Counting and Sampling Fall 2017

Lecture 16: Roots of the Matching Polynomial

Lecturer: Shayan Owveis Gharan November 22nd

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

Recall that for a graph G
n/2

pa(@) = (=1)Fmya 2k,
k=0
In this section we prove that the matching polynomial is real rooted and all of its roots are bounded from
above by 2¢/A — 1 assuming that the maximum degree of G is A.

16.1 Real Rootedness of Matching Polynomial

The following fact can be proven similar to the facts on ug(x) that we proved in lecture 12.
Fact 16.1. For any pair of disjoint graphs G, H
peun (7)) = pe () - pu (z).

For any graph G and any vertez u,

ILLG(:Z:) = xug_u(x) - Z ,UJG—u—v(x)-

v~YUu

For a graph G and a vertex u, the path-tree of G with respect to u, T = Tg(u) is defined as follows: For
every path in G that starts at u, 7" has a node and two paths are adjacent if their length differs by 1 and
one is a prefix of another. See the following figure for an example:
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We prove the following theorem due to Godsil and Gutman.

Theorem 16.2. Let G be a graph and u be a vertex of G. Also, let T = T(G,u) be the path tree of G with
respect to u. Then
pe(x)  pr(w)

MGfu(x) MTfu(x).
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Recall that this would directly imply that the largest root of pg(x) in absolute value is at most 2¢/A — 1.
This is because if the maximum degree of G is at most A so is the maximum degree of T(G, u). The above
theorem implies that the root of ug(x) are a subset of the roots of yip () (). And, we proved in the last

lecture that the largest root of pip(g . () is at most 2v/A — 1.

Proof. Firstly, observe that the theorem obviously holds when G is a tree because the path-tree of a tree is
itself. So, suppose (inductively) that the theorem holds for all subgraph so of G. Let us write H = G — u.
Then, using the first part of Fact 16.1 we have

pa(x) _ TUG—u(T) = s BG—u—v(T)
pr () por ()
,;L pir () ,;L (e (T) (16.1)

The last equality simply follows by the induction hypothesis. Here is the main observation: T'(H,v) =
T(G — wu,v) is isomorphic to the component of T(G,u) — u which contains the point u, v. Therefore,
MT(H,v)fv(U) _ MT(G,U)fufv(x)
K v) (%) HT(Gu)—u(T)

Note that the rest of the connected components of T'(G, u) —u are also connected components of T'(G, u) —u—v
so they will be cancelled out in the RHS (see second part of Fact 16.1).

So, we can rewrite the RHS of (16.1) as follows:

,U/T(H,v)—v(x) MT(G,u)—u—v (QL')
x — —_— L = - —_0
Z /JT(HA))(‘T) % #T(G,u)—u(x)

UG )= (T) = D pon HT(G ) —u—o (T) __HT(G) ()
BT (G ) —u () B (G ) —u ()

vu

This proves the theorem. O

Corollary 16.3. For any graph G the polynomial ug(z) divides pr(x).

Proof. Firstly, by the first part we can write

) pr—u ()

pr(x) = pe(z) o (@)

To prove the second part we need to show that the ratio pur—, () is divisible by pg—.(z). Firstly, note that
Ur—u(T) = pir(Gu)—u(z) is divisible by pip(G_y ) (2). This is because the latter is isomorphic to one of the
connected components of the former. Secondly, by induction pip(G—u,v) (%) is divisible by pug_y (). Putting
these together, we get pur_,(x) is divisible by pg—.(x). O

16.2 Estimating the Coefficients of the Matching Polynomial

Next, we discuss an algorithm to estimate the coefficient of z* of g (z) in time C°*) for some constant C' > 0.
Note that the naiive algorithm takes time n®®*) to count the number of k-matchings of G. Furthermore,
note that in the above application of estimating ug () for say # = 1 we need to know the first O(log(n/e))
coefficients exactly so we cannot use the FPRAS of Jerrum-Sinclair-Vigoda [JSV04].

The algorithm follows from the above lemma.
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Lemma 16.4. For any spanning tree T rooted at u, the polynomial

.’I,‘_lluT u ZA

is the generating polynomial of walks where A is the adjacency matriz of T, and AF
walks of length k started at u.

. 18 the number of closed

Proof. First of all in the last lecture we saw that for any tree T, up(z) = det(al — A). Therefore, it is

1
enough to prove the claim for the ratio x_lw We claim that

ZAZ,umk = (I - xA)’I:,%L
k

This is just because (I —zA)~! = > k>0 x®A*. So, it remains to show that

1det( 1] — ATfu)

det(z—17—A) (I =)y,

u,u”

Next, we use the following well-known facts: For any matrix A, adj(A) = A~!det(A) where adj(A) is the
adjoint of A is the matrix where (up to the sign) the i, j the entry is the determinant of the submatrix of A
where the i-th row and j-th column are removed. Therefore,

_ 1, _ _yadj(z~ — A)
T —2A)! = 1 1 4y — 1a—.
(I—z4) v @ ) v det(z—1I — A)

So, the u, u-th entry of both sides are equal. But the u,u-th entry of adj(x~1I — A) is exactly det(z~*I —
Ar_y). This completes the proof. O

Now observe that by the above theorem we can compute the coefficient of =% of “557&(;”) in time O(A)*.

All we need to do is to construct the path-tree about u of depth k (This needs time A¥. Then, we just count
the number of closed walks of length k started at u in that tree.

It remains to compute pg(z). We use the following simple observation that we leave as an exercise: For any

graph G,
Z pG—u(x) = pig(x).

Therefore, in time O(nAF) we can compute the coefficients of =1, ..., 2% in ZIEEB Now, we claim this is
enough to find the coefficients of z', ..., z* of ug(x).
Firstly, say 71, ..., 7, are the roots of ug(z). Then,

() 21 —j J
= = xr X T
O RPWETERD D ICLE DR
Therefore, the coefficient of 277 is the j-th power sum of the roots of ug(z). It follows by Newton identities

that this is enough to estimate the top k coefficients.

Lemma 16.5 (Newton Identities). For any polynomial Y., a;x* with roots r1,...,r, we can determine
the coefficients aq, ... ,ar from the power sums of the roots pg,p1,...,pr where for all k,

pk:ZTf.
i
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Proof. First observe that ay, ..., a, are elementary symmetric polynomials of the roots:
ag = 1,(11 = Zri,ag = ZIEZ‘.’EJ',...
i i<j

It turns out that ag,...,a; form a basis for all symmetric polynomials in 71,...,r, of degree k. Therefore,
given ay, . . ., a we can compute po, . . ., pr and vice versa. Newton identities give this translation in the case
of power sums:

P = €

p2 = e1p1 — 2eq,

p3 = e1p2 —eap1 + 3es,

ps = e1ps — eap2 + e3p1 — 4dey,

16.3 Estimating Low Order Coefficients of the Matching Polyno-
mial

For a graph G and (a small graph) H let ind(H, G) be the number of subsets S of G such that H is isomorphic
to G[S].

In this section we prove the following theorem due to Patel and Regts [PR17].

Theorem 16.6. Let G be a graph of mazimum degree. Consider a polynomial q(z) = z™ + > 1, e;z" "
where e; = ZHEQ,- Ay ind(H, G) is the coefficient of x™~*. Here G; is a family of graphs of size at most i.
Then, we can compute ey, ..., ey in time poly(n)ACKF),

Recall that the above theorem implies that we can estimate the polynomial

Fact 16.7. For any connected graph H and any graph G with maximum degree A we can exactly compute
ind(H,G) in time O(nAlVUDI,

Proof. Let k = |V (H)|. Fix a spanning tree subgraph T of H and define an ordering vy, vs, ..., vg of vertices
of H where for all ¢ > 2, v; is adjacent to one of the vertices vy,...,v;_1. First we guess the mapping of
v1, say up under the isomorphism. There are n possibilities. Next, we find the mapping of vy; since vy is
adjacent to w; it has to be mapped to one of the neighbors of u;. But, u; has at most A neighbors. So,
there are only A options. Say us is the map of vo. Now, vz is adjacent to vy or vy. Either way there are at
most A options to guess the map of vs, and so on. O

So, the main difficulty in computing e; is when we need to compute ind(H, G) for a disconnected graph H.
For example, if the polynomial ¢(.) corresponds to the matching polynomial or the independence polynomial
H corresponds to matchings or independent sets and it is disconnected.

First of all, using Newton identities instead of computing ej, ..., e it is enough to compute pq,...,pk.
Secondly, using the recursive definition of p;’s we can write each p; as

pi = Z ayind(H,G).

Heg;
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Here we do not discuss how to compute ay and we refer to [?] for details. But in the high-level apy’s are
just functions of Ag’s and can be computed recursively.

The main observation of [PR17] is that p;’s are additive properties in the following sense: Suppose we have
a disjoint union of graphs G1,G2. Then qo,u6,(2) = qa,(2) - qa,(2). Say p$ is the i-th power sum of the
roots of gg(2z). Then, observe that for all i,

pYe = pP 4 piGo.

On the other hand, observe that if H is connected, then
ind(H, Gy UGs) = ind(H,G1) + ind(H, G3),
but if it is disconnected say H = Hy U Hs, then
ind(H,G1,UG2) = ind(Hy, Gy) ind(Ha, G2) + ind(Hy, G2) ind(Ha, G1).

It follows that for any power sum p; all coefficients ay corresponding to disconnected graphs H must be
zero. For a concrete example recall that in the previous section we showed that in the case of matching
polynomial for each i, p; corresponds to closed tree-like-walks which are connected subgraphs. Therefore, by
the above fact we can compute each p; exactly in time polynomial in n and AC®,
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