
Polynomial Paradigm in Algorithms Winter 2020

Lecture 7: Hyperbolic Polynomials
Lecturer: Shayan Oveis Gharan Feb 3rd

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

This lecture is based on a talk by Michel Goemans at Simons Program on “Geometry of Polynomials”. Let
p ∈ R[z1, . . . , zn] be a homogeneous polynomial of degree d.

Definition 7.1 (Hyperbolic Polynomials). A polynomial p ∈ R[z1, . . . , zn] is hyperbolic in direction e ∈ Rn
with p(e) 6= 0 if for all x ∈ Rn, the univariate polynomial t 7→ p(x− te) has only real roots. We typically call
these real roots λ1(x), . . . , λd(x).

Example 7.1. p(z) =
∏d
i=1 zi and direction e = 1n. Also, works for all e ∈ Rn+. More generally, if we take

product of linear forms
∏d
i=1 `i(x) and e is not a root of this then we get hyperbolic polynomial.

Example 7.2. Take the polynomial p(x) = x2n −
∑n−1
i=1 x

2
i . and take e = (0, 0, . . . , 0, 1).

In general we get (xn − t)2 −
∑n−1
i=1 x

2
i = t2 − 2xnt+ x2n −

∑n−1
i=1 x

2
i with discriminant

∆ = (2xn)2 − 4x2n +

n−1∑
i=1

x2i ≥ 0

as desired.

Example 7.3. X is the space of symmetric n× n matrices and e = I and p(X) = det(X) we get

p(X − te) = det(X − tI), .

Example 7.4. Take p(x) = det (
∑n
i=1 xiAi) where Ai’s are symmetric matrices and choose e such that∑n

i=1 eiAi = I. Then,

p(x− te) = det

(
n∑
i=1

(xi − tei)Ai

)
= det

(
n∑
i=1

xiAi − tI

)

Note that for polynomial p to be hyperbolic in direction e, all we need is that
∑n
i=1 eiAi � 0, i.e., it does not

have to sum up to identity.

Definition 7.2. M is a regular matroid if it can be represented over the reals by a totally unimodular matrix.
The generating polynomial of these matroids give another example.

7.1 Hyperbolic Cones

Definition 7.3 (Hyperbolic Cone). Given a polynomial p hyperbolic in direction e, define

K
(p)
+ = {x ∈ R : λi(x) > 0,∀i}.

You can also define K++ to denote the closure of K+.
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In first example we have
K+ = {x : xi > 0,∀i}

is the non-negative orthant cone. In this example, we also discussed the case of working with linear forms.
In such a case we get the polyhedral cone.

In Example 7.2 this gives the so called second order cone, a.k.a., ice cream cone:

K+ = {x ∈ Rn : xn > 0,

n−1∑
i=1

x2i < x2n}

In Example 7.3 K+ = {X : X � 0}.

In Example 7.4 K+ = {x :
∑n
i=1 xiAi � 0}. In this case K++ is the spectrahedral cone.

Fact 7.4. We always have e ∈ K(p)
+

This is because
p(e− te) = (1− t)dp(e)

where we used the homogeneity of p. Since p(e) 6= 0, it has d positive roots.

Here is an exercise

Lemma 7.5 (Gärding). K+ is the component of Rn r {x : p(x) = 0} containing e.

Here is an immediate connection to real stability. Recall that we said a polynomial p is real stable iff for
any positive direction e ∈ Rn>0 and x ∈ Rn, p(x− te) is not identically zero and it is real rooted. This latter

implies that p(e) 6= 0. Therefore, if p is also homogeneous, then it is hyperbolic with K
(p)
+ ⊇ Rn>0.

The following theorem is a fundamental theorem of the field of hyperbolic programming.

Theorem 7.6 (Gärding). K+ is convex.

This implies that hyperbolic cones can be seen as a single generalization of polyhedral cones, second order
cones and spectrahedral cones.

Proposition 7.7. If f ∈ K++(e) then p(x) is also hyperbolic in direction f ; furthermore, K++(e) = K++(f).

Assume this proposition for now and we prove Theorem 7.6 using it. Suppose e, f ∈ K+ and consider the
convex combination x = λe + (1 − λ)f and we need to show that x ∈ K+, i.e., we need to show roots of
p(x− te) are positive. Write,

p(x− te) = p(λe+ (1− λ)f − te) = (1− λ)dp

(
f − t− λ

1− λ
e

)
Since f ∈ K+(e), the roots of s 7→ p(f − se) are positive. Let t be an arbitrary root of p(x − te); then we
know t−λ

1−λ is a root of p(f − se), so t−λ
1−λ > 0. But, since 0 < λ < 1 the latter implies that

t− λ > 0⇔ t > λ > 0

as desired.

Another view Write
p(x+ te) = p(e)

(
td + a1(x)td−1 + · · ·+ ad(x)

)
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Since the roots are λ1(x), . . . , λd(x) we can equivalently write

p(x+ te) = p(e)

d∏
i=1

(λi(x) + t) = p(e)
(
td + σ1(λ(x))td−1 + . . .

)
.

where σi is the i− th elementary symmetric polynomial in λi’s. This in particular implies ai(x) = σi(x) for
all i.

Theorem 7.8 (Renegar). K+ = {x ∈ Rn : ai(x) > 0,∀i}.

Proof. First we show K+ ⊆ .; if we take a point x ∈ K+ all the roots of p(x − te) are positive, so all roots
of p(x+ te) are negative and all coefficients of p(x+ te) are positives.

Conversely, given x such that a1(x), . . . , ad(x) > 0 we get that all roots of the polynomial p(x+te)
p(e) = td +

a1(x)td−1 + · · ·+ ad(x) are negative. So, the roots of p(x− te) are all positive.

Furthermore, this implies K+ is a finite intersection of polynomially many polynomial equations so it is a
semi-algebraic set.

7.2 Hyperbolic Optimization

For a hyperbolic cone K++ ⊆ Rn,
min 〈c, x〉
s.t., 〈ai, xi〉 = bi ∀i

x ∈ K++

(7.1)

Any class of convex programming that we are aware of fits into this framework including linear programming,
second order cone programming, semidefinite programming.

One can study properties of hyperbolic polynomials: Any hyperbolic polynomial p is log-concave in its
hyperbolic cone. In fact the log p can be used as a barrier function for interior point methods applied to
hyperbolic cone. Furthermore, one can study closure properties of hyperbolic polynomials. For example,
given a hyperbolic polynomial p with cone K+, if we differentiate p along any direction in K+, the new
polynomial is hyperbolic with respect to a super-set of K+.

A d-homogenous polynomial p ∈ R[z1, . . . , zn] is called Hermitian determinantal if there exists d×d symmetric
matrices M1, . . . ,Mn such that

p = det(
∑
i

Mi).

As we discussed above if
∑
i eiMi � 0 then p is hyperbolic in direction e. Helton and Vinnokov in a

remarkable result prove a converse to this in three dimensions:

Theorem 7.9. Let p ∈ R[x, y, z] be hyperbolic in direction e ∈ R3. Then, there exists real symmetric
matrices A,B,C such that p = det(xA+ yB + zC) and e1A+ e2B + e3C � 0.

In other words, any hyperbolic polynomial in 3 variables is determinantal. To put it differently, any 3-
dimensional hyperbolic cone is spectrahedral.

It is well-known that the above theorem does not naturally generalize to more than 3 variables, i.e., there are
hyperbolic polynomials that are not determinantal such as the elementary symmetric polynomial. Nonethe-
less, a fundamental open problem is if every hyperbolic cone is spectrahedral. This is known as the generalized
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LAX conjecture. To put it differently, the Generalized Lax Conjecture asserts that hyperbolic programming
and semidefinite programming have the same feasible sets.

Conjecture 7.10 (Generalized Lax Conjecture). Let p ∈ R[z1, . . . , zn] be hyperbolic with respect to e ∈ Rn.

Then there is a hyperbolic polynomial q ∈ R[z1, . . . , zn], such that K
(p)
+ (e) ⊆ K

(q)
+ (e) and such that p · q has

a definite determinantal representation, i.e.

q · h = det(z1A1 + · · ·+ znAn),

where A1, . . . , An are symmetric matrices with real entries and
∑
i eiAi � 0.

7.3 Application: Homogenization

To this date there are not much known applications of hyperbolic programming in theory of computing. It is
imaginable that hyperbolic programming can be used to design improved approximation algorithms for fun-
damental optimization problems in the same way that Goemans-Williamson used semidefinite programming
for the Max-Cut problem three decades ago.

In this section, we discuss an application of hyperbolic polynomials in proving closure under homogenization
for real stable polynomials.

Theorem 7.11. Given a real stable polynomial p ∈ R≥0[z1, . . . , zn], the homogeneous polynomial pH =

zdeg pn+1 p(z1/zn+1, . . . , zn/zn+1) is real stable.

We prove this theorem in two steps: Let e ∈ Rn+1 such that e1, . . . , en > 0. First, we argue that for any
real stable polynomial p, pH is hyperbolic in direction e and then we argue that if p also has non-negative
coefficients, then pH is indeed real stable.

Step 1: pH is hyperbolic in direction e: For the sake of contradiction, suppose there exists x ∈ Rn+1

such that pH(x − te) has a non-real root t. Since pH(x − te) has real coefficients, both t, t̄ are roots; we
assume =(t) > 0 and =(t̄) < 0. First, assume xn+1 6= 0. Then, if xn+1 > 0, then z = (x− te)/xn+1 is a root
of p and z ∈ Hn which is a contradiction. Otherwise, if xn+1 < 0, then z = (x− t̄e)/xn+1 is a root of p and
z ∈ Hn. Finally, the case that xn+1 = 0 can be taken care of by the previous case and a limiting argument.

Step 2: Now, suppose pH is hyperbolic in direction e. Then, by Proposition 7.7, pH is hyperbolic in any
direction f in K++(e) But since pH has non-negative coefficients, every e in the positive orthant is in the
same component as the vector e. Therefore, K++(e) has the positive orthant. Therefore, pH is hyperbolic
with respect to any e ∈ Rn+1

≥0 . But, this implies that pH is real stable as desired.
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