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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this lecture we study the independence polynomial. Given a graph G = (V,E). The independence
polynomial is defined as follows:

indG(t) =
∑

I

t|I|.

For any vertex v ∈ V , the following recurrence is immediate:

indG(t) = indG−v(t) + t indG−v−Nv (t).

where Nv = {u : v ∼ u} is the set of neighbors of v in G.

Rewriting the above recurrence we have

1− pv =
indG−v(t)

indG(t)
=

1

1 + t
indG−v−Nv (t)

indG−v(t)

. (13.1)

The quantity on the LHS is the probability that v is unoccupied, i.e., pv is the probability that v is occupied.

If G is a tree, the quantity
indG−v−Nv (t)

indG−v(t) is naturally interpreted as the probability that none of the neighbors

of v is occupied in each of the trees obtained by deleting v.

More concretely, let Tkn be the k − 1-ary tree of depth n which has a single root and every intermediate
vertex has k− 1 children. Let pn be the probability that the root of Tkn is occupied. By (13.1) we can write

1− pn =
1

1 + t(1− pn−1)k−1
.

Also, p0 = t
1+t . It turns out that the asymptotic behavior of pn for large and small t are very different.

There is a critical t,

tc(k) =
(k − 1)k−1

(k − 2)k

where for every t < tc, there exists p∞ = limn→∞ pn, and for t > tc there exists limits

peven = lim
n→∞

p2n and podd = lim
n→∞

p2n+1.

In the terminology of statisticians there is a phase transition at tc.

Theorem 13.1. For some t > 0 and an integer k > 2 consider the transformation

f(x) =
1

1 + txk−1

for 0 ≤ x ≤ 1. Let tc be as defined above. For a positive integer n let fn denote the n-th iteration of f ;
e.g., f2(x) = f(f(x)). Then, there exists a unique point x0 such that f(x0) = x0 and for all t < tc and all
0 ≤ x ≤ 1,

lim
n→∞

fn(x) = x0.
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Moreover, |fn(x)− x0| ≤ δn for some δ > 0.

If t > tc then there exists x−, x+ such that x− ≤ x0 ≤ x+ and

lim
n→∞

f2n(x) =

{
x− for all x < x0

x+ for all x > x0.

The above theorem directly implies the correlation decay property for k−1-ary tree below tc. The threshold
tc is usually called the uniqueness regime for the infinite tree. Because the occupation probability of the
root is independent of weather the leaves are conditioned to be occupied or unoccupied.

On the other hand, observe that for t above the uniqueness regime the marginal probability of the root is
no longer unique, and it depends on whether the leaves are conditioned to be occupied.

Weitz [Wei06] in his ground breaking result showed the same decay of correlation property holds at any t
below the uniqueness regime. tc(∆), for any graph with maximum degree ∆. He then used this property to
design an FPRAS for approximating indG(t) at any such t.

Theorem 13.2 ([Wei06]). There is a deterministic algorithm that for any graph G with maximum degree

∆ and for any t ≤ (∆−1)∆−1

(∆−2)∆ , approximates indG(t) within 1 + ε multipicative error in time polynomial in

n, 1/ε and exponential in t,∆.

After the above theorem it remained an open problem if one can approximate indG(t) for t above tc(∆).
More recently, Sly showed that approximating indG(t) for t above tc(∆) NP-hard [Sly10].

In the rest of this lecture we illustrate the main ideas of [Wei06].

Definition 13.3 (Weak Spatial Mixing). We say that the distribution I ∼ indG(t) exhibits weak spatial
mixing with rate δ if and only if for any vertex v and any set S ⊆ V , and any two configurations σS , τS,

|pσSv − pτSv | ≤ δ(dist(v, S)).

Note that (weak) spatial mixing is useful in algorithm design typically with exponential decay, i.e., when
δ(`) = Ce−`.

It follows from Theorem 13.1 that for large enough n and any k, the tree Tkn exhibits weak spatial mixing
with exponential decay. To prove Theorem 13.2, Weitz showed that any graph G with maximum degree ∆
and any t below tc(∆) exhibits weak spatial mixing with exponential decay. In fact he proves even a stronger
property, strong spatial mixing:

Definition 13.4 (Strong Spatial Mixing). We say that the distribution I ∼ indG(t) exhibits strong spatial
mixing with rate δ if any only if for any vertex v and any set S ⊆ V and any two configurations σS , τS

|pσSv − pτSv | ≤ δ(dist(v, U)),

where U ⊆ S is the set of vertices of S where σS , τS differ.

It turns out that one can also prove that the tree Tkn exhibits strong spatial mixing with exponential decay
below the uniqueness regime. In fact Weitz showed that

Theorem 13.5. If T∆
n exhibits weak spatial mixing with rate δ(.), then it also exhibits strong spatial mixing

with rate (1+t)(t+(1+t)∆)
t δ(.).
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Here we do not prove the above theorem. Instead we focus on the following theorem which is the main
contribution of [Wei06]:

Theorem 13.6. For every positive ∆ and t if Tkn with activity t exhibits strong spatical mixing with rate
δ (as n → ∞), then for the same t every graph with maximum degree ∆ also exhibits strong spatial mixing
with the same rate δ(.).

The proof of this theorem indeed gives a recursive algorithm that can be used to estimate pv up to a 1+ε/2n
error. So similar to the algorithm that we discussed last lecture to estimate µG(t) we can recurse and estimate
indG(t) within 1 + ε multiplicative error.

13.1 A (self-avoiding walk) Tree Representation

In this section we prove Theorem 13.6. The proof of the theorem is based on a novel procedure for calculating
pv,

The idea is to construct a tree Tsaw(G, v) such that the probability that v is occupied in G is the same as
the probability that v is occupied in Tsaw(G, v). It follows that we can recursively compute the probability
that the root of Tsaw(G, v) is occupied using log(n/ε) depth of recursion similar to the calculations that we
did in the last lecture.

Recall that in the tree that we constructed in the last lecture for the matching polynomial we had a vertex
for every path starting at the vertex v for which we wanted to estimate the saturation probability. The tree
that we will construct will also include vertices closing a cycle; furthermore, these vertices are fixed to be
either occupied or unoccupied.

First of all, we need to fix an ordering on the edges adjacent to every vertex of G. So, when we say an edge
(u,w) is larger than (u, x) it means that it is larger in the fixed ordering.

Specically, Tsaw(G, v) is dened as the tree of all paths originating at v, except that whenever a path closes
a cycle the copy (in the tree) of the vertex closing the cycle (in G) is fixed to occupied if the edge closing
the cycle is larger than the edge starting the cycle and unoccupied otherwise. See the following figure:
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Figure 1: The construction of Tsaw. The tree on the left is Tsaw(G, a), where G is the graph on the
right and where the order on the neighbors of each vertex in G is lexicographic. In order to better
illustrate the construction we labeled each vertex in the tree with the name of its corresponding
vertex in G. Notice that vertices that close cycles are fixed to be either occupied or unoccupied. For
example, the bottom-left copy of d is fixed to be occupied because the edge {d, f} that closes the
cycle is larger than the edge {d, e} that starts it.

where PσΛ
v ≡ PσΛ

G,v(λ) stands for the probability that the root of Tsaw(G, v) is occupied when imposing
the condition corresponding to σΛ as described above.

Remark: Notice that Tsaw(G, v) has two types of fixed vertices. The first type is a “structural” one: these
fixed vertices arise from the cycle structure of the graph G (can be thought of as expressing the influence
a vertex has on itself through the cycle), and both their composition and values are independent of the
condition imposed on G. Fixed vertices of the second type are those that correspond to fixed vertices in G
and the values they are fixed to are simply copied from their corresponding vertices in G. Also, although it
may seem that a fixed vertex in Tsaw(G, v) may be assigned two conflicting values (if it is of both types), this
is cannot happen since a structural fixed vertex that corresponds to a vertex u in G always has an ancestor
that also corresponds to u, and therefore, if u is fixed in G then the ancestor is fixed in Tsaw(G, v), and thus
the subtree underneath the ancestor is erased. (An alternative way to see this is that a fixed vertex in G can
never be part of a cycle since in the construction of the tree of paths, the path ends whenever visiting a fixed
vertex.)

Before going on to prove Theorem 3.1, we note that Theorem 2.3 follows almost immediately
from it. To see this, we simply observe that Theorem 3.1 gives that |pσΛ

v − pτΛ
v | = |PσΛ

v − PτΛ
v |,

and that for any subset ∆ of vertices of G, dist(v,∆) is exactly the same as the distance between
the root of Tsaw(G, v) and the subset of vertices of the tree composed of the copies of vertices
in ∆. (This is because paths in the tree correspond to paths in G.) Thus, when we impose the two
conditions corresponding to σΛ and τΛ respectively, we in fact impose two conditions that differ
on a subset of the vertices of Tsaw(G, v) whose distance from the root is exactly dist(v,∆), where
∆ is the subset of vertices of G on which σΛ and τΛ differ, and where we used the fact that the
values of the structural fixed vertices of Tsaw(G, v) do not depend on the condition we impose of G.
The only remaining gap from the statement of Theorem 2.3 is that the latter considers the regular
infinite tree T̂b, while we consider Tsaw(G, v). Notice, however, that Tsaw(G, v) is a subtree of T̂b

since the degree of every vertex in Tsaw(G, v) is at most the degree of the corresponding vertex
in G. Furthermore, since fixing a vertex in the tree to be unoccupied has the same effect (on the
probability of occupation at the root) as erasing the subtree rooted at this vertex, Tsaw(G, v) can be
considered as T̂b with additional vertices being fixed to be unoccupied. This completes the proof of
Theorem 2.3 assuming Theorem 3.1, and we thus continue with the proof of the latter.

8

Figure 13.1: The left tree is the tree representation of the right graph. The neighbors of every vertex are
ordered alphabetically. So, for example, the occurance of a in the cycle a, c, d is occupied because the edge
(a, d) is bigger than the edge (a, c).

The crucial point of the correspondence we establish below between the probability pv that v is occupied
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and the probability that the root of Tsaw(G, v) is occupied is that it continues to hold when we impose an
arbitrary condition on any subset of the vertices of G (and the corresponding condition on the tree). Notice
that there is a natural way to correspond a condition on G with a condition on Tsaw(G, v). Specifically,
since every vertex in the tree Tsaw(G, v) corresponds to a vertex in G in a natural way, if a condition on G
fixes a vertex u to a certain value, the corresponding condition on Tsaw(G, v) fixes all the copies of u to the
same value. Note that when we condition a node in the tree to be occupied or unoccupied we can prune the
subtree underneath that point because the are independent of the event that the root is occupied.

To make things clear note that we have two types of fixed vertices in Tsaw(G). Type I are copies a fixed
vertex u in G and type II are structural; these are copies of vertices u that are closing a cycle. Note that if
we fix the vertex u to be occupied or unoccupied all structural fixed copies of u will be pruned from the tree
automatically because they are grandchildren of another copies of u in the tree.

Theorem 13.7. For every graph G and every t and every S ⊆ V , let pσSv be the probability that v is
occupied conditioned on σS and PσSv be the probability that v is occupied in the tree Tsaw(G) when imposing
the condition corresponding to σS as described above; then,

pσSv = Pσsv .

It is not hard to see that Theorem 13.6 simply follows from the above theorem. First of all, the distance
of v to the vertices of S in G is the same as the distance of v to the vertices corresponding to S in Tsaw
because paths in the tree correspond to paths in G. Secondly, suppose we impose two conditions σS , τS for
a set S ⊆ V , and suppose they differ on a set U ⊆ S. Then, as we discussed above Type I copies of U in
Tsaw will be the only locations where the corresponding conditions in Tsaw differ. So, if the tree has strong
spatial mixing so does G. The only point that we should note is that the tree Tsaw is not a full ∆− 1-ary
tree and it may have significantly less vertices than T∆

n for n → ∞. But this is not of any problem to our
calculations because we can assume the vertices of T∆

n which are not present in Tsaw are conditioned to be
unoccupied.

Furthermore, observe that Theorem 13.2 also follows from the above theorem because we can calculate pv
by calculating the probability that the root of Tsaw(G, v) is occupied recursively. Here, we do not go to the
details as it is essentially similar to the ideas that we discussed last time.

13.2 Proof of Theorem 13.7

In this section we prove Theorem 13.7. This is the most interesting part of the proof. First of all, Weitz
works with a change of variables; instead of pv he works with

Rv =
pv

1− pv
as the ratio of probabilities that v is occupied and occupied. Similarly, we will write RσSv to denote the same
quantity under conditions on a set S. This is a smart change of variable; it allows him to write a simple
recursion for Rroot for the case of an infinite tree which can seen as an analogous recursion for a general
graph G.

We prove the following claim:

Claim 13.8. Say v is the root of a tree T with degree d. Also, let vi be the i-th neighbor of v in the tree, and
Ti be the subtree rooted at vi. For a set S of vertices let σS be a fixation of vertices in S and let Si = Ti ∩S.
Then,

RσSv = t

d∏

i=1

1

1 +R
σSi
vi

. (13.2)
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Note that using the above recursion we can simply estimate Rv for the root by going a few levels down the
tree.

Proof. First, by (13.1) we can write

1− pT,v =
1

1 + t
∏d
i=1 1− pTi,vi

.

Since RσSv =
p
σS
T,v

1−pσST,v
, we have

pσST,v =
RσSv

1 +RσSv
.

So, 1− pσST (v) = 1
1+R

σS
v

. Therefore,

1

1− pσST,v
= 1 + t

d∏

i=1

1− pσSiTi,vi
= 1 + t

∏

i=1

1

1 +R
σSi
vi

.

The claim follows from the above equality and the fact that 1
1−pσST,v

− 1 =
p
σS
T,v

1−pT,v = RσSv .

The idea is to write a similar recursion formula for Rv in G, thus relating the marginal probability of v in
Tsaw with G. Note that if G is a tree then Tsaw is the same as G so the proof is obvious. So, the main
challenge is to “cancel” the cycle while calculating the marginal probability of the vertices being occupied.
To cancel the cycles, we are going to replace v (in G) with d copies v1, . . . , vd where each vi is incident to a
single vertex ui, the i-th neighbor of v in G. We call this new graph G′.

v

u1 u2 u3 ud

v1

u1

v2

u2

v3

u3

vd

ud

Roughly speaking, we want to say v is occupied when all vi’s are occupied and it is unoccupied when all of
them are unoccupied. But because we have substituted v with d vertices we need to scale down the activity
parameter of vi’s. So, we let t1/d be the activity parameter of each vi. In this way, if all vi’s are occupied it
contributes t to the probability of that contribution. Therefore, we can write

RσSG,v =

1∏

i=d

RσSτiG′,vi
. (13.3)

Here τi corresponds to fixing all vj for j < i to be unoccupied and all vj for j > i to be occupied. Also, by
σSτi we mean concatenating the two fixations. Roughly speaking this is exactly how we cancel the cycles.
The above mysterious fixations correspond to the influence of v on itself. The key here is to note that the
above fixation is consistent with type II structural fixations that we defined above.

Now, since vi is the only vertex incident to ui by (13.1) we have

1− pσSiτiG′,vi
=

1

1 + t1/d(1− pσSi ,τiG′−v,ui)
.
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Therefore, similar to the above claim we can write

R
σSiτi
G′,vi

= t1/d
1

1 +R
σSi ,τi
G′−vi,ui

.

Therefore, by (13.3) we can write

RσSG,v = t

1∏

i=d

1

1 +R
σSiτi
G′−vi,ui

.

Note that the above equation also defines a recursion to estimate RσSv . Furthermore, this recursion will stop
after finite number of steps because each time the number unfixed vertices decreases by 1.

To finish the proof of Theorem 13.6 it is enough to show that the above recursion gives the same value for Rv
as the (13.2) does when applied to Tsaw(G, v). This can be proved by induction. Note that both recursions
have the same structure. The only nontrivial is to see that the tree Tsaw(G′ − vi, ui) with the condition
corresponding to σS , τi imposed on it is exactly the same as the the subtree of Tsaw(G, v) rooted at ui with
the condition corresponding to σS imposed on it. Here is exactly when the structural fixations of type II
matter. For every occurrence of v in Tsaw(G, v) rooted at ui, if the edge leading to v is (uj , v) for j > i,
then that occurrence of v is occupied and this is consistent with τi in the tree Tsaw(G, v) rooted at ui, and
similarly if j < i, v is unoccupied which is also consistent.
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