Counting and Sampling

Fall 2017

Lecture 16: Roots of the Matching Polynomial

Lecturer: Shayan Oveis Gharan November 22nd

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

Recall that for a graph G

$$\mu_G(x) = \sum_{k=0}^{n/2} (-1)^k m_k x^{n-2k}.$$

In this section we prove that the matching polynomial is real rooted and all of its roots are bounded from above by $2\sqrt{\Delta-1}$ assuming that the maximum degree of G is Δ .

16.1 Real Rootedness of Matching Polynomial

The following fact can be proven similar to the facts on $\mu_G^+(x)$ that we proved in lecture 12.

Fact 16.1. For any pair of disjoint graphs G, H

$$\mu_{G \cup H}(x) = \mu_G(x) \cdot \mu_H(x).$$

For any graph G and any vertex u,

$$\mu_G(x) = x\mu_{G-u}(x) - \sum_{v \sim u} \mu_{G-u-v}(x).$$

For a graph G and a vertex u, the path-tree of G with respect to u, $T = T_G(u)$ is defined as follows: For every path in G that starts at u, T has a node and two paths are adjacent if their length differs by 1 and one is a prefix of another. See the following figure for an example:

We prove the following theorem due to Godsil and Gutman.

Theorem 16.2. Let G be a graph and u be a vertex of G. Also, let T = T(G, u) be the path tree of G with respect to u. Then

$$\frac{\mu_G(x)}{\mu_{G-u}(x)} = \frac{\mu_T(x)}{\mu_{T-u}(x)}.$$

Recall that this would directly imply that the largest root of $\mu_G(x)$ in absolute value is at most $2\sqrt{\Delta-1}$. This is because if the maximum degree of G is at most Δ so is the maximum degree of T(G, u). The above theorem implies that the root of $\mu_G(x)$ are a subset of the roots of $\mu_{T(G,u)}(x)$. And, we proved in the last lecture that the largest root of $\mu_{T(G,u)}(x)$ is at most $2\sqrt{\Delta-1}$.

Proof. Firstly, observe that the theorem obviously holds when G is a tree because the path-tree of a tree is itself. So, suppose (inductively) that the theorem holds for all subgraph so of G. Let us write H = G - u. Then, using the first part of Fact 16.1 we have

$$\frac{\mu_G(x)}{\mu_H(x)} = \frac{x\mu_{G-u}(x) - \sum_{v \sim u} \mu_{G-u-v}(x)}{\mu_H(x)}$$

$$= x - \sum_{v \sim u} \frac{\mu_{H-v}(x)}{\mu_H(x)} = x - \sum_{v \sim u} \frac{\mu_{T(H,v)-v}(x)}{\mu_{T(H,v)}(x)}.$$
(16.1)

The last equality simply follows by the induction hypothesis. Here is the main observation: T(H, v) = T(G - u, v) is isomorphic to the component of T(G, u) - u which contains the point u, v. Therefore,

$$\frac{\mu_{T(H,v)-v}(v)}{\mu_{T(H,v)}(x)} = \frac{\mu_{T(G,u)-u-v}(x)}{\mu_{T(G,u)-u}(x)}.$$

Note that the rest of the connected components of T(G, u)-u are also connected components of T(G, u)-u-v so they will be cancelled out in the RHS (see second part of Fact 16.1).

So, we can rewrite the RHS of (16.1) as follows:

$$x - \sum_{v \sim u} \frac{\mu_{T(H,v)-v}(x)}{\mu_{T(H,v)}(x)} = x - \sum_{v \sim u} \frac{\mu_{T(G,u)-u-v}(x)}{\mu_{T(G,u)-u}(x)}$$
$$= \frac{x\mu_{T(G,u)-u}(x) - \sum_{v \sim u} \mu_{T(G,u)-u-v}(x)}{\mu_{T(G,u)-u}(x)} = \frac{\mu_{T(G,u)}(x)}{\mu_{T(G,u)-u}(x)}.$$

This proves the theorem.

Corollary 16.3. For any graph G the polynomial $\mu_G(x)$ divides $\mu_T(x)$.

Proof. Firstly, by the first part we can write

$$\mu_T(x) = \mu_G(x) \cdot \frac{\mu_{T-u}(x)}{\mu_{G-u}(x)}.$$

To prove the second part we need to show that the ratio $\mu_{T-u}(x)$ is divisible by $\mu_{G-u}(x)$. Firstly, note that $\mu_{T-u}(x) = \mu_{T(G,u)-u}(x)$ is divisible by $\mu_{T(G-u,v)}(x)$. This is because the latter is isomorphic to one of the connected components of the former. Secondly, by induction $\mu_{T(G-u,v)}(x)$ is divisible by $\mu_{G-u}(x)$. Putting these together, we get $\mu_{T-u}(x)$ is divisible by $\mu_{G-u}(x)$.

16.2 Estimating the Coefficients of the Matching Polynomial

Next, we discuss an algorithm to estimate the coefficient of x^k of $\mu_G(x)$ in time $C^{O(k)}$ for some constant C > 0. Note that the naiive algorithm takes time $n^{O(k)}$ to count the number of k-matchings of G. Furthermore, note that in the above application of estimating $\mu_G^+(x)$ for say x = 1 we need to know the first $O(\log(n/\epsilon))$ coefficients exactly so we cannot use the FPRAS of Jerrum-Sinclair-Vigoda [JSV04].

The algorithm follows from the above lemma.

Lemma 16.4. For any spanning tree T rooted at u, the polynomial

$$x^{-1}\frac{\mu_{T-u}(x^{-1})}{\mu_T(x^{-1})} = \sum_k A_{u,u}^k x^k$$

is the generating polynomial of walks where A is the adjacency matrix of T, and $A_{u,u}^k$ is the number of closed walks of length k started at u.

Proof. First of all in the last lecture we saw that for any tree T, $\mu_T(x) = \det(xI - A)$. Therefore, it is enough to prove the claim for the ratio $x^{-1} \frac{\det(x^{-1}I - A_{T-u})}{\det(x^{-1}I - A)}$. We claim that

$$\sum_{k} A_{u,u}^{k} x^{k} = (I - xA)_{u,u}^{-1}.$$

This is just because $(I - xA)^{-1} = \sum_{k \geq 0} x^k A^k$. So, it remains to show that

$$x^{-1}\frac{\det(x^{-1}I - A_{T-u})}{\det(x^{-1}I - A)} = (I - xA)_{u,u}^{-1}.$$

Next, we use the following well-known facts: For any matrix A, $\operatorname{adj}(A) = A^{-1} \operatorname{det}(A)$ where $\operatorname{adj}(A)$ is the adjoint of A is the matrix where (up to the sign) the i, j the entry is the determinant of the submatrix of A where the i-th row and j-th column are removed. Therefore,

$$(I - xA)^{-1} = x^{-1}(x^{-1}I - A)^{-1} = x^{-1}\frac{\operatorname{adj}(x^{-1}I - A)}{\det(x^{-1}I - A)}.$$

So, the u, u-th entry of both sides are equal. But the u, u-th entry of $\mathrm{adj}(x^{-1}I - A)$ is exactly $\mathrm{det}(x^{-1}I - A_{T-u})$. This completes the proof.

Now observe that by the above theorem we can compute the coefficient of x^{-k} of $\frac{\mu_{G-u}(x)}{\mu_G(x)}$ in time $O(\Delta)^k$. All we need to do is to construct the path-tree about u of depth k (This needs time Δ^k . Then, we just count the number of closed walks of length k started at u in that tree.

It remains to compute $\mu_G(x)$. We use the following simple observation that we leave as an exercise: For any graph G,

$$\sum_{u} \mu_{G-u}(x) = \mu'_{G}(x).$$

Therefore, in time $O(n\Delta^k)$ we can compute the coefficients of x^{-1}, \ldots, x^{-k} in $\frac{\mu'_G(x)}{\mu_G(x)}$. Now, we claim this is enough to find the coefficients of x^1, \ldots, x^k of $\mu_G(x)$.

Firstly, say r_1, \ldots, r_n are the roots of $\mu_G(x)$. Then,

$$\frac{\mu_G'(x)}{\mu_G(x)} = \sum_i \frac{1}{x - r_i} = x^{-1} \sum_i \sum_j x^{-j} r_i^j = \sum_j x^{-j} \sum_i r_i^j.$$

Therefore, the coefficient of x^{-j} is the j-th power sum of the roots of $\mu_G(x)$. It follows by Newton identities that this is enough to estimate the top k coefficients.

Lemma 16.5 (Newton Identities). For any polynomial $\sum_{i=0}^{n} a_i x^i$ with roots r_1, \ldots, r_n we can determine the coefficients a_0, \ldots, a_k from the power sums of the roots p_0, p_1, \ldots, p_k where for all k,

$$p_k = \sum_i r_i^k.$$

Proof. First observe that a_0, \ldots, a_n are elementary symmetric polynomials of the roots:

$$a_0 = 1, a_1 = \sum_i r_i, a_2 = \sum_{i < j} x_i x_j, \dots$$

It turns out that a_0, \ldots, a_k form a basis for all symmetric polynomials in r_1, \ldots, r_n of degree k. Therefore, given a_0, \ldots, a_k we can compute p_0, \ldots, p_k and vice versa. Newton identities give this translation in the case of power sums:

$$p_1 = e_1$$

$$p_2 = e_1p_1 - 2e_2,$$

$$p_3 = e_1p_2 - e_2p_1 + 3e_3,$$

$$p_4 = e_1p_3 - e_2p_2 + e_3p_1 - 4e_4,$$

$$\vdots$$

16.3 Estimating Low Order Coefficients of the Matching Polynomial

For a graph G and (a small graph) H let $\operatorname{ind}(H,G)$ be the number of subsets S of G such that H is isomorphic to G[S].

In this section we prove the following theorem due to Patel and Regts [PR17].

Theorem 16.6. Let G be a graph of maximum degree. Consider a polynomial $q(z) = x^n + \sum_{i=1}^n e_i x^{n-i}$ where $e_i = \sum_{H \in \mathcal{G}_i} \lambda_H \operatorname{ind}(H, G)$ is the coefficient of x^{n-i} . Here \mathcal{G}_i is a family of graphs of size at most i. Then, we can compute e_1, \ldots, e_k in time $\operatorname{poly}(n)\Delta^{O(k)}$.

Recall that the above theorem implies that we can estimate the polynomial

Fact 16.7. For any connected graph H and any graph G with maximum degree Δ we can exactly compute $\operatorname{ind}(H,G)$ in time $O(n\Delta^{|V(H)|})$.

Proof. Let k = |V(H)|. Fix a spanning tree subgraph T of H and define an ordering v_1, v_2, \ldots, v_k of vertices of H where for all $i \geq 2$, v_i is adjacent to one of the vertices v_1, \ldots, v_{i-1} . First we guess the mapping of v_1 , say u_1 under the isomorphism. There are n possibilities. Next, we find the mapping of v_2 ; since v_2 is adjacent to u_1 it has to be mapped to one of the neighbors of u_1 . But, u_1 has at most Δ neighbors. So, there are only Δ options. Say u_2 is the map of v_2 . Now, v_3 is adjacent to v_1 or v_2 . Either way there are at most Δ options to guess the map of v_3 , and so on.

So, the main difficulty in computing e_i is when we need to compute $\operatorname{ind}(H,G)$ for a disconnected graph H. For example, if the polynomial q(.) corresponds to the matching polynomial or the independence polynomial H corresponds to matchings or independent sets and it is disconnected.

First of all, using Newton identities instead of computing e_1, \ldots, e_k it is enough to compute p_1, \ldots, p_k . Secondly, using the recursive definition of p_i 's we can write each p_i as

$$p_i = \sum_{H \in \mathcal{G}_i} a_H \operatorname{ind}(H, G).$$

Here we do not discuss how to compute a_H and we refer to [?] for details. But in the high-level a_H 's are just functions of λ_H 's and can be computed recursively.

The main observation of [PR17] is that p_i 's are additive properties in the following sense: Suppose we have a disjoint union of graphs G_1, G_2 . Then $q_{G_1 \cup G_2}(z) = q_{G_1}(z) \cdot q_{G_2}(z)$. Say p_i^G is the *i*-th power sum of the roots of $q_G(z)$. Then, observe that for all i,

$$p_i^{G_1 \cup G_2} = p_i^{G_1} + p_i G_2.$$

On the other hand, observe that if H is connected, then

$$ind(H, G_1 \cup G_2) = ind(H, G_1) + ind(H, G_2),$$

but if it is disconnected say $H = H_1 \cup H_2$, then

$$\operatorname{ind}(H, G_1, \cup G_2) = \operatorname{ind}(H_1, G_1) \operatorname{ind}(H_2, G_2) + \operatorname{ind}(H_1, G_2) \operatorname{ind}(H_2, G_1).$$

It follows that for any power sum p_i all coefficients a_H corresponding to disconnected graphs H must be zero. For a concrete example recall that in the previous section we showed that in the case of matching polynomial for each i, p_i corresponds to closed tree-like-walks which are connected subgraphs. Therefore, by the above fact we can compute each p_i exactly in time polynomial in n and $\Delta^{O(i)}$.

References

- [JSV04] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. J. ACM, 51(4):671–697, July 2004. 16-2
- [PR17] Viresh Patel and Guus Regts. Deterministic polynomial-time approximation algorithms for partition functions and graph polynomials. *Electronic Notes in Discrete Mathematics*, 61(Supplement C):971 977, 2017. The European Conference on Combinatorics, Graph Theory and Applications (EUROCOMB). 16-4, 16-5