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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

Recall that for a graph G the (positive) matching polynomial is defined as follows:

µ+
G(x) =

n/2∑
k=0

mkx
k,

where mk is the number of matchings of G of size k. In this lecture we prove the following theorem of Patel
and Regts [PR17]

Theorem 15.1. For any graph G of maximum degree ∆ and any t that does not lie on negative real axis we
can give a 1 + ε multiplicative approximation of µ+

G(t) in time polynomial in n, 1/ε and exponential in t,∆.

Note that unlike the proof in lecture 12 which only approximated the matching polynomial on positive reals
here we can approximate it almost anywhere.

We will use an extension of the Barvinok’s technique that we discussed last time. Perhaps, the first idea
that comes to mind is to argue that the matching polynomial has no roots in a ball of radius β > 1 around
the origin. Furthermore, we know that µ+

G(0) = m0 = 1. This idea fails as we will show later that µ+
G has

a root as small as −1/Ω(∆). Instead we will use the following facts that we will prove later: (i) µ+
G is real

rooted, (ii) It has no positive roots, (iii) the largest root of µ+
G is no larger than −1/4(∆− 1).

So, for a constant ∆, all roots of µ+
G are far from the line that connects 0 to 1. The idea of Barvinok is that

whenever there is a curve from 0 to 1 that is “far” from all roots of the polynomial we should be able to
estimate the polynomial at 1 using its logarithmically many derivatives at 0.

Suppose g(z) is a polynomial that has no roots close to the strip from 0 to 1, i.e., for all points z where
−δ ≤ <z ≤ 1 + δ and |=z| ≤ δ, g(z) = 0. Here is the idea: We construct a function φ such that φ(0) = 0,
φ(1) = 1 such that it maps the disc |z| ≤ β into the strip −δ ≤ <z ≤ 1 + δ, |=z| ≤ δ.

0 1 0 1

Then, the polynomial g(φ(z)) has no roots in the ball of radius β around the origin. So we can use the
polynomial approximation lemma from the last lecture to approximate g(φ(z)) by the taylor expansion
around 0 of degree O(log degg+log deg φ+log 1/ε) to obtain a multiplicative 1+ ε approximation of g(φ(z)).

Let h(z) = g(φ(z)). Recall that to compute the Taylor polynomial of degree n of lnh(z) at z = 0 it suffices
to compute the Taylor polynomial of degree n of h(z) at z = 0. In other words, we just need the bottom n
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coefficients of the polynomial h(z). But this can be computed from the bottom n coefficients of g(.) and the
bottom n coefficients of φ(.).

Now, all we need is to construct the polynomial φ(.).

Lemma 15.2 ([Bar17]). For 0 < δ < 1 define

φ(z) = φδ(z) =
1

σ

N∑
k=1

(αz)k

k
,

where σ =
∑N
k=1

αk

k is the normalizing constant to make sure φ(1) = 1, N = O(e1/δ) is the degree and

α = 1− e−1/δ. Then, for all |z| ≤ 1−e−1−1/δ

1−e−1/δ =: β we have

−δ ≤ <φ(z) ≤ 1 + 2δ

|=φ(z)| ≤ 2δ.

Proof. Note that clearly φ(0) = 0. We work with the function

fδ(z) = δ ln
1

1− αz

for |z| ≤ 1. There is a technical fact that the complex log is not well defined; in particular we can have
ln 1 = 2kπi for any integer k. So, here we choose the “branch” and let ln 1 = 0. Therefore, f(0) = 0 and

f(1) = δ ln
1

1− (1− e−1/δ)
= δ ln e1/δ = 1.

Now the following facts are easy to check:

−δ ln 2<fδ(z) ≤ 1 + δ,

and that |=fδ(z)| ≤ πρ/2. The actual constants do not matter in above inequalities. The main fact is that
because we choose a branch of the log where ln 1 = 0, we can write every complex number as a re2απi for
some 0 ≤ α ≤ 1. Therefore, for every complex number z, = ln z < 2π. This implies that = ln 1

1−αz ≤ 2π over
the whole complex plane, and δ just scales this imaginary value down.

The rest of the proof is similar to the arguments we had in the last lecture. We approximate fδ by its taylor
approximation

15.1 Properties of the Matching Polynomial

For a graph G let

µG(x) =
∑
k=0

(−1)kmkx
n−2k.

The following is the main theorem that we prove in this section:

Theorem 15.3. For any graph G with maximum degree ∆ the largest root of µG(x) is at most 2
√

∆− 1.

Here is the general plan to prove the theorem. First we prove the theorem for trees with maximum degree
∆ and then we show that the trees are indeed the worst case for the above theorem. So, let us start by
studying the matching polynomial of a tree.
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Lemma 15.4. For any tree T , the matching polynomial of T is equal to characteristic polynomial of the
adjacency matrix of T , i.e.,

µT (x) = det(xI −A),

where A is the adjacency matrix of T .

Proof. To prove the theorem it is enough to show that for every k the coefficient of xn−2k in the two
polynomials are the same. Let us prove this fact only for the constant term, x0 and we will see that the
proof can be naturally extended to all k’s. Note that the coefficient of x0 in the µT (x) is the number of
perfect matchings of G. That coefficient in det(xI −A) is exactly the determinant of A, i.e.,∑

σ

sgn(σ)
∏
i

Ai,σi .

We claim that
∏
iAi,σi is nonzero if and only if σ corresponds to a perfect matching in T . Firstly observe

that this product is nonzero if for all i, Ai,σi = 1. Now, recall that any permutation is a union of cycles,
say i, σi, σσi , etc, i. But because T is a tree it does not have any cycles. So, the only feasible cycles in σ are
cycles of length 2, i.e., we must have σσi = i for all i. In other words σ corresponds to a perfect matching of
T . It follows that the sign of all these permutations is exactly (−1)n/2. Therefore, the constant coefficient
of µT (x) is the same as the constant coefficient of det(xI −A).

For other coefficients the proof is almost similar. Just note that the coefficient of xn−2k of det(xI−A) is the
sum of determinant of all principal 2k × 2k minors of A. By a similar argument, each such determinant is
equal to the number of perfect matching in the corresponding induced subgraph of T with 2k vertices.

Now, we are ready to upper bound the largest root of µT (x) for a tree T .

Theorem 15.5. Let T be a tree with maximum degree at ∆. The largest root of µT (x) is at most 2
√

∆− 1.

Proof. By Lemma 15.4 it is enough to upper bound the largest root of det(xI−A) where A is the adjacency
matrix of T . But the roots of det(xI − A) are correspond to the eigenvalues of the adjacency matrix. So,
we just need to upper bound the largest eigenvalue of A.

We use the trace method. Recall that for any symmetric matrix M , Tr(M) =
∑
i λi where λi are eigenvalues

of M . Therefore, for any k, Tr(Mk) =
∑
i λ

k
i . It follows that Tr(Mk)1/k is always an upper bound on the

largest eigenvalue of M . Furthermore, it is not hard to see that as k → ∞, Tr(Mk) → λmax. Therefore, to
prove the claim it is enough to show that

lim
k→∞

Tr(Ak) ≤ (2
√

∆− 1)k = 2k(∆− 1)k/2.

Observe that for any vertex u, Aku,u is the number of closed walks of length k that starts at u. To prove the
above inequality we show that for any vertex u,

lim
k→∞

Aku,u ≤ 2k(∆− 1)k/2. (15.1)

Note that this is enough we would get

lim
k→∞

Tr(Ak)1/k ≤ lim
k→∞

n1/k(2
√

∆− 1) = 2
√

∆− 1.

So, it remains to prove (15.1). Let us make the tree rooted at u. We can map any closed walk starting at u
of length k with a sequence of ↑, ↓ of length k where if we have ↑ in position i it means that in the i-th step
we move towards the root and otherwise it means we move against the root. Note that in order to have a
closed walk any such sequence would have exactly k/2, ↑ symbols and exactly k/2, ↓ symbols. Every time
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that we go towards the root there is a unique edge that we can choose and every time that we go down there
are at most ∆− 1 edges that we can choose. Therefore, the number of closed walks of length k starting at
the root is at most

1k/2(∆− 1)k/2
(
k

k/2

)
,

where the last term corresponds to all possible ways to construct a sequence of length k with exactly k/2,
↑’s and exactly k/2, ↓’s. Equation (15.1) follows from the fact that

(
k
k/2

)
≤ 2k.

The following fact can be proven similar to the facts on µ+
G(x) that we proved in lecture 12.

Fact 15.6. For any pair of disjoint graphs G,H

µG∪H(x) = µG(x) · µH(x).

For any graph G and any vertex u,

µG(x) = xµG−u(x)−
∑
v∼u

µG−u−v(x).

For a graph G and a vertex u, the path-tree of G with respect to u, T = TG(u) is defined as follows: For
every path in G that starts at u, T has a node and two paths are adjacent if their length differs by 1 and
one is a prefix of another. See the following figure for an example:
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We prove the following theorem due to Godsil and Gutman.

Theorem 15.7. Let G be a graph and u be a vertex of G. Also, let T = T (G, u) be the path tree of G with
respect to u. Then

µG(x)

µG−u(x)
=

µT (x)

µT−u(x)
.

Furthermore, µG(x) divides µT (x).

Note that this would directly imply Theorem 15.3 because if the maximum degree of G is at most ∆ so is
the maximum degree of T (G, u). The above theorem implies that the root of µG(x) are a subset of the roots
of µT (G,u)(x). And, by Theorem 15.5 the largest root of µT (G,u)(x) is at most 2

√
∆− 1.

Proof. Firstly, observe that the theorem obviously holds when G is a tree because the path-tree of a tree is
itself. So, suppose (inductively) that the theorem holds for all subgraph so of G. Let us write H = G − u.
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Then, using the first part of Fact 15.6 we have

µG(x)

µH(x)
=

xµG−u(x)−
∑
v∼u µG−u−v(x)

µH(x)

= x−
∑
v∼u

µH−v(x)

µH(x)
= x−

∑
v∼u

µT (H,v)−v(x)

µT (H,v)(x)
. (15.2)

The last equality simply follows by the induction hypothesis. Here is the main observation: T (H, v) =
T (G− u, v) is isomorphic to the component of T (G, u)− u which contains the point u, v. Therefore,

µT (H,v)−v(v)

µT (H,v)(x)
=
µT (G,u)−u−v(x)

µT (G,u)−u(x)
.

Note that the rest of the connected components of T (G, u)−u are also connected components of T (G, u)−u−v
so they will be cancelled out in the RHS (see second part of Fact 15.6).

So, we can rewrite the RHS of (15.2) as follows:

x−
∑
v∼u

µT (H,v)−v(x)

µT (H,v)(x)
= x−

∑
v∼u

µT (G,u)−u−v(x)

µT (G,u)−u(x)

=
xµT (G,u)−u(x)−

∑
v∼u µT (G,u)−u−v(x)

µT (G,u)−u(x)
=

µT (G,u)(x)

µT (G,u)−u(x)
.

This proves the first part of the theorem.

Now we prove the second part of the theorem. Firstly, by the first part we can write

µT (x) = µG(x) · µT−u(x)

µG−u(x)
.

To prove the second part we need to show that the ratio µT−u(x) is divisible by µG−u(x). Firstly, note that
µT−u(x) = µT (G,u)−u(x) is divisible by µT (G−u,v)(x). This is because the latter is isomorphic to one of the
connected components of the former. Secondly, by induction µT (G−u,v)(x) is divisible by µG−u(x). Putting
these together, we get µT−u(x) is divisible by µG−u(x).
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