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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this lecture we will prove the following theorem:

Theorem 14.1. For any δ < 0.5, ε > 0, and any matrix A ∈ Cn×n such that

|1−Ai,j | ≤ δ, ∀i, j

there exists a polynomial pn,δ,ε of degree O(lnn− ln ε) such that

| ln perA− p(A)| ≤ ε.

Furthermore, the polynomial p(A) can be computed in quasi-polynomial time in n.

Recall that the theorem of Jerrum-Sinclair-Vigoda [JSV04] shows that as long as A ≥ 0 we can use MCMC
technique to give a 1+ε approximation to per(A). But, if the entries of A can be negative (or even a complex
number) we have no other tool besides this theorem to estimate per(A).

To prove this theorem, we use an elegant machinery of Barvinok. A weaker version of this theorem first
appeared in [Bar16]. Parts of the proof that we are going to present here is from a more recent proof in
[Bar17]. In the future lectures we will see many more applications of this machinery in other counting
problems.

14.1 Estimating a Polynomial in the Zero Free Region

Essentially Lemma 14.2 shows that because the polynomial g(z) is zero-free around zero the first few coeffi-
cients have enough information to estimate the polynomial in this regions.

Lemma 14.2. Let g(z) be a (complex) polynomial of degree d and suppose g(z) 6= 0 for all |z| ≤ β where
β > 1. Consider degree m taylor approximation of f(z) = ln g(z),

pm(z) = f(0) +

m∑
k=1

dk

dzk
f(z)|z=0

zk

k!
.

Then, for all |z| ≤ 1,

|f(z)− pm(z)| ≤ d

(m+ 1)βm(β − 1)
.

In other words, for m = Oβ(ln d/ε), pm(z) approximates f(z) up to an additive ε error. Note that if β is
very close to 1, we need to choose m = O( 1

1−β ln(dβ/ε)).

Proof. Let r1, . . . , rd be the roots of g(z). So,

g(z) =

d∏
i=1

(ri − z) = g(0)

d∏
i=1

(1− z/ri).
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So,

f(z) = ln g(z) = f(0) +

d∑
i=1

ln(1− z/ri)

Expanding the taylor series of the logarithm up to degree n,

ln(1− z/ri) = −
m∑
k=1

zk

krki
+ ζi,m,

and we can upper bound ζi,m by

ζi,m =

∣∣∣∣∣
∞∑

k=m+1

zk

krki

∣∣∣∣∣ ≤ 1

(m+ 1)βm(β − 1)

where we used that |z| ≤ 1 and that |ri| ≥ β. It follows that

f(z) = f(0)−
d∑
i=1

n∑
k=1

zk

krki
+ ζm,

where ζm ≤ d
(m+1)βm(β−1) . Finally, observe that the above equation gives the taylor series of f(z) up to

degree m, so

1

k!

dk

dzk
f(z)|z=0 =

d∑
i=1

1

krki
.

This completes the proof.

To compute the polynomial pm we need to know the first m derivates of f at z = 0. Here, we show that if
we have access to the first m derivatives of g at z = 0 we can use them to efficiently compute the first m
derivatives of f = ln g at z = 0. The idea is to just use a system of linear equations. First observe that

f ′(z) =
g′(z)

g(z)
⇒ g′(z) = f ′(z)g(z).

In general one can observe that

dk

dzk
g(z)|z=0 =

k−1∑
j=0

(
k − 1

j

)(
dk−j

dzk−j
f(z)|z=0

)(
dj

dzj
g(z)|z=0

)

So, in particular,

g′′(0) = g′(0)f ′(0) + f ′′(0)g(0),

g′′′(0) = g′′(0)f ′(0) + 2g′(0)f ′′(0) + g(0)f ′′′(0), . . .

So, from the above we can compute all n derivatives of f at z = 0 in O(m2) time. In the next lecture we
will discuss an extension of the polynomial approximation method under a somewhat weaker assumption on
the no-root region of the polynomial g(z).
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14.2 Approximating Permanent with a Low Degree Polynomial

Armed with Lemma 14.2 all we need to do to prove Theorem 14.1 is to construct a polynomial g(z) such
that at for some |z| ≤ 1, g(z) = per(A), and that g(z) 6= 0 for all |z| ≤ β for some β > 1.

Consider the following polynomial:

g(z) = per(J + z(A− J)),

where J ∈ Rn×n is the all-ones matrix. The following facts are immediate:

g(0) = per(J) = n!,

g(1) = per(A).

So, all we need to do is to estimate g(1). Now, we need to show that g has no roots in the ball of a radius
β > 1 around the origin. This is in fact the main technical part of the proof.

Theorem 14.3. Let A ∈ Cn×n. There exists an absolute constant δ0 > 0 such that if for all i, j

|1−Ai,j | ≤ δ0,

then per(A) 6= 0.

We will see later that in the proof of the above theorem we can let δ0 ≥ 0.5.

Before proving the above theorem first we use it to prove Theorem 14.1. Let β = δ0
δ . First observe that for

any z such that |z| ≤ β and for any i, j we have

|(J + z(A− J))i,j − 1| = |1 + z(Ai,j − 1)− 1| = |z(Ai,j − 1)| ≤ |z| · |Ai,j − 1| ≤ δ0
δ
· δ = 1.

Therefore, by the above theorem for any |z| ≤ β, g(z) 6= 0. Now, by Lemma 14.2 for m = O( 1
1−β ln(nβ/ε))

and

pm(z) = n! +

m∑
k=1

dk

dzk
ln g(z)|z=0

zk

k!

satisfies | ln g(z)−pm(z)| ≤ ε. So, all we need to do is to compute the k-th derivative of ln g(z) for k ≤ m. As
we discussed in the previous section, equivalently, it is enough to know the k-th derivative g(z) for k ≤ m.

We can write

dk

dzk
g(z) =

dk

dzk

∑
σ

n∏
i=1

(1 + z(Ai,σi − 1)) = k!(n− k)!
∑

(i1,i2,...,ik)
(j1,...,jk)

(Ai1,j1 − 1) . . . (Aik,jk − 1),

where the last sum is over all pairs of ordered k subsets (i1, . . . , ik) and (j1, . . . , jk) of indices between
1, . . . , n. The (n − k)! constant is because each such pair appears in exactly (n − k)! many permutations
and the k! is because of differentiating zk, k times. Note that in other words, the RHS of the above is just
proportional to the sum of the permanents of all k × k submatrices of the matrix A− J . Therefore we can
compute g(k)(0) in time nO(k). For k ≤ m this can be done in quasi-polynomial time. This completes the
proof of Theorem 14.1.
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14.3 Zero Free Region of Permanent

In this section we prove Theorem 14.3. This part is in a sense the only part of the proof which heavily
depends on the permanent as a function. As we will see in future in several applications of the Barvinok’s
method typically one can compute the first log(n/ε) coefficients of the corresponding polynomial in quasi-
polynomial time and some cases in polynomial time. Therefore, the main nontrivial part of the proof is to
find zero-free region for the that polynomial.

The proof is by a clever induction. Let Un be the set of all Cn×n complex matrices such that for all A ∈ Un,
and for all i, j

|1−Ai,j | ≤ δ0.

We want to induct on n. Ideally, we would just need that for all A ∈ Un, per(A) 6= 0. But that is not enough
for the induction. We strengthen the hypothesis assuming that for all A,B ∈ Un that differ in one row or
one column only, the angle between per(A),per(B) does not exceed α. The means that if we consider each
complex number per(A) as a vector in R2, the angle between any two vectors corresponding to two matrices
that differ in exactly one row (or one column) is at most α. We leave α as a parameter now, but later we
will see that we can take α = π/2.

We leave the base case as an exercise. Here we prove the claim for Un assuming it holds for Un−1. The main
important property of the permanent that we use in the proof is that permanent is a linear function of any
single row or a column of the matrix and that it is invariant under permuting rows/columns.

Fix a matrix A ∈ Un; we can write

per(A) =

n∑
j=1

A1,j per(Aj),

where Aj is the matrices obtained from A by removing the first row and the j-th column of A. Since
Aj is a submatrix of A, we have Aj ∈ Un−1. Now observe that any pair of matrices Aj , Ak differ in
exactly one column (up to a permutation of columns). Therefore by induction hypothesis the angle between
per(Aj),per(Ak) is at most α. It follows form the following lemma that

∑
iA1,i per(Ai) 6= 0.

Lemma 14.4. Let u1, . . . , un ∈ C be nonzero such that the angle between any two vectors ui, uj is at most α
for some 0 < α < 2π/3. For δ0 < cos(α/2) and any set of complex numbers a1, . . . , an such that |1−ai| ≤ δ0
for all i we have

∑
i aiui 6= 0.

Note that for ui = per(Ai) and ai = A1,i we get from the lemma that per(A) 6= 0.

Proof. Let u = u1 + · · ·+ un.

Claim 14.5. |u| ≥ cos α2
∑n
i=1 ‖ui‖.

Proof. It turns out that all of these vectors lie in an angle at most α. This simply follows from the fact that
α < 2π/3. Note that if α = 2π/3 then we could have three vectors with pairwise angle 2π/3. Since α < 2π/3
we can see that the origin is not in the convex all of these vectors, and therefore they lie in an angle of size
α.

0
α
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Now, project all vectors to the bisector of the angle; the projection of each ui to the bisectors is at least
cos α2 ‖ui‖. Since these projections do not cancel out each other, the projection of u onto the bisector is at
least cos α2

∑
i ‖ui‖ which proves the claim.

Now, we are ready to finish the proof of the lemma. Let v =
∑
i aiui. We use triangle inequality:

‖v‖ ≥ ‖u‖ − ‖v − u‖

≥ cos
α

2

n∑
i=1

‖ui‖ −
n∑
i=1

|1− ai| · ‖ui‖.

≥ (cos
α

2
− δ0)

n∑
i=1

‖ui‖ 6= 0,

where the second to last inequality uses that |1−ai| ≤ δ0 and the last inequality uses that δ0 < cos(α/2).

Now, we have proven part of the induction step; we know that for any matrix A ∈ Un, per(A) 6= 0. But
to finish the proof we also need to show that for any pair of matrices A,B ∈ Un that differ in one row (or
column), the angle between per(A),per(B) is at most α. Fix two matrices A,B ∈ Un and assume that they
only differ in their first row. Therefore, we can write:

per(A) =

n∑
i=1

A1,i per(Ai),

per(B) =

n∑
i=1

B1,i per(Ai).

We again use the proof strategy of Lemma 14.4; let u, v be the vectors defined in that lemma. It follows
from the following simple fact that the angle between u, v is at most arcsin δ0

cos α2
.

Fact 14.6. For any two vectors x, y if ‖x‖ < ‖y‖, then the angle between y, x+ y is at most arcsin ‖x‖‖y‖ .

By symmetry we can show that the angle between
∑
iB1,i per(Ai) and u is at most arcsin δ0

cos α2
. Therefore,

the angle between per(A),per(B) is at most

2 arcsin
δ0

cos α2
.

So, we only need that the above quantity is at most α. So, letting α = π/2 and δ0 = 0.5 is enough for our
purpose. This completes the proof of Theorem 14.3.
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