Counting and Sampling Fall 2017

Lecture 10: More on Matchings, Conductance
Lecturer: Shayan Oveis Gharan October 27

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

This is supposed to be the last lecture on Markov chains. Firstly, let us prove several additional properties
of the chain we studied last time:

Say, my is the number of matchings of size k£ in GG. Last time we say how to sample matching M with
probability proportional to A/M!. By the equivalence of counting and sampling, we can use that algorithm
to estimate the partition function
Z =Y mk.
k

Now, let us use the sampling theorem to esimate my. We use the following lemma

Lemma 10.1. The sequence my, is log-concanve, i.e., for all k,

2
Mp_1MEr1 < M.

This fact follows directly from the fact that the matching polynomial ), myx¥ is real rooted. We will say
more about this in future.

Claim 10.2. If A = "iflgl, then my ¥ is mazimized at k' =k —1 and k' = k.

Proof. First notice that miA\* = mj_1A\*~1. Secondly, since the log function is monotonic, it suffices to
check that log(my - AF) = logmy, + k - log A is maximized at k’ = k. Since the sequence log my is concave it
suffices to show that mi\F > mkH)\k“ and that mi_1 A1 > my_s *=2. To see the rst of these, note that
by log-concavity

Mg AP N 1T
miAF mi m3 -
The argument for the second inequality is entirely similar. O

Now, to estimate my, it is enough to gradually increase A until we see many k£ — 1 and k£ matchings in the
samples. Then, we can estimate my, easily by equivalence of counting and sampling. Note that this algorithm

works fro any graph G as long as ":fl;l is polynomially small.

10.1 Estimating the number of Perfect Matchings

In principal one can use the above algorithm to estimate the number of perfect matchings of a graph G
with 2n vertices as long as “2=% is polynomially small. This holds for many families of graphs including
random graphs and dense grapﬁs. However, it turns out that there are (bipartite) graphs (with 2n vertices)
that have exponentially more near perfect matchings (i.e., matchings with n — 1 edges) than the number of
perfect matchings. The above algorithm fails See the following picture
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It remained an open problem for two decades to design an FPRAS for counting the number of perfect
matchings of a bipartite graph; equivalently, to design an algorithm that gives a 1 + ¢ approximation of the
permanent of a nonnegative matrix. The question was resolved in breakthrough work of Jerrum, Sinclair
and Vigoda [JSV04]. Let us discuss the main ideas of their proofs:

The first point to note is that one can run the same Markov chain that we discussed last time (with A = 1)
only on the space of perfect and near perfect matching. This was already observed in the work of [JS89].
It turns out that the chain mixes rapidly. But as we discussed above the stationary distribution may be
concentrated on near perfect matchings.

The first idea of [JSV04] is a re-normalization idea. Let P be the set of all perfect matchings of G. We say
a matching M has a hole at x,y if the x,y are unsaturated in M. Note that each near perfect matching has
exactly two holes. Let N(u,v) be the set of all near perfect matchings that have holes in w,v. The idea is
to set the weight of all matchings in M € N(u,v) to be 7(M) = %. This implies that the sum of the
weights of all class of near perfect matchings N (u,v) is exactly |P|. Since there are only n? classes of holes,
if we can generate a sample from 7 with probability 1/(1 + n?) it is a perfect matching. Note that we can
naturally use the Metropolis rule to define a Markov chain with stationary distribution 7. It turns out that
one can extend the proof of [JS89] to work in this weighted regime. This is the most technical part of the
proof of [JSV04], because the mixing time bound cannot depend on X or the ratio of near prefect to perfect
matchings. In fact, this is the main part of the proof which does not extend to the setting of general of

graphs.

Lastly, there is a fundamental issue with the above approach; we do not know |P| and |N(u,v)|’s, so it is
impossible to implement the above Markov chain. The second idea is to use a homotopy method. Define an
activity A, for every pair of vertices x,y and weight each matching M with A(M) = []..5; Ae. Originally,
let A\, =1 for all pairs (even the nonnedges). In such a case, we can exactly compute A(N (u,v)) and A(P).
Now, we gradually decrease the activity of nonnedges. FEach time we use the Markov chain to re-compute
a new estimate of A(IN(u,v)) and A\(P) for all pairs u,v. Using that estimate we recompute the weight of
each matching. We continue this until the activity of each nonnedge is as small as 1/n!. In this case we can
essentially ignore the nonnedges, and just sample a perfect matching.

Let us conclude this part with a few open problems:
i) An FPRAS for perfect matchings in general graphs
ii) A deterministic 1 4 € approximation algorithm for bipartite graphs
iii) A different randomize 1 + € approximation algorithm for bipartite graphs. To this date the above

algorithm of [JSV04] is the only algorithm that we are aware of to sample perfect matchings in bipartite
graphs. Unfortunately, the algorithm is very slow for practical applications.

10.2 Conductance

Let us discuss another approach to bound the mixing time. Recall that for a reversible Markov chain we
can construct a graph G = (V, E) where the weight of every edge (z,y) is w(z,y) = n(z)K(x,y). Given a
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(weighted) graph G, the conductance of a set S is defined as

w(S, g) _ EIGS,y¢S ’LU(.%‘, y)
Zwes dw(x) Z:p dw(x)

Now, suppose G is the graph constructed from a reversible Markov chain. It follows from the above definition

that
ZzeS,y%S Q(xa y)
m(S) '

¢(5) =

¢(5) =

Let
¢(G) = _ min_¢(9).

S:m(S)<1/2

There is a fundamental inequality in spectral graph theory called the Cheeger’s inequality which asserts the
following:

Theorem 10.3 (Cheeger’s Inequality). For any graph G,

S < 9(6) < VAT - )

where Ao s the second largest eigenvalue of K. Equivalently, 1 — Ao is the Poincaré constant of the chain

It follows from the above inequality that we can bound the mixing time as a function 1/¢(G).

Corollary 10.4. For any reversible Markov chain K, with associated graph G,

log _1
7 (x)
T(€) <O =
’ P(G)?
where as usual 7, (€) is the time to get to total variation distance € for the chain started at state x.

Note that the above corollary also shows that there is at most a square root loss in using the conductance
(as opposed to the Poincaré constant) to bound the mixing time. Therefore, if the inverse Poincaré constant
is a polynomial in n, then so is 1/¢(G).

10.3 Duality of Multicommodity Flow

Next, let us discuss the connection between the conductance and the path technology that we have been
considering so far. It turns out that the sparsest cut problem is the dual to the multicommodity flow problem
that we have been using to bound the mixing time.

First, let us define a modified conductance 5,

/ _ ZaceS,ygES Q(%y) o Q(S,g)
?18) = Y resygs T(@)T(Y) ~ w(S)n(S)

Observe that if 7(S) < 1/2, then

Let
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Observe that ¢'(G) < ¢(G) < 2¢'(G).

Now, suppose we have routed a multicommodity flow f, where the flow between each pair z,y is exactly
m(x)m(y). Observe that the maximum congestion is at least 1/¢’(G). The reason is as follows: Say S =
argming ¢/ (T). Observe that the total amount of flow out of the set S is at least w(S)n(S)’. But the sum of
the congestion of all edges in the cut (S, S) is exactly Q(S,S). Therefore, there must be an edge in this cut

with congestion 1/¢/(S) = 1/¢'(G).

Say, p(f) = max, g((i)) is the maximum congestion of the multicommodity flow f. We just showed that for

any flow f,
1
p(f) = :
¢' (@)
It turns out that the inverse of the above inequality is also true up to a factor O(log(|€?|)). In other words,

there exists a multicommodity flow such that p(f) < l‘;;g((g;l. Let us say a little bit more about this proof.

It turns out that one can write a linear program to find the optimum multicommodity flow. For all z,y, let
Py be the set of all paths from z to y. Also, for a path P, let f(P) be the flow that we route along the
path P.

min p
st Y f(P)=x(a)n(y) Voy
PeP,
W (10.1)
p-QE) = Y P Ve,
P:ecP
f(P)>0 Ve.

Observe that the optimum p gives the maximum congestion of the optimum flow. Note that there are
exponentially many variables in the above Linear program. But, we are using this program only for the sake
of the analysis. Furthermore, one can write an equivalent description of this program with only polynomially
in |Q2| many variables. The dual of the above program is as follows:

max Z Az T (z)m(y)

s.t. Z e > Mgy VP € Py

ecP
Z aeQ(e) =1

ae >0 Ve.

Observe that since we can scale a.’s with A ,,’s while still satisfying the first constraint of the above program,
we can rewrite the above linear program as follows:

. Dy Ay (@) (y)
2 e - Qe)
St Y e > Ay VP € Py,
ecP
ae >0 Ve.

Fix, an optimum o., and think of a.’s as weights on the edges. It follows that the optimum M. ,’s is the
shortest path metric with respect to a.’s. So, we can think of the above program as follows: We construct
a metric on the graph G by assigned a nonnegative weight to every edge, such that the ratio of the average
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distance between random pairs of vertices to the average length of the edges is maximized. So, the follows
is equivalent to the above:
Ee~q [d(e)]
Ezy~r [d(z, )]
s.t. d(z,y) <d(z,z)+d(z,y) Vz,y,z
d(z,y) >0 vV, y.

min
(10.2)

It turns out that the above program is a linear programming relaxation of the conductance problem. To see
that observe that if we define the metric to be the cut metric with respect to the set optimum S of minimum
conductance, i.e., we set

1 ifzxes, Sorxzé¢ S yesS
d(w)—{ yESorrE sy

0 otherwise

then,
Eeng ld(e)] = Y Qe)d(e) = Q(S,S)

and
By yor [d(z,y)] = Y m(@)m(y)d(z, y) = 7(S)m(S).
@,y

This shows that the optimum of (10.2) is always smaller than ¢'(G). But by duality we know that the
optimum of (10.2) is equal the maximum congestion of the optimum flow. Leighton and Rao [LR99] have
shown that LP (10.2) can be rounded to a set S losing a factor at most log(|€2|). That is, there is a set
S such that ¢'(S) is at most log(|€2]) times the optimum of (10.2). This shows that the congestion of the
optimum multicommodity flow f* is at most

<o)
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