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Lecture 6: Generalizing Gurvits Machinery
Lecturer: Shayan Oveis Gharan Jan 31st

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In the last lecture we saw a nice application of Gurvits’ theorem in studying properties of Strongly Rayleigh
distributions. It is natural to ask, if we can approximate sums of coefficients of a given real stable polynomial,
as opposed to a single coefficient. This is the main topic of this lecture; we will prove a theorem proved in a
joint work with Anari and we will see its applications in Nash welfare maximization problems.

Given two polynomials p, q ∈ R≥0[z1, . . . , zn] we define the inner product of p, q as follows:

〈p, q〉 = q(∂z)p|z=0 = p(∂z)q|z=0 =
∑
κ∈Zn≥0

cp(κ)cq(κ)κ!,

where κ! =
∏n
i=1 κi!. For example, suppose p, q are the generating polynomials of two k-DPPs, i.e., given

two ensemble matrices K,L, we have

p =
∑
S∈(nk)

det(KS,S)zS , q =
∑
S∈(nk)

det(LS,S)zS .

Then,

〈p, q〉 =
∑
S∈(nk)

det(KS,S) det(LS,S),

is the correlation between these two DPPs. It is a fundamental open problem if in such a case 〈p, q〉 can be
approximated within a constant factor, see [KT12, Open Problems Section] for further discussions.

For another example, say p is the bases generating polynomial of a matroid M1 and q is the bases generating
polynomial of another matroid M2. Then, observe that 〈p, q〉 is exactly the number of common bases of
M1 and M2. Again, it is a long-standing open problem to approximately count the number of bases at the
intersection of two given matroids.

In this lecture we will sketch the proof of the following theorem.

Theorem 6.1. For any two real stable polynomials p, q ∈ R≥0[z1, . . . , zn],

sup
α∈Rn≥0

e−αf(p, q, α) ≤ 〈p, q〉 ≤ sup
α∈Rn≥0

f(p, q, α) (6.1)

where

f(p, q, α) := inf
y,z>0

p(y)q(z)

(yz/α)α
.

Furthermore, in the special case that p, q are multilinear we can improve e−α to (1− α)1−α.

Note that, as usual, (yz/α)α =
∏n
i=1(yizi/αi)

αi . A few remarks are in order:

6-1
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Convexification: We claim that we can cast this saddle-point max-min problem as a convex program.
To see this, first, note that for α > 0, with a change of variables z ← z/α, we can write

inf
z>0

q(z)

(z/α)α
= inf
z>0

p(α1z1, . . . , αnzn)

zα

where we crucially use that z > 0, α > 0 implies z/α > 0. So, we write,

sup
α>0

inf
y>0

p(y)

yα
inf
z>0

q(αz)

z

Second, as usual, with a change of variables ỹ = log y and z̃ = log z we can equivalently solve

sup
α>0

inf
ỹ

log
p(eỹ)

e〈ỹ,α〉
inf
z̃

log
q(αez̃)

e〈z̃,α〉

Note that for any fixed α > 0, log p(eỹ)− 〈ỹ, α〉 is a convex function of ỹ and, similarly, for any fixed α > 0,
log q(αez̃) − 〈z̃, α〉 is a convex function of z̃. Finally, we need to say both of these infimums are concave
function of α. To see this, note the former is a linear function of α and infimum of linear functions is concave.
The latter is a concave function of α (since q is real stable with non-negative coefficient, it is log-concave),
and infimum of concave functions is concave.

Applications: In the following section we will see that without loss of generality we can assume α ∈
Newt(p) ∩ Newt(q) and so ‖α‖ ≤ min{degp,deg q}. This implies that the above convex program gives
emin{deg p,deg q} approximation to 〈p, q〉. As immediate applications observe that when p, q are generating
polynomial of two k-DPPs the above theorem gives an ek approximation to correlation of these two DPPs.
To this date, this is the best approximation algorithm known to estimate the correlation of two given DPPs.

When p, q are bases generating polynomials of two matroids and they are real stable (such as graphic
matroid or partition matroid), then the above theorem gives an en approximation to the number bases at
the intersection of the given matroids.

6.1 Intuitions

In this section, we justify the right hand side of (6.1); and in turn we justify why we get to such a complicated
program. WLOG assume that polynomials p, q are generating polynomials of distributions µp, µq. In the

last lecture, we explained the dual of the program infz>0 log p(z)
zα (after the change of variables yi = log zi)

is the max-entropy program:

max
∑
κ

ν(κ) log
µp(κ)

ν(κ)

s.t.,
∑
κ

ν(κ)κi = αi ∀i,∑
κ

ν(κ) = 1

ν(κ) ≥ 0 ∀κ.

Note that since both µp and ν are distributions over the support of p, we can write the objective function as
−DKL(µp||ν). In other words, the above program finds a distribution ν with marginals α that is the closest
to p with respect the KL-divergence distance. As a special case, if α is the marginal vector of µp, then the
optimum ν will be ν = µp and the objective function will be 0.
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Consequently, the optimum value of the following program is 0:

sup
α>0

inf
z>0

log
p(z)

zα
.

Note that if α /∈ Newt(p), then the infimum will be −∞. Otherwise, the optimum is always negative unless
α is the marginal vector of µp in which case, the optimum is 0.

This implies that

sup
α>0

inf
y,z>0

p(y)q(z)

(yz/α)α
= sup
α∈Newt(p)∩Newt(q)

inf
y,z>0

p(y)q(z)

(yz/α)α
.

Since α ∈ Newt(p) ∩ Newt(q) and for any κ ∈ Newt(p) we have ‖κ‖1 ≤ deg p and for any κ ∈ Newt(q) we
have ‖κ‖1 ≤ deg q, it follows that ‖α‖1 ≤ min{deg p,deg q}.

Note that, in general, the intersection of two Newton polytopes may have new vertices which do not belong
to the any of the two so just the fact that α is in the intersection is not enough to argue that α can be
written as the convex combination of the vertices. But, it is well-known that the intersection of two matroid
base polytopes is indeed the convex hull of the bases at the intersection. This fact generalizes to real stable
polynomials and implies that we do not get new vertices.

The rest of the argument will be informal: Consider the distribution ν where for any κ ∈ Newt(p)∩Newt(q),
ν(κ) = 1

Zµp(κ) · µq(κ), where Z is the normalizing constant. Indeed Z = 〈p, q〉. Let α∗ be marginals of ν;
then

sup
α∈Newt(p)∩Newt(q)

inf
y,z>0

p(y)q(z)

(yz/α)α
≥ inf
y,z>0

p(y)q(z)

(yz/α∗)α∗

Now, to figure out inf p(y)/yα
∗

we need to find the distribution closest to µp with marginals α∗. It turns
out that ν is the closest such distribution. So,

inf
y>0

log
p(y)

yα∗ =
∑

κ∈supp(ν)

ν(κ) log
µp(κ)

ν(κ)
=

∑
κ∈supp(ν)

ν(κ) log
Z

µq(κ)
,

and, similarly infz>0 log q(z)
zα =

∑
κ∈supp(ν) ν(κ) Z

µq(κ)
. Therefore,

inf
y,z>0

log
p(y)q(z)

(yz/α∗)α∗ = Z + log(α∗α
∗
) +

∑
κ∈supp(ν)

ν(κ) log
1

ν(κ)
= Z + log(α∗α

∗
) +H(ν) ≥ 〈p, q〉

where H(ν) is the entropy of ν. The last inequality uses that log(α∗α
∗
) ≤ H. We will prove this inequality

in future lectures.

6.2 Nash Welfare Maximization Problem

In the Nash welfare maximization problem we have a set of n agents [n] := {1, . . . , n} and a set of m items
[m] := {1, . . . ,m} (where assume that m� n; we further assume that agent i has value vi,j ≥ 0 for item j.
For an assignment of items to agents x : [n]× [m]→ {0, 1} the value of i is defined as

vi(x) :=
∑
j

xi,jvi,j .

The goal is to find an assignment to maximize the geometric mean of the values of all agents, i.e.,

max
x

(
n∏
i=1

vi(x)

)1/n

.
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In this section we use Theorem 6.1 to give a constant factor approximation algorithm for this problem.

First, let me discuss a natural convex relaxation for this problem:

max

n∑
i=1

log
∑
j

vi,jxi,j ,

s.t.,

n∑
i=1

xi,j = 1 ∀1 ≤ j ≤ m

xi,j ≥ 0 ∀i, j.

(6.2)

Note that the optimum solution is obviously a feasible solution to the above program, so above is a convex
relaxation of the problem. It turns out that the above program has an infinite integrality gap. For example,
suppose we have n items where the first one is a BMW which has value 1 for everyone and the rest of them
are chocolates and cookies which have value ε for everyone where ε > 0 is very small. Obviously everyone
very much like to get the BMW; but the integral only gets to assign BMW to one person and it gets a value
of εn−1/n. The CP fraction solutions assigns 1/n fraction of BMW to each agent and receives a value of at
least 1/n. As ε→ 0 the value of integral optimum converges to 0.

Before discussing our convex program let us first discuss a natural rounding algorithm. Say x : [n]× [m]→
[0, 1] is a fractional assignment. A natural rounding algorithm assigns item j to agent i with probability
xi,j ; note that since

∑
i xi,j = 1 we have a valid probability distribution for every item j. Let Vi(x) be the

random variable of the value that i receives under this assignment. Then,

E [Vi(x)] =
∑
j

xi,jvi,j .

But, the value of our algorithm is the sum of values of agents, it is rather the product.

Lemma 6.2. Let

px(z1, . . . , zm) =

n∏
i=1

∑
j

vi,jxi,jzj , (6.3)

Then,

E

[∏
i

Vi(x)

]
= MAP(p)|z=0,

where recall that MAP is the operator that keeps all multi-affine monomials of p (and vanishes everything
else).

Proof. The lemma simply follows by the fact that any monomial of p that has a square of say zj (for some
j) corresponds to assigning the j-th item to two or more agents.

Let
q(z1, . . . , zm) = en(z1, . . . , zm) =

∑
S∈(mn)

zS .

Observe that
MAP(px)|z=0 = 〈px, q〉.



Lecture 6: Generalizing Gurvits Machinery 6-5

Now, observe that not only we can use Theorem 6.1 to estimate 〈px, q〉, since f(p, q, α) is a convex function
we can change also optimize over x such that 〈px, q〉 is maximized. We use the following program:

max f(px, q, α)

s.t.,
∑
i

xi,j = 1 ∀1 ≤ j ≤ m,

xi,j ≥ 0 ∀i, j.

(6.4)

Given an optimal solution x to this program we simply run the above randomized rounding algorithm; by
Theorem 6.1 the objective function of the above program gives an emin{deg p,deg q} approximation to OPTn.
Since deg p = deg q = n we indeed obtain an e approximation to OPT.

Finally, let me remark that f(px, q, α) is indeed a concave function (of α, x). This is because px is a log-
concave function of x.

6.3 Ideas for the Hard Direction

The prove the left side of (6.1) we use the following observations:

Step 1: The statement on general real stable polynomials can be reduced to multilinear ones by the
polarization technique. Given a polynomial p ∈ R[z1, . . . , zn], let m ≥ maxi degzj p. The polarization of p,
πm(p) = R[z1,1, . . . , z1,m, . . . , zn,m] is the multilinear polynomial define as follows: For any 1 ≤ i ≤ n and

1 ≤ j ≤ degzi p we substitute any occurrence of zji with 1

(mk )
ek(zi,1, . . . , zi,m). Note that this polynomial is

symmetric under all clonings of zi and if we specialize all zi,j ’s with zi we get back the polynomial p.

Theorem 6.3 (Borcea, Brändén and Liggett [BBL09]). p ∈ R[z1, . . . , zn] is stable iff πm(p) is stable for all
m ≥ maxi degzi p.

Step 2: For any two multilinear polynomials p ∈ R[y1, . . . , yn], q ∈ R[z1, . . . , zn],

〈p, q〉 =

n∏
i=1

(1 + ∂yi∂zi)pq|y=z=0.

Step 3: Unfortunately, 1+∂yi∂zi is not stability preserver. So, one can use the following idea: A polynomial
r ∈ R[y1, . . . , z1, . . . , zn] is bi-stable if r[y1, . . . , yn,−z1, . . . ,−zn) is stable. It is not hard to see if p, q are
stable then r = p · q is bi-stable. This is because if q ∈ R≥0[z1, . . . , zn] is stable then q(−z1, . . . ,−zn) is also
stable.

Furthermore, observe that

(1 + ∂yi∂zi)r(y1, . . . , yn, z1, . . . , zn)|yi=zi=0 = (1− ∂yi∂zi)r(y1, . . . , yn,−z1, . . . ,−zn)|yi=zi=0.

So, if r is bi-stable so is (1 + ∂yi∂zi)r|yi=zi=0. Here is the main lemma:

Lemma 6.4. For any multilinear bi-stable polynomial p ∈ R≥0[y1, . . . , yn, z1, . . . , zn] and any α ∈ Rn≥0,

n∏
i=1

(1 + ∂yi∂zi)p|y=z=0 ≥ (1− α)1−α inf
y,z>0

p(y, z)

(yz/α)α

Step 4: The proof follows of the above lemma by an induction argument similar to Gurvits. The main
facts are closure of bi-stable polynomials under 1 + ∂yi∂zi and substitution with real numbers. The main
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non-trivial part is the base case where the above lemma is proven when n = 1. In such a case we just need
to use the special case of the Borcea-Brändén theorem that we proved in the last lecture that a bi-variate
multilinear polynomial ayz + by + cz + d is real stable iff bc ≥ ad.
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