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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this lecture we discuss applications of real stable polynomials to probability theory.

Let µ : 2[n] → R≥0 be a probability distribution. For X ∼ µ, the generating polynomial of µ is defined as
follows:

gµ(z1, . . . , zn) = E
[
zX
]

=
∑
S⊆[n]

P [X = S] zS .

For example, say B1, B2 are two independent Bernoullis with success probabilities p1, p2 respectively. Then,
their generating polynomial is defined as follows:

p1p2z1z2 + p1(1− p2)z1 + p2(1− p1)z2 + (1− p1)(1− p2) = (p1z1 + (1− p1))(p2z2 + (1− p2))

As a sanity check, observe that gµ(1) = 1. We say µ is strongly Rayleigh (SR) if gµ is a real stable polynomial.

It turns out that closure properties of real stable polynomials translate to closure properties of strongly
Rayleigh distributions. Say µ is strongly Rayleigh. Then it remains so under the following operations:

Conditioning In µ|i. This is nothing but zi∂zigµ (up to a normalizing constant).

Conditioning Out µ|i. This exactly gµ|zi=0.

Projection. Given a set T , µ|T is the distribution supported on subsets of T where for any A ⊆ T ,

µ|T (A) =
∑

S:S∩T=A

µ(S).

Observe that projection is exactly gµ|zi=1,∀i/∈T .

External Field. Given a non-negative vector (λ1, . . . , λn), we define µ ∗ λ as the distribution where

µ ∗ λ(S) = µ(S)λS .

Closure under external fields just follows from the closure of real stable polynomials under external
fields, gµ(λ1z1, . . . , λnzn).

Rank Sequence. The rank sequence of µ is the sequence a0, . . . , ad where ai = PS∼µ [|S| = i]. It follows
that the rank sequence of any strongly Rayleigh distribution corresponds to a sum of independent
Bernoullis. This is because gµ(1, . . . , 1) is univariate real rooted polynomial.

In the next section we discuss several examples of Strongly Rayleigh distributions. An important example
is the uniform spanning tree distribution: given a graph G = (V,E), let µ be a uniform distribution over all
spanning trees of G. Then, µ is strongly Rayleigh. As a consequence we prove the following lemma that we
promised in the first lecture:
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Lemma 4.1. Given a set F ⊆ E, the univariate polynomial∑
T

t|F∩T |

is real rooted.

Proof. Let µ be uniform distribution over spanning trees; it is SR. Then, the projection µF is also SR. So,
p(z1, . . . , z|F |) = gµ|F is real stable. So, p(t, . . . , t) is real rooted. But p(t, . . . , t) is the same as

∑
T t
|F∩T | up

to a normalizing constant.

4.1 Determinantal Point Processes

One of the main classes of strongly Rayleigh Distributions are determinantal Point processes (DPPs). Given
a PSD matrix L ∈ Rn×n, a.k.a., the ensemble matrix, for any S ⊆ [n] we have

P [S] ∝ det(LS,S)

Geometrically, given n vectors v1, . . . , vn ∈ Rd, we think of the ensemble matrix as the Gram-matrix of these
vectors. So, for any set S ⊆ [n], say S = {i1, . . . , ik}, P [S] is proportional to the square of the k-th volume
of the parallelepiped spanned by these k vectors.

Lemma 4.2. Let L � 0 be the ensemble matrix of a DPP. Then, the polynomial∑
S:S⊆[n]

det(LS,S)zS

is real stable.

Proof. First, by mother-of-all

p(z1, . . . , zn) = det(Z − L) =

n∑
k=0

(−1)k
∑
S∈(n

k)

zS det(LS,S)

is real stable, where Z is the diagonal matrix with Zi,i = zi. Now, to prove the lemma we use the closure of
real stable polynomials under inversion:

z1 . . . znp(−1/z1, . . . ,−1/zn) = (−1)n
n∑
k=0

∑
S∈(n

k)

zS det(LS,S)

is real stable.

Truncation Given a distribution µ and an integer k ≥ 1, the truncation of µ is defined as the distribution
µk where

µk(S) ∝

{
µ(S) if |S| = k,

0 otherwise

Theorem 4.3. For any strongly Rayleigh distribution µ and any 1 ≤ k ≤ n, µk is strongly Rayleigh.
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To prove this theorem we use the following homogenization lemma on real stable polynomials.

Given a polynomial p ∈ R[z1, . . . , zn] the homogenized version of p, pH is defined as follows:

pH(z1, . . . , zn, zn+1) = zdeg pn+1 p(z1/zn+1, . . . , zn/zn+1)

For example, if p = 1− z1z2, pH = z23 − z1z2.

Lemma 4.4. For any real stable polynomial p ∈ R[z1, . . . , zn] with non-negative coefficients, pH is real
stable.

Note that p having non-negative coefficients is a necessary condition as 1 − z1z2 is real stable but the
homogenized version z23 − z1z2 is not.

We do not prove this lemma here, we just use to prove that strongly Rayleigh distributions are closed under
truncation. To prove Theorem 4.3 we use that gµH(z1, . . . , zn+1) is real stable. Say gµ has degree d, then,
we note that

gµk
∝ ∂d−kzn+1

gµH |zn+1=0 .

Finally, the statement follows from the closure of real stable polynomials under differentiation and special-
ization. This completes the proof of Theorem 4.3.

For example, given n independent Bernoullis, B1, . . . , Bn with corresponding SR distribution µ. It follows
that µk is SR and inherits all properties of SR distributions even though µk is no longer a distribution over
independent Bernoullis. In particular, we will see in the the next section that µk is negatively correlated.

Given a DPP µ, a k-DPP is µk. It is well-known that µk is no longer a DPP. Therefore, for years researchers
had difficulties studying properties of µk. However, it follows that µk is also SR so we can use properties of
SR distributions to study k-DPPs.

Random Spanning Trees A special case of DPPs are random spanning tree distributions. Given a graph
G = (V,E), choose an arbitrary direction for any edge; so for edge e = (i, j) let ve = (1i−1j). Let L ∈ RE×E
be the Gram-matrix of these vectors, i.e., for any two edges e, f , Le,f = 〈ve, vf 〉. Let µ be the corresponding
determinantal point process (which is SR). We claim that µn−1 is the uniform distribution on spanning trees;
so random spanning trees are SR. To see this, it is enough to show that for any set F ⊆ E of size |F | = n−1,

det(LF,F ) =

{
n if F is a tree,

0 otherwise.

Let F = {e1, . . . , en−1} and let

B =

 ve1
...

ven−1


Then, LF,F = BBT . First, observe that if F has a cycle, say e1, . . . , ek in F form a cycle, then

(±)ve1(±) . . . (±)vek = 0,

where we choose the signs to negate the directions such that e1, . . . , ek form a directed cycle. It follows that
the vectors in F are linearly dependent, so det(LF,F ) = 0.

Otherwise, suppose F does not have a cycle. Then, F is a tree. We need to show |det(LF,F )| = n. The
main observation is that B is a totally unimodular matrix, i.e., every square submatrix of B has determinant
0/1/− 1. This simply because given any square submatrix of B say BX,Y where X ⊆ F and Y ⊆ V ; either



Lecture 4: Strongly Rayleigh Distribution 4-4

there is a vertex of degree zero in subgraph (X,Y ) in which case det(BX,Y ) = 0, or there is a vertex of
degree 1. In the latter case, say a vertex y has only an edge x, we re-order the rows and columns of BX,Y so
that x is the last row and y is the last column. This implies that the last column of BX,Y is all zeros except
the entry on the diagonal. Following this idea recursively we can make BX,Y upper-diagonal with 1,−1 on
the diagonal. That implies the claim.

Finally, we use the Cauchy-Binet identity to argue that

det(LF,F ) =
∑

S∈( n
n−1)

det(BF,S)2 = n.

In the above we use that when |S| = n− 1 then det(BF,S) is non-zero; so it is either −1/+ 1. We leave this
as an exercise.

Lemma 4.5 (Couchy-Binet Identity). Let v, . . . , vn ∈ Rd, then

det

(
n∑
i=1

viv
T
i

)
=
∑
S∈(n

d)

det

(∑
i∈S

viv
T
i

)
.

Proof. Let

A =

v1...
vn


be the matrix with vi’s as the rows. Since A is a rank d matrix, by SVD we can write A =

∑d
i=1 siaib

T
i

where ai’s are orthonormal and bi’s are orthonormal. Then,

n∑
i=1

viv
T
i = ATA =

d∑
i=1

sibib
T
i

So,

det(

n∑
i=1

viv
T
i ) =

d∏
i=1

si.

On the other hand, the RHS is the sum of all d × d principal minors of AAT =
∑d
i=1 siaia

T
i . But this

is exactly the n − d-th coefficient of the characteristic polynomial of AAT which is the d-th elementary
symmetric polynomial of eigenvalues of AAT , i.e.,

ed(s1, . . . , sd, 0, . . . , 0) = s1 . . . sd

as desired.

4.2 Negative Correlation

A probability distribution µ : 2[n] → R≥0 is negatively correlated if for any i, j,

P [i|j] ≤ P [i] .

In this section we prove that any strongly Rayleigh distribution is negatively correlated.



Lecture 4: Strongly Rayleigh Distribution 4-5

Theorem 4.6. A multilinear polynomial p ∈ R[z1, . . . , zn] is real stable iff for any i, j

∂zip(x) · ∂zjp(x) ≥ p(x) · ∂zi∂zjp(x), (4.1)

where x ∈ Rn.

Before proving this theorem, let us discuss its implications.

Lemma 4.7. Strongly Rayleigh distributions are pairwise negatively correlated, i.e., for any 1 ≤ i < j ≤ n

P [i]P [j] ≥ P [i, j] .

Proof. To see this just plug in x = 1 in the above equation. Observe that ∂zigµ(1) = P [i]. Similarly,
∂zizjgµ(1) = P [i, j] and gµ(1) = 1.

The fact that (4.1) holds for all x > 0 means that µ and all external fields of µ are negatively correlated.
An immediate consequence is that k-DPPs are negatively correlated. This was unknown to researchers in
machine learning and they were expecting that truncation to k implies certain positive correlations.

A probability distribution is called Rayleigh if it satisfies (4.1) for all x ≥ 0. The notion of Rayleigh distri-
butions was first introduced by Wagner [Wag06] with the purpose of generalizing the Rayleigh monotonicity
law for effective resistances in graphs.

Proof. ⇒: Assume p is real stable. First, note that for any a > 0 and b ∈ R, by closure properties of real
stable polynomials, p(at+ b, z2, . . . , zn) is real stable. Then the bivariate restriction

g(s, t) = p(x1, . . . , xi−1, s+ xi, . . . , xj−1, t+ xj , xj+1, . . . , xn)

is real stable. Since p is multilinear, g is multilinear and it can be writen as

g(s, t) = a+ bs+ ct+ dst,

where a = p(x), b = ∂zip(x), c = ∂zjp(x) and d = ∂zi∂zjp(x). Now, in HW1 we will see that this implies
bc ≥ ad. Therefore, (4.1)

⇐: Conversely, assume that (4.1) holds for all i, j. We prove by induction; suppose

p(z1, . . . , zn+1) = q(z1, . . . , zn) + zn+1r(z1, . . . , zn).

By IH, for any α ∈ R, the polynomial p(z1, . . . , zn, α) is real stable or is identically zero. Similarly we have
this for q, r. First, suppose that for some α ∈ R, q + αr is identically zero. Then, we can write

p = (zn+1 − α)r(z1, . . . , zn)

and thus real stable and we are done. Otherwise, we assume p(z1, . . . , zn, α) is real stable and non-zero
for any α ∈ R. This implies that for any α ∈ R, and (z1, . . . , zn) ∈ Hn, p(z1, . . . , zn, α) 6= 0. Writing,
p = r(q/r + zn+1) and using that q/r is continuous, it follows that either

=(q/r) > 0 ∀(z1, . . . , zn) ∈ Hn, or

=(q/r) < 0 ∀(z1, . . . , zn) ∈ Hn.

In the former case we get that p(z1, . . . , zn+1) is real stable and we are done. In the latter case we get that
p̃(z1, . . . , zn+1) = p(z1, . . . , zn,−zn+1) is real stable. Using the forward direction of the theorem this implies
the reverse of (4.1), for i, n+ 1 we get

∂zi p̃(x) · ∂zn+1 p̃(x) ≥ p̃(x)∂zi∂zn+1 p̃(x)
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for any x ∈ Rn+1. This implies

∂zip(x1, . . . , xn,−xn+1) · −∂zn+1
p(x1, . . . ,−xn+1) ≥ p(x1, . . . , xn+1) · −∂zi∂zn+1

p(x1, . . . ,−xn+1)

so
∂zip(x) · ∂zn+1

p(x) ≤ p(x) · ∂zi∂zn+1
p(x)

for any x ∈ Rn+1. Since this the inverse of (4.1) indeed we have equality above. This implies that for any
1 ≤ i ≤ n, r∂ziq = q∂zir. But the latter implies that q is a multiple of r and therefore p is real stable.

SR distributions satisfy several stronger notions of negative dependence such as Negative Association,
Stochastic Dominance, and Concentration of Lipschitz functions.

Theorem 4.8. Let µ : 2[n] → R≥0 be a k-homogeneous SR distribution and f : 2[n] → R be a 1-Lipschitz
function. Then, for any a ≥ 0,

P [|f − E [f ] | > a] ≤ exp(−a2/8k).

Here f is 1-Lipschitz if for any two sets A,B such that |A∆B| = 1 we have |f(A) − f(B)| ≤ 1. As an
immediate consequence, we can use above to show that the number of even degree vertices in a random
spanning tree is tightly concentrated around its expectation.

Note that if µ is not homogeneous, then we can homogenize it first by means of Lemma 4.4 and then replace
k in the above with the degree of gµ.
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