Counting and Sampling Fall 2017

Lecture 14: Barvinok’s Method: A Deterministic Algorithm for Permanent
Lecturer: Shayan Oveis Gharan November 15th

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this lecture we will prove the following theorem:
Theorem 14.1. For any 6 < 0.5, € > 0, and any matric A € C"*" such that
|1 — Ayl < 6,0
there exists a polynomial py s of degree O(lnn —Ine€) such that
[Inper A — p(A)| <e.
Furthermore, the polynomial p(A) can be computed in quasi-polynomial time in n.
Recall that the theorem of Jerrum-Sinclair-Vigoda [JSV04] shows that as long as A > 0 we can use MCMC

technique to give a 14 € approximation to per(A4). But, if the entries of A can be negative (or even a complex
number) we have no other tool besides this theorem to estimate per(A).

To prove this theorem, we use an elegant machinery of Barvinok. A weaker version of this theorem first
appeared in [Barl6]. Parts of the proof that we are going to present here is from a more recent proof in
[Barl7]. In the future lectures we will see many more applications of this machinery in other counting
problems.

14.1 Estimating a Polynomial in the Zero Free Region

Essentially Lemma 14.2 shows that because the polynomial g(z) is zero-free around zero the first few coeffi-
cients have enough information to estimate the polynomial in this regions.

Lemma 14.2. Let g(z) be a (complex) polynomial of degree d and suppose g(z) # 0 for all |z| < B where
B > 1. Consider degree m taylor approximation of f(z) = lng(z),
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Then, for all |z| <1,
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In other words, for m = Og(Ind/e¢), pm(2) approximates f(2) up to an additive € error. Note that if 8 is
very close to 1, we need to choose m = O(15 5 In(dB/e)).

Proof. Let 71, ...,rq be the roots of g(z). So,
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So,

f(z) =Ing(z) +Zln1—z/n)

Expanding the taylor series of the logarithm up to degree n,
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and we can upper bound (; ,, by
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where we used that |z| < 1 and that |r;| > 3. Tt follows that
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where (,, < W. Finally, observe that the above equation gives the taylor series of f(z) up to
degree m, so
d
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This completes the proof. O

To compute the polynomial p,, we need to know the first m derivates of f at z = 0. Here, we show that if
we have access to the first m derivatives of g at z = 0 we can use them to efficiently compute the first m
derivatives of f =1Ing at z = 0. The idea is to just use a system of linear equations. First observe that

f'(z) = = g'(2) = f'(2)g(2).

In general one can observe that
dk k-1 dF—i 47
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So, in particular,

g"(0) = 4'(0)f(0) + f"(0)g(0),
g"(0) = g"(0)f'(0) + 2¢'(0)f"(0) + g(0)f"(0), ...
So, from the above we can compute all n derivatives of f at z = 0 in O(m?) time. In the next lecture we

will discuss an extension of the polynomial approximation method under a somewhat weaker assumption on
the no-root region of the polynomial g(z).
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14.2 Approximating Permanent with a Low Degree Polynomial

Armed with Lemma 14.2 all we need to do to prove Theorem 14.1 is to construct a polynomial g(z) such
that at for some |z| < 1, g(z) = per(A), and that g(z) # 0 for all |z| < g for some § > 1.

Consider the following polynomial:
g(z) = per(J + z(A — J)),

where J € R™*™ is the all-ones matrix. The following facts are immediate:

9(0) = per(J)=nl,
g(1) = per(A).

So, all we need to do is to estimate g(1). Now, we need to show that g has no roots in the ball of a radius

B > 1 around the origin. This is in fact the main technical part of the proof.

Theorem 14.3. Let A € C™"*"™. There exists an absolute constant ég > 0 such that if for all i,j
11— A; ;| < do,
then per(A) # 0.

We will see later that in the proof of the above theorem we can let §; > 0.5.

Before proving the above theorem first we use it to prove Theorem 14.1. Let 8 = %. First observe that for

any z such that |z| < 8 and for any i, j we have
)]
[(J+ 2(A— J))i,j —1]=1 +Z(Ai7j -1)-1]= ‘Z(Am‘ -1 < |z |A1‘,j -1 < FO -0 =1.

Therefore, by the above theorem for any |z| < 3, g(z) # 0. Now, by Lemma 14.2 for m = O(ﬁ In(nB/e))
and
k
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satisfies | In g(2) — pm(2)| < €. So, all we need to do is to compute the k-th derivative of In g(z) for k < m. As
we discussed in the previous section, equivalently, it is enough to know the k-th derivative g(z) for k < m.

We can write

k k n
o) = e ST+ 2 = D) = K= B YD (A, = 1) (i, — 1),

o i=1 (i1,82,.0,0%)

(F15e-5Jk)
where the last sum is over all pairs of ordered k subsets (i1,...,4x) and (j1,...,Jk) of indices between
1,...,n. The (n — k)! constant is because each such pair appears in exactly (n — k)! many permutations

and the k! is because of differentiating z*, k times. Note that in other words, the RHS of the above is just
proportional to the sum of the permanents of all £ x k submatrices of the matrix A — J. Therefore we can
compute g*)(0) in time n? (k). For k < m this can be done in quasi-polynomial time. This completes the
proof of Theorem 14.1.
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14.3 Zero Free Region of Permanent

In this section we prove Theorem 14.3. This part is in a sense the only part of the proof which heavily
depends on the permanent as a function. As we will see in future in several applications of the Barvinok’s
method typically one can compute the first log(n/e) coefficients of the corresponding polynomial in quasi-
polynomial time and some cases in polynomial time. Therefore, the main nontrivial part of the proof is to
find zero-free region for the that polynomial.

The proof is by a clever induction. Let U, be the set of all C"*" complex matrices such that for all A € U,,,
and for all 4, j

We want to induct on n. Ideally, we would just need that for all A € U,,, per(A) # 0. But that is not enough
for the induction. We strengthen the hypothesis assuming that for all A, B € U,, that differ in one row or
one column only, the angle between per(A), per(B) does not exceed .. The means that if we consider each
complex number per(A) as a vector in R?, the angle between any two vectors corresponding to two matrices
that differ in exactly one row (or one column) is at most «. We leave « as a parameter now, but later we
will see that we can take o = 7/2.

We leave the base case as an exercise. Here we prove the claim for U,, assuming it holds for ¢,,_;. The main
important property of the permanent that we use in the proof is that permanent is a linear function of any
single row or a column of the matrix and that it is invariant under permuting rows/columns.

Fix a matrix A € U,,; we can write

per(4) = Z Ay jper(4;),
j=1

where A; is the matrices obtained from A by removing the first row and the j-th column of A. Since
A; is a submatrix of A, we have A; € U,—1. Now observe that any pair of matrices A;, Ay differ in
exactly one column (up to a permutation of columns). Therefore by induction hypothesis the angle between
per(A;), per(Ag) is at most . It follows form the following lemma that ). A; ; per(4;) # 0.

Lemma 14.4. Let uy,...,u, € C be nonzero such that the angle between any two vectors u;,u; is at most o
for some 0 < a < 27/3. For &g < cos(a/2) and any set of complex numbers ay, . .., a, such that |1 —a;| < dg
for all i we have ), a;u; # 0.

Note that for u; = per(4;) and a; = A;; we get from the lemma that per(A) # 0.

Proof. Let u=wu1 + -+ + up.

Claim 14.5. |u| > cos § Y1 [lug.

Proof. It turns out that all of these vectors lie in an angle at most «. This simply follows from the fact that
a < 27/3. Note that if & = 27/3 then we could have three vectors with pairwise angle 27/3. Since a < 27/3
we can see that the origin is not in the convex all of these vectors, and therefore they lie in an angle of size
.
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Now, project all vectors to the bisector of the angle; the projection of each w; to the bisectors is at least
cos §||u;]|. Since these projections do not cancel out each other, the projection of u onto the bisector is at
least cos § >, [|u;|| which proves the claim. O

Now, we are ready to finish the proof of the lemma. Let v = )" a;u;. We use triangle inequality:

loll = flull = flo— u
a n n
> cos S il = S0 11— il -l
i=1 =1
>

n
a
(cos 3~ do) ; llusl| # O,
where the second to last inequality uses that |1 —a;| < o and the last inequality uses that dy < cos(a/2). O

Now, we have proven part of the induction step; we know that for any matrix A € U,,, per(A) # 0. But
to finish the proof we also need to show that for any pair of matrices A, B € U,, that differ in one row (or
column), the angle between per(A), per(B) is at most «. Fix two matrices A4, B € U,, and assume that they
only differ in their first row. Therefore, we can write:

per(A) = Z Ay per(4;),
i=1

per(B) = ZBuper(Ai).
i=1

We again use the proof strategy of Lemma 14.4; let u,v be the vectors defined in that lemma. It follows
from the following simple fact that the angle between wu, v is at most arcsin —¢

@ -
COS2

Fact 14.6. For any two vectors z,y if ||x|| < ||yl|, then the angle between y,x + y is at most arcsin %

o

L@ -
cos 3

By symmetry we can show that the angle between ), B ; per(A;) and u is at most arcsin Therefore,

the angle between per(A), per(B) is at most

2 arcsin

o
COs B}

So, we only need that the above quantity is at most a. So, letting o = 7/2 and éy = 0.5 is enough for our
purpose. This completes the proof of Theorem 14.3.
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