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Given a polynomial

p(z1, . . . , zn) =
∑
κ∈Z≥0

cp(κ)zκ,

where cp(κ) is the coefficient of zκ in p, the Newton polytope of p is the convex hull of all integer vectors κ
with non-zero coefficient,

Newt(p) := conv{κ ∈ Z≥0 : cp(κ) 6= 0}
For example, if p is the generating polynomial of all spanning trees of a graph G,

∑
T z

T , then Newt(p) is
the spanning tree polytope of G, the convex hull of the indicator vectors of all spanning trees of G.

In this section, we study a generalization of Gurvits’ convex program:

inf
z>0

p(z1, . . . , zn)

zα
(5.1)

where α ∈ Rn≥0.

Lemma 5.1. For any polynomial p ∈ R≥0[z1, . . . , zn], and any α ∈ Rn≥0, we have infz>0
p(z)
zα > 0 iff

α ∈ Newt(p).

Proof. ⇐: First, assume that α ∈ Newt(p). Then, there is a convex combination of the vertices of this
polytope that is equal to α,

α =
∑

κ:cp(κ) 6=0

λκκ

where
∑
κ λκ = 1 and each λκ ≥ 0. Then, for any z > 0 we can write,

p(z) =
∑
κ∈Zn≥0

λκ
cp(κ)zκ

λκ
≥

∏
κ∈Zn≥0

(
cp(κ)zκ

λκ

)λκ
= zα

∏
κ∈Zn≥0

(
cp(κ)

λκ

)λκ
,

where the inequality follows by the weighted AM-GM inequality and that cp(κ) ≥ 0 and z > 0. Therefore,

infz>0
p(z)
zα ≥

∏
κ∈Zn

(
cp(κ)
λκ

)λκ
> 0 as desired.

⇒: Conversely, suppose α /∈ Newt(p). Then, there exists a separating hyperplane, i.e., there exists c ∈ Rn
such that 〈c, α〉 > b and 〈c, x〉 ≤ b for any x ∈ Newt(p) for some b ∈ R. Suppose 〈c, α〉 ≥ b + ε for some
ε > 0. Now, let z∗ = exp(tc) where t > 0 is a sufficiently large number. Then,

inf
z>0

p(z)

zα
≤ p(z∗)

z∗α

=

∑
κ∈Zn≥0

cp(κ)e〈log z
∗,κ〉

e〈log z∗,α〉

=

∑
κ∈Zn≥0

cp(κ) exp(t〈c, κ〉)

exp(t〈c, α〉)
≤

∑
κ∈Zn≥0

cp(κ) exp(tb)

exp(t(b+ ε)
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Letting t→∞ the RHS converges to 0.

Some remarks are in order: Recall that in lecture 3 we proved Gurvits’ theorem that for any real stable
p ∈ R≥0[z1, . . . , zn],

∂z1 . . . ∂znp|z=0 ≥ e−n inf
z>0

p(z)

z1 . . . zn

The RHS is a special case of (5.1) when α = 1. If the RHS is positive, then by the above lemma, 1 ∈ Newt(p).
In such a case Gurvits’ theorem implies that the coefficient of z1 is non-zero in p. More generally, this is
true for any integer point in Newton polytopes of real stable polynomials: Given any real stable polynomial
p ∈ R≥0[z1, . . . , zn], and any α ∈ Zn such that α ∈ Newt(p), we have cp(α) > 0.

Next, we prove the following theorem:

Theorem 5.2. Let µ : 2[n] → R≥0 be a probability distribution. Let α ∈ Newt(p). Then, there exists an
external field (λ1, . . . , λn) such that for any 1 ≤ i ≤ n,

Pλ∗µ [i] = αi,

i.e., the marginal probability of i under the distribution µ ∗ λ is αi.

The above theorem conceptually has a very important message. Say µ is a strongly Rayleigh distribution.
It says that given any point α in the Newton polytope of gµ, there is another strongly Rayleigh distribution
µ′ such that the marginals of µ′ is equal to α.

Remark 5.3. We remark that if α is in the interior of the Newton polytope we can attain α exactly,
otherwise, we can only satisfy α as a marginal approximately, i.e., we can find a sequence of external field
vectors λ1, λ2, . . . such that the marginal vectors of the distributions µ ∗ λ1, µ ∗ λ2, . . . converge to α.

Recall that many of the probabilistic operations on µ can be translated to operations on the generating
polynomial gµ. To prove the theorem, it is natural to write down the marginal vector of a distribution µ:
For any 1 ≤ i ≤ n we can write

PS∼µ [i ∈ S] = ∂zigµ(z) |z=1 .

Sometimes, it is cleaner to assume gµ is not normalized to gµ(1) = 1. In such a case, we can write

PS∼µ [i ∈ S] =

∑
S:i∈S µ(S)zS∑
S µ(S)zS

∣∣∣
z=1

= zi∂zi log gµ(z) |z=1 . (5.2)

We write the following convex program and we study its optimality condition.

inf
y

log
gµ(ey1 , . . . , eyn)

e〈y,α〉
. (Max-Entropy CP)

Since the above convex program has no constraints, the optimum solution is attained unless the optimum
value is −∞. In Lemma 5.1 we argued that the above infimum is −∞ iff α /∈ Newt(p). So, since α ∈ Newt(p),
the infimum is bounded and we assume y∗ is (an) optimum solution.

Since y∗ is an optimal solution, the Gradient of the convex function must be zero at y∗; so for each 1 ≤ i ≤ n
we can write

0 = ∂yi (log gµ(ey1 , . . . , eyn)− 〈y, α〉) |y=y∗

Therefore,
∂yigµ(ey1 , . . . , eyn)|y=y∗

gµ(ey
∗
1 , . . . , ey

∗
n)

= αi
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But this means that ∑
S:i∈S µ(S)e〈y

∗,1S〉∑
S µ(S)e〈y∗,1S〉

= αi (5.3)

Letting λ = ey
∗
, by (5.2) we get that

PS∼λ∗µ [i] = zi∂zi log gλ∗µ(z)|z=1 =
∂zigµ(λ1z1, . . . , λnzn)|z=1

g(λ1, . . . , λn)
=

∑
S:i∈S µ(S)λS∑
S µ(S)λS

= αi,

as desired. The last identity follows by (5.3)

(Max-Entropy CP) is called the maximum entropy convex program. This can be seen as a generalization
of the convex program proposed by Gurvits that we discussed in Lecture 3. To computationally solve
(Max-Entropy CP) we need to be able to evaluate the generating polynomial of µ and evaluate its partial
derivatives. If µ is a strongly Rayleigh distribution, we can approximately evaluate gµ. To be precise, one
also needs to study the bit precision of the optimum solution y∗. It is a-priori unclear if the optimal solution
y∗ can be represented (or approximated) by polynomially (in n) many bits. This questions is well studied
in a few works and it is not in the scope of this course.

5.1 Dual of Max-Entropy CP

Let p ∈ R≥0[z1, . . . , zn] and let α = Newt(p). Consider the following convex program:

max
∑

κ∈Newt(p)

qκ log
cp(κ)

qκ

s.t.,
∑

κ∈Newt(p)

qκκi = αi ∀1 ≤ i ≤ n,

∑
κ

qκ = 1

qκ ≥ 0 ∀κ.

(Max-Entropy Dual)

We claim this is the dual to (Max-Entropy CP). We think of q as a distribution over integer points in
Newt(p). To write the dual of this program, we first need to write the Lagrangian:

max
q>0

inf
y∈Rn

L(q, γ) = max
q>0

inf
y

∑
κ∈Newt(p)

qκ log
cp(κ)

qκ
−

n∑
i=1

yi

αi − ∑
κ∈Newt(p)

qκκi

− s
1−

∑
κ∈Newt(p)

qκ


By strong duality we can substitute the max and inf, so

max
q>0

inf
y∈Rn,s

L(q, γ, s) = inf
y∈Rn,s

max
q>0

L(q, y, s) (5.4)

At optimality the gradient of the Lagrangian is zero, so for any κ,

∂qκL(q, y, s) = 0⇔ log
cp(κ)

qκ
− 1 = −

n∑
i=1

yiκi = −〈y, κ〉 − s.

Therefore, at optimality
cp(κ)

qκ
= e1−〈y,κ〉−s.
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Plugging this into (5.4), we can write the dual as follows:

inf
y,s

∑
κ∈Newt(p)

qκ(1− 〈y, κ〉 − s)− 〈y, α〉+

n∑
i=1

yi
∑

κ∈Newt(p)

qκκi − s+ s
∑

κ∈Newt(p)

qκ (5.5)

= inf
y,s

∑
κ∈Newt(p)

qκ − 〈y, α〉 − s (5.6)

= inf
y,s

∑
κ∈Newt(p)

cp(κ)es+〈y,κ〉−1 − 〈y, α〉 − s (5.7)

Optimizing the RHS over s we get

1 =
∑

κ∈Newt(p)

cp(κ)es+〈y,κ〉−1 ⇔ s = − log
∑

κ∈Newt(p)

cp(κ)e〈y,κ〉−1

Plugging in the value of s, we can rewrite the dual as follows:

inf
y

1− 〈y, α〉+ log
∑

κ∈Newt(p)

cp(κ)e〈y,κ〉−1 = inf
y

log
p(ey1 , . . . , eyn)

yα

as desired.

5.2 Applications to TSP

Recall that in the TSP we are given n cities {1, . . . , n} and their symmetric pairwise distances, c : [n]× [n]→
R+, we want to find the shortest tour that visits each vertex at least once. Let x be an optimal solution to
the LP relaxation of TSP

max
∑
i,j

c(i, j)x{i,j},

s.t.,
∑

i∈S,j /∈S

x{i,j} ≥ 2 ∀S ( V

∑
j

x{i,j} = 2 ∀i,

x{i,j} ≥ 0 ∀i, j.

(5.8)

We let E be the support set of x, i.e., set {i, j} where x{i,j} > 0 and let G = (V,E). It turns out that
without loss of generality we can assume that there exists an edge e∗ ∈ E such that xe∗ = 1. We define a
vector

α =

{
xe if e ∈ E and e 6= e∗

0 otherwise

It turns out that α is in the spanning tree polytope of G. Say e∗ = {n − 1, n}. Note that every vertex has
fractional degree 2 in α, i.e., for any i < n− 1,

∑
e∼i αe = 2.

Let µ be the uniform distribution over spanning trees of (V,Ere∗). By Theorem 5.2, there exists an external
field λ such that marginals of µ ∗ λ is equal to α. We use the following algorithm to approximate TSP: We
sample T ∼ µ ∗ λ; then we add the edge e∗; finally, we add the minimum cost matching on odd degree
vertices of T ∪ {e∗}. It is conjectured that this algorithm gives a better than 3/2 approximation for TSP.
We are still far from analyzing this algorithm. Here, I show how to use properties of real stable polynomials
and SR distributions to prove nice properties of T .
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Lemma 5.4. Let v1, . . . , vk be vertices of G that do not include n − 1, n such that the induced graph
G[{v1, . . . , vk}] has no edges. Then,

PT∼µ∗λ [dT (v1) = · · · = dT (vk) = 2] ≥ e−k

where dT (v) is the degree of a vertex v in the sampled tree T .

Proof. Let S1, . . . , Sk be the set of edges incident to v1, . . . , vk respectively and let F be the rest of the edges.
Note that since v1, . . . , vk do not share edges, S1, . . . , Sk are mutually disjoint. Define

p(y1, . . . , yk) = gµ∗λ



ze = y1 ∀e ∈ S1,

. . .

ze = yk ∀e ∈ Sk
ze = 1 otherwise

 .

Note that in this definition we crucially use that S1, . . . , Sk are disjoint. By closure properties of real stable
polynomials p is real stable. We can re-write p as follows:

p(y1, . . . , yk) =
∑
T

µ ∗ λ(T )

k∏
i=1

y
dT (vi)
i .

It follows that
P [dT (v1) = · · · = dT (vk) = 2] = 2k∂2y1 . . . ∂

2
yk
p|y=0,

i.e., the RHS is the coefficient of y21 . . . y
2
k in p. Furthermore, note that each of the vertices v1, . . . , vk have

degree at least 1 in T ; so we can factor out a monomial y1 . . . yk,

p(y) = y1 . . . ykq(y1, . . . , yk).

It follows that q is also real stable. So, we need to show that

∂y1 . . . ∂ykq|y=0 ≥ e−k.

Since q is real stable and has non-negative coefficients, by Theorem 3.1, we have

∂y1 . . . ∂ykq|y=0 ≥ e−k inf
y>0

q(y)

y1 . . . yk
.

So, all we need to show is that

inf
y>0

q(y)

y1 . . . yk
≥ 1. (5.9)

First, observe that we can write q as follows:

q(y1, . . . , yk) =
∑
T

µ ∗ λ(T )

k∏
i=1

y
dT (vi)−1
i

≥
∏
T

(
k∏
i=1

y
dT (vi)−1
i

)µ∗λ(T )

=

k∏
i=1

y
∑
T µ∗λ(T )dT (vi)−1

i =

k∏
i=1

y2−1i ,

where the inequality follows by weighted AM-GM and the last identity follows by the fact that E [dT (v)] = 2
for any vertex other than n− 1, n. This proves (5.9).
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The following generalization is proved in my work with Karlin and Klein:

Theorem 5.5. Given a SR distribution µ : 2[n] → R+, and disjoint sets A1, . . . , Ak and integers n1, . . . , nk
such that for any S ⊆ [k],

PT∼µ

[
|T ∩

⋃
i∈S

Ai| =
∑
i∈S

ni

]
≥ ε

Then,

P [∀i : |T ∩Ai| = ni] ≥ ε2
k

f(n1, . . . , nm).

The above bound is not idea; in particular, we expect only an exponential dependency on k in the RHS such
as εO(k).
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