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Lecture 5: Maximum Entropy Convex Programs
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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

Given a polynomial

p(21,. .., 2n) = Z cp(K)z",

KEZZO

where ¢, (k) is the coefficient of z* in p, the Newton polytope of p is the convex hull of all integer vectors x
with non-zero coefficient,
Newt(p) := conv{k € Z>¢ : ¢p(r) # 0}

For example, if p is the generating polynomial of all spanning trees of a graph G, Y, 2T, then Newt(p) is
the spanning tree polytope of G, the convex hull of the indicator vectors of all spanning trees of G.

In this section, we study a generalization of Gurvits’ convex program:

of p(21,- 5 20)
2>0 2%

(5.1)

where o € Rgo.

Lemma 5.1. For any polynomial p € Rxsqlz1,...,2,], and any o € Rgo, we have inf,~q pz(z) > 0 iff
a € Newt(p).

Proof. «<: First, assume that o € Newt(p). Then, there is a convex combination of the vertices of this
polytope that is equal to «,
o= Z A K

Kicp(Kk)F#0

where >~ A, =1 and each A\, > 0. Then, for any z > 0 we can write,
A A
_ cp(r)2" GO ()"
po= SR I (55) = T1(57)
REZY,, REZLY,, KEZLL,
where the inequality follows by the weighted AM-GM inequality and that ¢,(x) > 0 and z > 0. Therefore,

() )"
inf,<g pz(—j) > l.com (Cﬁ\f ) > 0 as desired.

=: Conversely, suppose a ¢ Newt(p). Then, there exists a separating hyperplane, i.e., there exists ¢ € R"
such that (¢,a) > b and (c,z) < b for any € Newt(p) for some b € R. Suppose {¢,a) > b+ € for some
e > 0. Now, let z* = exp(tc) where t > 0 is a sufficiently large number. Then,

o) - op)

inf —2 <
z>0 z¢ Z*e
Emezgo Czu(“)eaogz*’ﬁ>
= 7e(logz*,o<)
S cze, (R expEe k) Foene, ) exp(th)
= < =
exp(t{c, a)) - exp(t(b+ ¢)

5-1
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Letting t — oo the RHS converges to 0. O

Some remarks are in order: Recall that in lecture 3 we proved Gurvits’ theorem that for any real stable

pe RZO[ZD XN Zn]7
=0 > e "inf 71)(2)
z2>0 21 ...2p
The RHS is a special case of (5.1) when aw = 1. If the RHS is positive, then by the above lemma, 1 € Newt(p).
In such a case Gurvits’ theorem implies that the coefficient of 21 is non-zero in p. More generally, this is
true for any integer point in Newton polytopes of real stable polynomials: Given any real stable polynomial
p € R>o[21,. .., 2], and any o € Z" such that a € Newt(p), we have ¢,(a) > 0.

Oz .. 02,0

Next, we prove the following theorem:

Theorem 5.2. Let p : 2" — R>o be a probability distribution. Let o € Newt(p). Then, there exists an
external field (A1,...,A\n) such that for any 1 <i <n,

]P)A*p [Z] = Oy,

i.e., the marginal probability of © under the distribution p* X is ay.

The above theorem conceptually has a very important message. Say p is a strongly Rayleigh distribution.
It says that given any point o in the Newton polytope of g, there is another strongly Rayleigh distribution
1/ such that the marginals of u’ is equal to a.

Remark 5.3. We remark that if o is in the interior of the Newton polytope we can attain a ezactly,
otherwise, we can only satisfy a as a marginal approximately, i.e., we can find a sequence of external field
vectors A\', A2, ... such that the marginal vectors of the distributions p X', \2,... converge to a.

Recall that many of the probabilistic operations on g can be translated to operations on the generating
polynomial g,. To prove the theorem, it is natural to write down the marginal vector of a distribution u:
For any 1 < i < n we can write

Psp i € 5] = 02,9u(2) [2=1 -

Sometimes, it is cleaner to assume g, is not normalized to g, (1) = 1. In such a case, we can write

. D5 ,u(S)zS
Pspli€ S = W | = 051089, (2) =1 - (5.2)
S =

We write the following convex program and we study its optimality condition.

gu(evr, ... ev)

oa) (Max-Entropy CP)
e I

inf log

Y
Since the above convex program has no constraints, the optimum solution is attained unless the optimum
value is —oo. In Lemma 5.1 we argued that the above infimum is —oo iff @ ¢ Newt(p). So, since a € Newt(p),
the infimum is bounded and we assume y* is (an) optimum solution.

Since y* is an optimal solution, the Gradient of the convex function must be zero at y*; so foreach 1 <i <n
we can write

0 = a@lz (log glt(eylv ey eyn) - <y7 Oé>) |y:y*
Therefore,
8y¢gu(eyla R 6y")|y=y*
gu(evi,. .. evn)

:0%'
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But this means that .
Y siies H(S)el 1)
g i(S)elr1s)

Letting A = e¥", by (5.2) we get that

. azg ()\121 R )\nzn)lz:1 ZS-' /j‘(S))‘S
Po. ; _ zazl . ey = i ’ ’ — eSS =
S~ H[z] Z i Ogg)\ M(z)| =1 g(>\17 )\ ) ZSH(S))\S « 9

as desired. The last identity follows by (5.3)

(Max-Entropy CP) is called the maximum entropy convex program. This can be seen as a generalization
of the convex program proposed by Gurvits that we discussed in Lecture 3. To computationally solve
(Max-Entropy CP) we need to be able to evaluate the generating polynomial of p and evaluate its partial
derivatives. If ;1 is a strongly Rayleigh distribution, we can approximately evaluate g,. To be precise, one
also needs to study the bit precision of the optimum solution y*. It is a-priori unclear if the optimal solution
y* can be represented (or approximated) by polynomially (in n) many bits. This questions is well studied
in a few works and it is not in the scope of this course.

5.1 Dual of Max-Entropy CP

Let p € R>q[z1,. -, 2y and let o = Newt(p). Consider the following convex program:
max Z qx log M
9k

kENewt(p)

s.t., Z ki = o V1l <i<n,
KENowt(p) (Max-Entropy Dual)
> =1
dk Z 0 VK.

We claim this is the dual to (Max-Entropy CP). We think of ¢ as a distribution over integer points in
Newt(p). To write the dual of this program, we first need to write the Lagrangian:

max inf L(q,7) = maxinf Y gelog Z vilei— > e | —s|1- > g
kENewt(p) rENewt(p) rENewt(p)
By strong duality we can substitute the max and inf, so

f L — inf L 5.4
Igggyelﬁn (q,7,5) yégnsrggg (¢,y,5) (5.4)

At optimality the gradient of the Lagrangian is zero, so for any «,

anL(QJ/, )_O<:>10 ar Zyz"iz— Y, >

Therefore, at optimality
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Plugging this into (5.4), we can write the dual as follows:

n

iyn§ Z ql‘ﬁ(l - <y7 ’i> - 5) - <ya Oé> + Zyi Z ki —s+ s Z ' (55)

" keNewt(p) i=1  k€ENewt(p) kENewt(p)
— inf - - .
inf Y ge—(ya)—s (5.6)
kENewt(p)
—j sH(y,r)—1 _ —
=inf Y cplk)e (y,a) = s (5.7)
kENewt(p)

Optimizing the RHS over s we get

1= Z cp(fﬁ)es'Hy”‘)_1 & s=—log Z cp(ﬁ)e@”‘)_1
rENewt(p) rENewt(p)
Plugging in the value of s, we can rewrite the dual as follows:
Y1 Yn
inf1 — (y, ) + log Z cp(K)e¥ ™= = inf 1ogu
y y

kENewt(p)

as desired.

5.2 Applications to TSP

Recall that in the TSP we are given n cities {1,...,n} and their symmetric pairwise distances, ¢ : [n] x [n] —
R, we want to find the shortest tour that visits each vertex at least once. Let x be an optimal solution to
the LP relaxation of TSP

max Z c(i, j)x{m},

Y]
i€S,j¢S (5.8)
J

We let E be the support set of x, i.e., set {i,j} where z(; j; > 0 and let G = (V, E). It turns out that
without loss of generality we can assume that there exists an edge e* € E such that z.» = 1. We define a
vector

z. ifee€ E and e # e*
o=
0  otherwise

It turns out that « is in the spanning tree polytope of G. Say e* = {n — 1,n}. Note that every vertex has
fractional degree 2 in «, ie., forany i <n —1, > . o, =2.

e

Let p be the uniform distribution over spanning trees of (V, E~xe*). By Theorem 5.2, there exists an external
field A such that marginals of p * A is equal to a. We use the following algorithm to approximate TSP: We
sample T ~ p * A\; then we add the edge e*; finally, we add the minimum cost matching on odd degree
vertices of T'U {e*}. It is conjectured that this algorithm gives a better than 3/2 approximation for TSP.
We are still far from analyzing this algorithm. Here, I show how to use properties of real stable polynomials
and SR distributions to prove nice properties of 7.
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Lemma 5.4. Let vy,...,v, be vertices of G that do not include n — 1,n such that the induced graph
G[{v1,...,vi}] has no edges. Then,

Pruex [dr(vi) = - = dp(vy,) =2] > ek

where dp(v) is the degree of a vertex v in the sampled tree T'.

Proof. Let S1,..., Sk be the set of edges incident to v, ..., vy respectively and let F' be the rest of the edges.
Note that since v1,...,v; do not share edges, Si, ..., S; are mutually disjoint. Define

Ze =1y1 Ve € Sy,

P15 Yk) = G Ze =Y Ve € Sk

ze =1 otherwise

Note that in this definition we crucially use that Si, ..., Sy are disjoint. By closure properties of real stable
polynomials p is real stable. We can re-write p as follows:

k
Py, ue) = > e MT) [ ™.
T =1

It follows that
P [dT(Ul) == dT(Uk) = 2] = 2’“831 ‘e 8§kp|y=0,

i.e., the RHS is the coefficient of 32 ... y,% in p. Furthermore, note that each of the vertices v1,...,v; have
degree at least 1 in T'; so we can factor out a monomial y; ...y,

p(Y) = y1 - ykqy1, - Yk)-
It follows that ¢ is also real stable. So, we need to show that
Dy, -+ Oy ly=0 > 7.

Since ¢ is real stable and has non-negative coefficients, by Theorem 3.1, we have

ke 4
. o>e _
R L S
So, all we need to show is that
inf 90 (5.9)

y>0 Yy ... Yk
First, observe that we can write g as follows:

k
ars - uk) = ZM*,\(T)Hy;lT(vi)fl
T i=1

k prX(T)
I (11

T i=1

k k
> xX(T)dr (v;)—1 2-1
= I | Y; T " = I I Y,
i i=1

=1

Y

where the inequality follows by weighted AM-GM and the last identity follows by the fact that E [dr(v)] = 2
for any vertex other than n — 1,n. This proves (5.9). O
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The following generalization is proved in my work with Karlin and Klein:

Theorem 5.5. Given a SR distribution p : 2"} — Ry, and disjoint sets A1, ..., Ay and integers nq, ..., ny

such that for any S C [k],
|Tﬁ UAZ‘ :an] > €

iceS €S

Pr

Then,
k
P[Vi:|TNA|=ni]>e f(ni,...,nm).

The above bound is not idea; in particular, we expect only an exponential dependency on k in the RHS such
O(k)
as € .



	Dual of Max-Entropy CP
	Applications to TSP

