficients,

f ′(0) ≥ 1

e
inf
t>0

f(t)/t.

Proof. First, we show that f is a log-concave function.

Fact 3.5. Let f ∈ R[t] be a real rooted polynomial with nonnegative coefficients then log f is a concave
function of R≥0.

This is because (dropping the constant term for convenience):

log f = log

n∏
i=1

(t+ αi) =

n∑
i=1

log(t+ αi),

where −αi’s are roots of f . Since f has all positive coefficients, it is non-zero over the positive reals so αi ≥ 0
for all i. The claim follows because log is a concave function and the sum of concave functions is concave.

Next, we prove the lemma. Since log f is concave, for any t ≥ 0 we can write,

log f(t) ≤ log f(0) + t(log f(0))′

Therefore, for any t ≥ 0 we get

log
f(t)

t
≤ log f(0) + t

f ′(0)

f(0)
− log t

Setting t = f(0)/f ′(0) in the RHS we get

inf
t>0

log
f(t)

t
≤ log f(0) + 1− log

f(0)

f ′(0)
= 1 + log f ′(0)

as desired.

Having proved the lemma we are ready to prove Theorem 3.1. We prove by induction on n. Let q(z1, . . . , zn−1) =
∂znp|zn=0. Note that by closure properties of real stable polynomials q is a real stable polynomial. Further-
more, it has non-negative coefficients. Then,

∂z1 . . . ∂znp|z=0 = ∂z1 . . . ∂zn−1q|z=0 ≥ e−(n−1) inf
z1,...,zn−1>0

q(z1, . . . , zn−1)

z1 . . . zn−1
(3.2)

where the inequality follows by IH. Say the infimum in the RHS is attained at a point z∗1 , . . . , z
∗
n−1

1. Define
f(zn) = p(z∗1 , . . . , z

∗
n−1, zn). Then, observe that

q(z∗1 , . . . , z
∗
n−1) = f ′(0) ≥ 1

e
inf
zn>0

f(zn)

zn
=

1

e
inf
zn>0

p(z∗1 , . . . , z
∗
n−1, zn)

zn
, (3.3)

1to be more precise we need to do a ε-δ argument but here we avoid that for the simplicity of the argument.
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where the inequality follows by the fact that f is a real stable polynomial with non-negative coefficients.
Therefore,

∂z1 . . . ∂znp|z=0 ≥ e−(n−1)
q(z∗1 , . . . , z

∗
n−1

z∗1 . . . z
∗
n−1

≥ e−n inf
zn>0

p(z∗1 , . . . , z
∗
n−1, zn)

z∗1 . . . z
∗
n−1zn

≥ e−n inf
z>0

p(z1, . . . , zn)

z1 . . . zn

where the first inequality follows by (3.2) and the second inequality follows by (3.3). This finishes the proof
of Theorem 3.1.

Remark 3.6. The above proof is fairly general; it mainly works for polynomial whose univariate restrictions
are log-concave. Gurvits has studied many generalizations and extensions of the above proof such as using it
to estimate mixed volume of convex bodies. In the following lectures we will discuss a generalization of this
proof and applications to problems in Economics and Game Theory.

3.2 Log Concavity of Real Stable Polynomials

An immediate generalization of the Lemma 3.4 is the following theorem:

Theorem 3.7. Let p ∈ R[z1, . . . , zn] be a homogeneous real stable polynomial. Then, p is log-concave over
Rn≥0.

This theorem can be seen as a generalization of the well-known fact that det(P ) is log-concave over the space
of PSD matrices.

Proof. In the HW we will see that all coefficients of p must be non-negative so log p is well defined over Rn≥0.
It is enough to show that log p is concave along any interval in the positive orthant. Let a, b ∈ Rn>0, b ∈ Rn,
and consider the line a+ tb where for any t ∈ [0, 1], a+ tb ∈ Rn>0. We show that log p(a+ tb) is concave. Say
p is k-homogeneous, then

p(a+ tb) = p(t(a/t+ b)) = tkp(a/t+ b).

Since a ∈ Rn>0, and p(.) is stable, p(at+b) is real rooted. Write p(at+b) = p(a)
∏k
i=1(t−λi) where λ1, . . . , λk

are the roots.

Then, we have

p(a/t+ b) = p(a)

k∏
i=1

(1/t− λi).

So,

p(a+ tb) = tkp(a/t+ b) = p(a)

k∏
i=1

(1− tλi).

We claim that for all 1 ≤ i ≤ k, λi < 1. Otherwise, for some t ∈ [0, 1], p(a+ tb) = 0, but since a+ tb ∈ Rn>0,
p(a+ tb) > 0 which is a contradiction. Therefore,

log p(a+ tb) = log p(a) +

k∑
i=1

log(1− tλi).

The theorem follows by the fact that log(1− tλ) is a concave function of t for t ∈ [0, 1] when λ < 1.

Remark 3.8. If p is real stable but not homogeneous but it has positive coefficients, it is still log-concave
over Rn≥0. It turns out that in this case one can homogenize p and apply the above theorem.
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3.3 Maximum Sub-determinant Problem

In the maximum sub-determinant problem we are given a PSD matrix M � 0 and an integer k and the goal
is to output a set S ∈

(
n
k

)
such that the determinant of the square-submatrix MS,S is maximized. Here, we

give a simple proof of a recent result of Nikolov [Nik16] using the theory of real stable polynomials.

Theorem 3.9. There is a polynomial time randomized algorithm that gives a ek approximation to the sub-
determinant maximization problem.

First we need to construct a real stable polynomial.

Lemma 3.10. For any k ≥ 0, and any M � 0, the following polynomial is real stable∑
S∈(nk)

det(MS,S)zS .

Proof. Let

Z =


z1

z2
. . .

zn


We use the following linear algebraic identity:

det(Z + tM) =

n∑
k=0

∑
S∈(nk)

tkzS det(MS,S).

The identity is a generalization of the fact that the k-th coefficient of the characteristic polynomial of M is
the sum of the determinants of all square k × k minors of M .

By the mother-of-all theorem, since M � 0 and Z is diagonal, det(Z + tM) is real stable. Therefore,

∂n−kt det(Z + tM)|t=0 = k!
∑
S∈(nk)

zS

is real stable. The lemma simply follows by the closure of real stable polynomials under inversion.

Since
∑
S∈(nk)

zS is homogeneous, it is log-concave over Rn≥0. To prove Theorem 3.9 we use the following
convex program:

max log
∑
S∈(nk)

det(MS,S)xS

s.t.,
∑
i

xi = k

xi ≥ 0 ∀1 ≤ i ≤ k.

(3.4)

Note that the above program is a relaxation of the problem as x = I [OPT ] is a feasible solution. It follows
that the objective function is at least OPT.

To round we construct the following distribution µ over {1, . . . , k} where µ(i) = xi/k. We generate k samples
from µ, i1, . . . , ik. If these are all distinct we output the set {i1, . . . , ik} otherwise we output nothing. We
claim that this algorithm receives at least e−k fraction of OPT in expectation.
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For every set S = {i1, . . . , ik} the probability that we output S is

xi1
k
· xi2
k
. . .

xik
k
· k! = xS

k!

kk
≈ xSe−k,

where the k! term comes from the fact that we can sample the k elements of S in any of the k! possible
orders. Therefore,

E [ALG] =
∑
S∈(nk)

P [S sampled] det(MS,S) =
∑
S∈(nk)

xSe−k det(MS,S) ≥ OPTe−k

as desired.
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