Counting and Sampling Lecture 14: Barvinok's Method: A Deterministic Algorithm for Permanent Lecturer: Shayan Oveis Gharan November 15th

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this lecture we will prove the following theorem:

Theorem 14.1. For any $\delta < 0.5$, $\epsilon > 0$, and any matrix $A \in \mathbb{C}^{n \times n}$ such that

$$|1 - A_{i,j}| \le \delta, \forall i, j$$

there exists a polynomial $p_{n,\delta,\epsilon}$ of degree $O(\ln n - \ln \epsilon)$ such that

 $|\ln \operatorname{per} A - p(A)| \le \epsilon.$

Furthermore, the polynomial p(A) can be computed in quasi-polynomial time in n.

Recall that the theorem of Jerrum-Sinclair-Vigoda [JSV04] shows that as long as $A \ge 0$ we can use MCMC technique to give a $1 + \epsilon$ approximation to per(A). But, if the entries of A can be negative (or even a complex number) we have no other tool besides this theorem to estimate per(A).

To prove this theorem, we use an elegant machinery of Barvinok. A weaker version of this theorem first appeared in [Bar16]. Parts of the proof that we are going to present here is from a more recent proof in [Bar17]. In the future lectures we will see many more applications of this machinery in other counting problems.

14.1Estimating a Polynomial in the Zero Free Region

Essentially Lemma 14.2 shows that because the polynomial q(z) is zero-free around zero the first few coefficients have enough information to estimate the polynomial in this regions.

Lemma 14.2. Let g(z) be a (complex) polynomial of degree d and suppose $g(z) \neq 0$ for all $|z| \leq \beta$ where $\beta > 1$. Consider degree m taylor approximation of $f(z) = \ln q(z)$,

$$p_m(z) = f(0) + \sum_{k=1}^m \frac{d^k}{dz^k} f(z)|_{z=0} \frac{z^k}{k!}$$

Then, for all $|z| \leq 1$,

$$|f(z) - p_m(z)| \le \frac{d}{(m+1)\beta^m(\beta-1)}$$

In other words, for $m = O_{\beta}(\ln d/\epsilon)$, $p_m(z)$ approximates f(z) up to an additive ϵ error. Note that if β is very close to 1, we need to choose $m = O(\frac{1}{1-\beta} \ln(d\beta/\epsilon))$.

Proof. Let r_1, \ldots, r_d be the roots of g(z). So,

$$g(z) = \prod_{i=1}^{d} (r_i - z) = g(0) \prod_{i=1}^{d} (1 - z/r_i).$$

Fall 2017

So,

$$f(z) = \ln g(z) = f(0) + \sum_{i=1}^{d} \ln(1 - z/r_i)$$

Expanding the taylor series of the logarithm up to degree n,

$$\ln(1 - z/r_i) = -\sum_{k=1}^{m} \frac{z^k}{kr_i^k} + \zeta_{i,m},$$

and we can upper bound $\zeta_{i,m}$ by

$$\zeta_{i,m} = \left| \sum_{k=m+1}^{\infty} \frac{z^k}{k r_i^k} \right| \le \frac{1}{(m+1)\beta^m (\beta - 1)}$$

where we used that $|z| \leq 1$ and that $|r_i| \geq \beta$. It follows that

$$f(z) = f(0) - \sum_{i=1}^{d} \sum_{k=1}^{n} \frac{z^k}{kr_i^k} + \zeta_m,$$

where $\zeta_m \leq \frac{d}{(m+1)\beta^m(\beta-1)}$. Finally, observe that the above equation gives the taylor series of f(z) up to degree m, so

$$\frac{1}{k!}\frac{d^k}{dz^k}f(z)|_{z=0} = \sum_{i=1}^d \frac{1}{kr_i^k}.$$

This completes the proof.

To compute the polynomial p_m we need to know the first m derivates of f at z = 0. Here, we show that if we have access to the first m derivatives of g at z = 0 we can use them to efficiently compute the first mderivatives of $f = \ln g$ at z = 0. The idea is to just use a system of linear equations. First observe that

$$f'(z) = \frac{g'(z)}{g(z)} \Rightarrow g'(z) = f'(z)g(z)$$

In general one can observe that

$$\frac{d^k}{dz^k}g(z)|_{z=0} = \sum_{j=0}^{k-1} \binom{k-1}{j} \left(\frac{d^{k-j}}{dz^{k-j}}f(z)|_{z=0}\right) \left(\frac{d^j}{dz^j}g(z)|_{z=0}\right)$$

So, in particular,

$$g''(0) = g'(0)f'(0) + f''(0)g(0),$$

$$g'''(0) = g''(0)f'(0) + 2g'(0)f''(0) + g(0)f'''(0), \dots$$

So, from the above we can compute all n derivatives of f at z = 0 in $O(m^2)$ time. In the next lecture we will discuss an extension of the polynomial approximation method under a somewhat weaker assumption on the no-root region of the polynomial g(z).

14.2 Approximating Permanent with a Low Degree Polynomial

Armed with Lemma 14.2 all we need to do to prove Theorem 14.1 is to construct a polynomial g(z) such that at for some $|z| \leq 1$, g(z) = per(A), and that $g(z) \neq 0$ for all $|z| \leq \beta$ for some $\beta > 1$.

Consider the following polynomial:

$$g(z) = \operatorname{per}(J + z(A - J)),$$

where $J \in \mathbb{R}^{n \times n}$ is the all-ones matrix. The following facts are immediate:

$$g(0) = per(J) = n!,$$

$$g(1) = per(A).$$

So, all we need to do is to estimate g(1). Now, we need to show that g has no roots in the ball of a radius $\beta > 1$ around the origin. This is in fact the main technical part of the proof.

Theorem 14.3. Let $A \in \mathbb{C}^{n \times n}$. There exists an absolute constant $\delta_0 > 0$ such that if for all i, j

$$|1 - A_{i,j}| \le \delta_0,$$

then $per(A) \neq 0$.

We will see later that in the proof of the above theorem we can let $\delta_0 \ge 0.5$.

Before proving the above theorem first we use it to prove Theorem 14.1. Let $\beta = \frac{\delta_0}{\delta}$. First observe that for any z such that $|z| \leq \beta$ and for any i, j we have

$$|(J + z(A - J))_{i,j} - 1| = |1 + z(A_{i,j} - 1) - 1| = |z(A_{i,j} - 1)| \le |z| \cdot |A_{i,j} - 1| \le \frac{\delta_0}{\delta} \cdot \delta = 1.$$

Therefore, by the above theorem for any $|z| \leq \beta$, $g(z) \neq 0$. Now, by Lemma 14.2 for $m = O(\frac{1}{1-\beta} \ln(n\beta/\epsilon))$ and

$$p_m(z) = n! + \sum_{k=1}^m \frac{d^k}{dz^k} \ln g(z)|_{z=0} \frac{z^k}{k!}$$

satisfies $|\ln g(z) - p_m(z)| \le \epsilon$. So, all we need to do is to compute the k-th derivative of $\ln g(z)$ for $k \le m$. As we discussed in the previous section, equivalently, it is enough to know the k-th derivative g(z) for $k \le m$.

We can write

$$\frac{d^k}{dz^k}g(z) = \frac{d^k}{dz^k} \sum_{\sigma} \prod_{i=1}^n (1 + z(A_{i,\sigma_i} - 1)) = k!(n-k)! \sum_{\substack{(i_1,i_2,\dots,i_k)\\(j_1,\dots,j_k)}} (A_{i_1,j_1} - 1)\dots(A_{i_k,j_k} - 1),$$

where the last sum is over all pairs of ordered k subsets (i_1, \ldots, i_k) and (j_1, \ldots, j_k) of indices between $1, \ldots, n$. The (n-k)! constant is because each such pair appears in exactly (n-k)! many permutations and the k! is because of differentiating z^k , k times. Note that in other words, the RHS of the above is just proportional to the sum of the permanents of all $k \times k$ submatrices of the matrix A - J. Therefore we can compute $g^{(k)}(0)$ in time $n^O(k)$. For $k \leq m$ this can be done in quasi-polynomial time. This completes the proof of Theorem 14.1.

14.3 Zero Free Region of Permanent

In this section we prove Theorem 14.3. This part is in a sense the only part of the proof which heavily depends on the permanent as a function. As we will see in future in several applications of the Barvinok's method typically one can compute the first $\log(n/\epsilon)$ coefficients of the corresponding polynomial in quasipolynomial time and some cases in polynomial time. Therefore, the main nontrivial part of the proof is to find zero-free region for the that polynomial.

The proof is by a clever induction. Let \mathcal{U}_n be the set of all $\mathbb{C}^{n \times n}$ complex matrices such that for all $A \in \mathcal{U}_n$, and for all i, j

$$|1 - A_{i,j}| \le \delta_0.$$

We want to induct on n. Ideally, we would just need that for all $A \in \mathcal{U}_n$, $\operatorname{per}(A) \neq 0$. But that is not enough for the induction. We strengthen the hypothesis assuming that for all $A, B \in \mathcal{U}_n$ that differ in one row or one column only, the angle between $\operatorname{per}(A)$, $\operatorname{per}(B)$ does not exceed α . The means that if we consider each complex number $\operatorname{per}(A)$ as a vector in \mathbb{R}^2 , the angle between any two vectors corresponding to two matrices that differ in exactly one row (or one column) is at most α . We leave α as a parameter now, but later we will see that we can take $\alpha = \pi/2$.

We leave the base case as an exercise. Here we prove the claim for \mathcal{U}_n assuming it holds for \mathcal{U}_{n-1} . The main important property of the permanent that we use in the proof is that permanent is a linear function of any single row or a column of the matrix and that it is invariant under permuting rows/columns.

Fix a matrix $A \in \mathcal{U}_n$; we can write

$$\operatorname{per}(A) = \sum_{j=1}^{n} A_{1,j} \operatorname{per}(A_j),$$

where A_j is the matrices obtained from A by removing the first row and the *j*-th column of A. Since A_j is a submatrix of A, we have $A_j \in \mathcal{U}_{n-1}$. Now observe that any pair of matrices A_j, A_k differ in exactly one column (up to a permutation of columns). Therefore by induction hypothesis the angle between $\operatorname{per}(A_j), \operatorname{per}(A_k)$ is at most α . It follows form the following lemma that $\sum_i A_{1,i} \operatorname{per}(A_i) \neq 0$.

Lemma 14.4. Let $u_1, \ldots, u_n \in \mathbb{C}$ be nonzero such that the angle between any two vectors u_i, u_j is at most α for some $0 < \alpha < 2\pi/3$. For $\delta_0 < \cos(\alpha/2)$ and any set of complex numbers a_1, \ldots, a_n such that $|1 - a_i| \leq \delta_0$ for all i we have $\sum_i a_i u_i \neq 0$.

Note that for $u_i = per(A_i)$ and $a_i = A_{1,i}$ we get from the lemma that $per(A) \neq 0$.

Proof. Let $u = u_1 + \cdots + u_n$.

Claim 14.5. $|u| \ge \cos \frac{\alpha}{2} \sum_{i=1}^{n} ||u_i||.$

Proof. It turns out that all of these vectors lie in an angle at most α . This simply follows from the fact that $\alpha < 2\pi/3$. Note that if $\alpha = 2\pi/3$ then we could have three vectors with pairwise angle $2\pi/3$. Since $\alpha < 2\pi/3$ we can see that the origin is not in the convex all of these vectors, and therefore they lie in an angle of size α .

Now, project all vectors to the bisector of the angle; the projection of each u_i to the bisectors is at least $\cos \frac{\alpha}{2} ||u_i||$. Since these projections do not cancel out each other, the projection of u onto the bisector is at least $\cos \frac{\alpha}{2} \sum_i ||u_i||$ which proves the claim.

Now, we are ready to finish the proof of the lemma. Let $v = \sum_{i} a_{i} u_{i}$. We use triangle inequality:

$$||v|| \geq ||u|| - ||v - u||$$

$$\geq \cos \frac{\alpha}{2} \sum_{i=1}^{n} ||u_i|| - \sum_{i=1}^{n} |1 - a_i| \cdot ||u_i||.$$

$$\geq (\cos \frac{\alpha}{2} - \delta_0) \sum_{i=1}^{n} ||u_i|| \neq 0,$$

where the second to last inequality uses that $|1-a_i| \leq \delta_0$ and the last inequality uses that $\delta_0 < \cos(\alpha/2)$. \Box

Now, we have proven part of the induction step; we know that for any matrix $A \in \mathcal{U}_n$, $\operatorname{per}(A) \neq 0$. But to finish the proof we also need to show that for any pair of matrices $A, B \in \mathcal{U}_n$ that differ in one row (or column), the angle between $\operatorname{per}(A)$, $\operatorname{per}(B)$ is at most α . Fix two matrices $A, B \in \mathcal{U}_n$ and assume that they only differ in their first row. Therefore, we can write:

$$\operatorname{per}(A) = \sum_{i=1}^{n} A_{1,i} \operatorname{per}(A_i),$$
$$\operatorname{per}(B) = \sum_{i=1}^{n} B_{1,i} \operatorname{per}(A_i).$$

We again use the proof strategy of Lemma 14.4; let u, v be the vectors defined in that lemma. It follows from the following simple fact that the angle between u, v is at most $\arcsin \frac{\delta_0}{\cos \frac{\omega}{2}}$.

Fact 14.6. For any two vectors x, y if ||x|| < ||y||, then the angle between y, x + y is at most $\arcsin \frac{||x||}{||y||}$.

By symmetry we can show that the angle between $\sum_{i} B_{1,i} \operatorname{per}(A_i)$ and u is at most $\arcsin \frac{\delta_0}{\cos \frac{\alpha}{2}}$. Therefore, the angle between $\operatorname{per}(A)$, $\operatorname{per}(B)$ is at most

$$2\arcsin\frac{\delta_0}{\cos\frac{\alpha}{2}}.$$

So, we only need that the above quantity is at most α . So, letting $\alpha = \pi/2$ and $\delta_0 = 0.5$ is enough for our purpose. This completes the proof of Theorem 14.3.

References

- [Bar16] A. Barvinok. Computing the permanent of (some) complex matrices, 2016. 14-1
- [Bar17] A. Barvinok. Approximating permanents of hafnians, 2017. 14-1
- [JSV04] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. J. ACM, 51(4):671–697, July 2004. 14-1