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Recall that for a matrix A ∈ Rn×n the permanent of A is defined as follows:

per(A) =
∑
σ

n∏
i=1

Ai,σi .

In this lecture we will prove the following theorem.

Theorem 18.1 ([Gur06]). There is a polynomial time algorithm that for any nonnegative matrix A ∈ Rn×n
gives an en approximation of per(A).

The basic idea is to study the following polynomial:

p(z1, . . . , zn) =

n∏
i=1

n∑
j=1

Ai,jzj . (18.1)

Observe that the coefficient of z1, . . . , zn in the above polynomial is exactly per(A).

So, the main question that we would like to study in this lecture is the following:

Problem 18.2. Suppose p(z1, . . . , zn) is a multivariate polynomial with nonnegative coefficients and suppose
we can evaluate p exactly (or approximately) at any point z1, . . . , zn. For what families of polynomials can
we approximate the coefficient of a monomial

∏
i z
κi
i ?

Although here we will mainly focus on the case that κi = 1 for all i as we will discuss in future the techniques
naturally generalize to all monomials.

18.1 Estimating Coefficients of Multivariate Polynomials

Before studying the above question let us start with a univariate version of this question. Let p(z) be a
univariate polynomial and suppose we want to estimate the coefficient z, i.e.,

d

dz
p(z)|z=0.

We can simply use the definition of the derivative and write

p′(0) = lim
z→0

p(z)− p(0)

z
.

But if we only have access to multiplicative approximation of p the above approach fails. Instead, we use

the following approximation: infz>0
p(z)
z . We show that if p is a real rooted polynomial this gives a constant

factor approximation to p.
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Lemma 18.3. For any univariate real-rooted polynomial p(z) with non-negative coefficients we have

inf
z>0

p(z)

z
≥ p′(0) ≥ 1

e
inf
z>0

p(z)

z
.

Proof. The first inequality is obvious. So, we prove the second inequality. The main idea of the proof is that
a univariate real rooted polynomial with nonnegative coefficients is log-concave. First we prove this fact and
then we use it to prove the claim.

Let r1, . . . , rn be the roots of p where n is the degree of p. So, we can write

p(z) = (z − r1) . . . (z − rn).

So,

log p(z) =
∑
i

log(z = ri).

Note that since all coefficients of p are nonnegative all roots of p are nonpositive, i.e., ri ≤ 0 for all i.
Therefore, log(z − ri) is well-defined for all z > 0.

To show that p is log-concave we need to show that the above function is concave, or equivalently that its
second derivative is non-positive for all z ≥ 0. It follows that

log′′ p(z) =
∑
i

−1

(z − ri)2
.

The latter is non-positive since ri is a real number for all i.

Now, we use the above fact to lower bound p′(0). First of all note that for any concave function f and any
pair of points x, y we have

f(y) ≤ f(x) + (y − x)f ′(x).

Therefore, for all z > 0,

log p(z) ≤ log p(0) + z
p′(0)

p(0)
.

So, for all z > 0,

log
p(z)

z
≤ log p(0) + z

p′(0)

p(0)
− log z.

Therefore,

inf
z>0

log
p(z)

z
≤ inf
z>0

log p(0) + z
p′(0)

p(0)
− log z.

But the function in the RHS is convex in z. Therefore, we can differentiate to find its minimum. The

minimum is attained at z = p(0)
p′(0) . At such a z we have

inf
z>0

log p(0) + z
p′(0)

p(0)
− log z = log p(0) + 1− log

p(0)

p′(0)
= log p′(0) + 1.

Therefore,

−1 + inf
z>0

log
p(z)

z
≤ log p′(0).

Raising both sides to power e proves the claim.
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Note that the above lemma fails miserably if p is not real rooted; for example, if p = z2 + 1, then

inf
z>0

z2 + 1

z
= inf
z>0

z + 1/z ≥ 2,

whereas p′(0) = 0.

The main question that we would like to study in this lecture is a multivariate generalization of the above
lemma. So, we need to find the right generalization of real-rooted polynomials.

First of all, considering the above lemma a natural generalization to a multivariate polynomial p is as follows:

inf
z1,...,zn>0

p(z1, . . . , zn)

z1 . . . zn
≥ ∂n

∂z1 . . . ∂zn
p(z1, . . . , zn)|z1=···=zn=0 ≥ e−n inf

z1,...,zn>0

p(z1, . . . , zn)

z1 . . . zn
. (18.2)

The LHS obviously holds for any polynomial p with non-negative coefficients.

We would like to prove the the LHS inductively for a class of Ω-stable polynomials. Later on we will see
that it is enough to let Ω = H be upper half complex plane:

H = {c ∈ C : =c > 0}. (18.3)

Suppose that for any Ω-stable polynomial, of n − 1 variables (18.2) holds, and say we want to prove this
inequality for a polynomial p with n variables. Naturally, to use induction we need closure of Ω-stable
polynomials under differentiation. So, let

q(z1, . . . , zn−1) =
∂p(z1, . . . , zn)

∂zn

∣∣∣
zn=0

.

Then, by induction hypothesis,

∂n−1

∂z1 . . . ∂zn−1
q(z1, . . . , zn−1)

∣∣∣z1 = · · · = zn−1 = 0 ≥ e−(n−1) inf
z1,...,zn−1>0

q(z1, . . . , zn−1)

z1 . . . zn−1
(18.4)

Now observe that

∂np(z1, . . . , zn)

∂z1 . . . ∂zn

∣∣∣
z1=···=zn=0

=
∂n−1

∂z1 . . . ∂zn−1
q(z1, . . . , zn−1)

∣∣∣
z1=···=zn−1=0

.

So, by (18.4) to prove (18.2) it is enough to show that

inf
z1,...,zn−1>0

q(z1, . . . , zn−1)

z1 . . . , zn−1
≥ 1

e
· inf
z1,...,zn>0

p(z1, . . . , zn)

z1 . . . , zn
.

To prove the above it is enough to show that for any fixed z1, . . . , zn−1 > 0, there exists zn > 0 such that

q(z1, . . . , zn−1) ≥ 1

e
· inf
zn>0

p(z1, . . . , zn)

zn
. (18.5)

Let f(z) = p(z1, . . . , zn−1, z). Then, observe that z1, . . . , zn−1) = f ′(0). So, we can rewrite the above as
follows:

f ′(0) ≥ 1

e
· inf
z.>0

f(z)

z
.

This is exactly what we proved in Lemma 18.3. So, to prove the above all we need is that the polynomial
f(z) is a real rooted polynomial with nonnegative coefficients. Firstly, observe that f(z) has nonnegative
coefficients because all operations that we are doing on the original p is just differentiation and substitution
with positive reals.

Furthermore, as we discussed before, for any set Ω, Ω-stable polynomials are closed under substitution of
positive reals if positive reals are in the (closure of) Ω. So, here are the main properties that we need from
Ω:
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Differentiation: ∂p/∂z1,

Substitution: p(c, z2, . . . , zn) for c > 0,

Real-rootedness: Any univariate Ω-stable polynomial must be real rooted.

All these properties are satisfied by letting H be the upper-half complex plane as defined in (18.3). In
particular, substitution hold because real numbers are in the bound of H. Any univariate H-stable polynomial
with real coefficients is real rooted because the roots of any univariate polynomial come in conjugate pairs,
i.e., z is a root if an only if z is a root.

It is not hard to see that these polynomials are also closed under differentiation. Therefore, these polynomials
satisfy (18.5) and hence (18.2). The following theorem follows:

Theorem 18.4 ([Gur06]). For any H-stable polynomial p(z1, . . . , zn) with nonnegative coefficients,

inf
z1,...,zn>0

p(z1, . . . , zn)

z1 . . . zn
≥ ∂n

∂z1 . . . ∂zn
p(z1, . . . , zn)|z1=···=zn=0 ≥ e−n inf

z1,...,zn>0

p(z1, . . . , zn)

z1 . . . zn

18.2 Applications to Permanent

Now, we are ready to prove Theorem 18.1. Let p be the polynomial defined in (18.1). We claim that this
polynomial is H stale. Therefore, by above theorem

inf
z1,...,zn>0

∏n
i=1

∑n
j=1Ai,jzj

z1 . . . zn

gives an en approximation to per(A). To minimize the quantity in the infimum we need to convexify it.
The idea is to do a change of variables, zi → eyi . Note that since zi > 0, yi will be un-constrainted. So,
equivalently, we need to solve

inf
y1,...,yn

∏n
i=1

∑n
j=1Ai,je

yj

e
∑

j yj
.

We show that the quantity inside the infimum is log-convex. This is because

log

∏n
i=1

∑n
j=1Ai,je

yj

e
∑

j yj
=

n∑
i=1

log

n∑
j=1

Ai,je
yj

−∑
j

yj ,

is convex. To see why the above quantity is convex recall that log(a1e
x1+. . . ane

xn) is convex if a1, . . . , zn ≥ 0.

To finish the proof of Theorem 18.1 all we need to show is that the polynomial p is H-stable. Since
p(z1, . . . , zn) =

∏n
i=1

∑
j Ai,jzj , equivalently, it is enough to show that for all i,

∑
j Ai,jzj is H-stable.

We show that this is true if Ai,j ≥ 0 for all j.

To prove it suppose z1, . . . , zn ∈ H, i.e., they all have positive imaginary value. Therefore, any positive
combination of them also have positive imaginary value and it is nonzero. This completes the proof of
Theorem 18.1.

We remark that the above approximation to permanent is improved to 2n in a recent work of Gurvits and
Samorodnitsky [GS14] using extensions of the above techniques. It is long standing open problem to design
a deterministic 2o(n) approximation algorithm to permanent of non-negative matrices.



Lecture 18: Gurvits’s Technique: Deterministic ALG for Permanent 18-5

References

[GS14] Leonid Gurvits and Alex Samorodnitsky. Bounds on the permanent and some applications. In
FOCS, pages 90–99. IEEE Computer Society, 2014. 18-4

[Gur06] Leonid Gurvits. Hyperbolic polynomials approach to van der waerden/schrijver-valiant like conjec-
tures: Sharper bounds, simpler proofs and algorithmic applications. In STOC, STOC ’06, pages
417–426, 2006. 18-1, 18-4


	Estimating Coefficients of Multivariate Polynomials
	Applications to Permanent

