
Counting and Sampling Fall 2017

Lecture 16: Roots of the Matching Polynomial
Lecturer: Shayan Oveis Gharan November 22nd

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

Recall that for a graph G

µG(x) =

n/2∑
k=0

(−1)kmkx
n−2k.

In this section we prove that the matching polynomial is real rooted and all of its roots are bounded from
above by 2

√
∆− 1 assuming that the maximum degree of G is ∆.

16.1 Real Rootedness of Matching Polynomial

The following fact can be proven similar to the facts on µ+
G(x) that we proved in lecture 12.

Fact 16.1. For any pair of disjoint graphs G,H

µG∪H(x) = µG(x) · µH(x).

For any graph G and any vertex u,

µG(x) = xµG−u(x)−
∑
v∼u

µG−u−v(x).

For a graph G and a vertex u, the path-tree of G with respect to u, T = TG(u) is defined as follows: For
every path in G that starts at u, T has a node and two paths are adjacent if their length differs by 1 and
one is a prefix of another. See the following figure for an example:
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We prove the following theorem due to Godsil and Gutman.

Theorem 16.2. Let G be a graph and u be a vertex of G. Also, let T = T (G, u) be the path tree of G with
respect to u. Then

µG(x)

µG−u(x)
=

µT (x)

µT−u(x)
.
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Recall that this would directly imply that the largest root of µG(x) in absolute value is at most 2
√

∆− 1.
This is because if the maximum degree of G is at most ∆ so is the maximum degree of T (G, u). The above
theorem implies that the root of µG(x) are a subset of the roots of µT (G,u)(x). And, we proved in the last

lecture that the largest root of µT (G,u)(x) is at most 2
√

∆− 1.

Proof. Firstly, observe that the theorem obviously holds when G is a tree because the path-tree of a tree is
itself. So, suppose (inductively) that the theorem holds for all subgraph so of G. Let us write H = G − u.
Then, using the first part of Fact 16.1 we have

µG(x)

µH(x)
=

xµG−u(x)−
∑
v∼u µG−u−v(x)

µH(x)

= x−
∑
v∼u

µH−v(x)

µH(x)
= x−

∑
v∼u

µT (H,v)−v(x)

µT (H,v)(x)
. (16.1)

The last equality simply follows by the induction hypothesis. Here is the main observation: T (H, v) =
T (G− u, v) is isomorphic to the component of T (G, u)− u which contains the point u, v. Therefore,

µT (H,v)−v(v)

µT (H,v)(x)
=
µT (G,u)−u−v(x)

µT (G,u)−u(x)
.

Note that the rest of the connected components of T (G, u)−u are also connected components of T (G, u)−u−v
so they will be cancelled out in the RHS (see second part of Fact 16.1).

So, we can rewrite the RHS of (16.1) as follows:

x−
∑
v∼u

µT (H,v)−v(x)

µT (H,v)(x)
= x−

∑
v∼u

µT (G,u)−u−v(x)

µT (G,u)−u(x)

=
xµT (G,u)−u(x)−

∑
v∼u µT (G,u)−u−v(x)

µT (G,u)−u(x)
=

µT (G,u)(x)

µT (G,u)−u(x)
.

This proves the theorem.

Corollary 16.3. For any graph G the polynomial µG(x) divides µT (x).

Proof. Firstly, by the first part we can write

µT (x) = µG(x) · µT−u(x)

µG−u(x)
.

To prove the second part we need to show that the ratio µT−u(x) is divisible by µG−u(x). Firstly, note that
µT−u(x) = µT (G,u)−u(x) is divisible by µT (G−u,v)(x). This is because the latter is isomorphic to one of the
connected components of the former. Secondly, by induction µT (G−u,v)(x) is divisible by µG−u(x). Putting
these together, we get µT−u(x) is divisible by µG−u(x).

16.2 Estimating the Coefficients of the Matching Polynomial

Next, we discuss an algorithm to estimate the coefficient of xk of µG(x) in time CO(k) for some constant C > 0.
Note that the naiive algorithm takes time nO(k) to count the number of k-matchings of G. Furthermore,
note that in the above application of estimating µ+

G(x) for say x = 1 we need to know the first O(log(n/ε))
coefficients exactly so we cannot use the FPRAS of Jerrum-Sinclair-Vigoda [JSV04].

The algorithm follows from the above lemma.
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Lemma 16.4. For any spanning tree T rooted at u, the polynomial

x−1
µT−u(x−1)

µT (x−1)
=

∑
k

Aku,ux
k

is the generating polynomial of walks where A is the adjacency matrix of T , and Aku,u is the number of closed
walks of length k started at u.

Proof. First of all in the last lecture we saw that for any tree T , µT (x) = det(xI − A). Therefore, it is

enough to prove the claim for the ratio x−1 det(x−1I−AT−u)
det(x−1I−A) . We claim that∑

k

Aku,ux
k = (I − xA)−1u,u.

This is just because (I − xA)−1 =
∑
k≥0 x

kAk. So, it remains to show that

x−1
det(x−1I −AT−u)

det(x−1I −A)
= (I − xA)−1u,u.

Next, we use the following well-known facts: For any matrix A, adj(A) = A−1 det(A) where adj(A) is the
adjoint of A is the matrix where (up to the sign) the i, j the entry is the determinant of the submatrix of A
where the i-th row and j-th column are removed. Therefore,

(I − xA)−1 = x−1(x−1I −A)−1 = x−1
adj(x−1I −A)

det(x−1I −A)
.

So, the u, u-th entry of both sides are equal. But the u, u-th entry of adj(x−1I − A) is exactly det(x−1I −
AT−u). This completes the proof.

Now observe that by the above theorem we can compute the coefficient of x−k of µG−u(x)
µG(x) in time O(∆)k.

All we need to do is to construct the path-tree about u of depth k (This needs time ∆k. Then, we just count
the number of closed walks of length k started at u in that tree.

It remains to compute µG(x). We use the following simple observation that we leave as an exercise: For any
graph G, ∑

u

µG−u(x) = µ′G(x).

Therefore, in time O(n∆k) we can compute the coefficients of x−1, . . . , x−k in
µ′G(x)
µG(x) . Now, we claim this is

enough to find the coefficients of x1, . . . , xk of µG(x).

Firstly, say r1, . . . , rn are the roots of µG(x). Then,

µ′G(x)

µG(x)
=

∑
i

1

x− ri
= x−1

∑
i

∑
j

x−jrji =
∑
j

x−j
∑
i

rji .

Therefore, the coefficient of x−j is the j-th power sum of the roots of µG(x). It follows by Newton identities
that this is enough to estimate the top k coefficients.

Lemma 16.5 (Newton Identities). For any polynomial
∑n
i=0 aix

i with roots r1, . . . , rn we can determine
the coefficients a0, . . . , ak from the power sums of the roots p0, p1, . . . , pk where for all k,

pk =
∑
i

rki .
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Proof. First observe that a0, . . . , an are elementary symmetric polynomials of the roots:

a0 = 1, a1 =
∑
i

ri, a2 =
∑
i<j

xixj , . . .

It turns out that a0, . . . , ak form a basis for all symmetric polynomials in r1, . . . , rn of degree k. Therefore,
given a0, . . . , ak we can compute p0, . . . , pk and vice versa. Newton identities give this translation in the case
of power sums:

p1 = e1

p2 = e1p1 − 2e2,

p3 = e1p2 − e2p1 + 3e3,

p4 = e1p3 − e2p2 + e3p1 − 4e4,

...

16.3 Estimating Low Order Coefficients of the Matching Polyno-
mial

For a graph G and (a small graph) H let ind(H,G) be the number of subsets S of G such that H is isomorphic
to G[S].

In this section we prove the following theorem due to Patel and Regts [PR17].

Theorem 16.6. Let G be a graph of maximum degree. Consider a polynomial q(z) = xn +
∑n
i=1 eix

n−i

where ei =
∑
H∈Gi λH ind(H,G) is the coefficient of xn−i. Here Gi is a family of graphs of size at most i.

Then, we can compute e1, . . . , ek in time poly(n)∆O(k).

Recall that the above theorem implies that we can estimate the polynomial

Fact 16.7. For any connected graph H and any graph G with maximum degree ∆ we can exactly compute
ind(H,G) in time O(n∆|V (H)|).

Proof. Let k = |V (H)|. Fix a spanning tree subgraph T of H and define an ordering v1, v2, . . . , vk of vertices
of H where for all i ≥ 2, vi is adjacent to one of the vertices v1, . . . , vi−1. First we guess the mapping of
v1, say u1 under the isomorphism. There are n possibilities. Next, we find the mapping of v2; since v2 is
adjacent to u1 it has to be mapped to one of the neighbors of u1. But, u1 has at most ∆ neighbors. So,
there are only ∆ options. Say u2 is the map of v2. Now, v3 is adjacent to v1 or v2. Either way there are at
most ∆ options to guess the map of v3, and so on.

So, the main difficulty in computing ei is when we need to compute ind(H,G) for a disconnected graph H.
For example, if the polynomial q(.) corresponds to the matching polynomial or the independence polynomial
H corresponds to matchings or independent sets and it is disconnected.

First of all, using Newton identities instead of computing e1, . . . , ek it is enough to compute p1, . . . , pk.
Secondly, using the recursive definition of pi’s we can write each pi as

pi =
∑
H∈Gi

aH ind(H,G).
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Here we do not discuss how to compute aH and we refer to [?] for details. But in the high-level aH ’s are
just functions of λH ’s and can be computed recursively.

The main observation of [PR17] is that pi’s are additive properties in the following sense: Suppose we have
a disjoint union of graphs G1, G2. Then qG1∪G2

(z) = qG1
(z) · qG2

(z). Say pGi is the i-th power sum of the
roots of qG(z). Then, observe that for all i,

pG1∪G2
i = pG1

i + piG2.

On the other hand, observe that if H is connected, then

ind(H,G1 ∪G2) = ind(H,G1) + ind(H,G2),

but if it is disconnected say H = H1 ∪H2, then

ind(H,G1,∪G2) = ind(H1, G1) ind(H2, G2) + ind(H1, G2) ind(H2, G1).

It follows that for any power sum pi all coefficients aH corresponding to disconnected graphs H must be
zero. For a concrete example recall that in the previous section we showed that in the case of matching
polynomial for each i, pi corresponds to closed tree-like-walks which are connected subgraphs. Therefore, by
the above fact we can compute each pi exactly in time polynomial in n and ∆O(i).
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