Counting and Sampling Fall 2017

Lecture 7: Advanced Coupling & Mixing Time via Eigenvalues
Lecturer: Shayan Oveis Gharan October 18

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this lecture first we discuss [HV05] to prove that the Glauber dynamics generates a random coloring
of a graph G with maximum degree A using ¢ > 1.764A colors in O(nlogn). Our main motivation is to
introduce additional more technical tools in coupling, beyond the path coupling technique. We prove the
following theorem

Theorem 7.1. Let o ~ 1.763... satisfies a = e'/®. If G is triangle free with maz degree A, and q >
Aa(l+€) and A > L log(n), then the heat-bath chain mizes in O(% log(n)) time.

The main idea behind the proof is a local uniformity property which holds with high probability at the
stationarity distribution. They show that for any triangle-free graph an easy lower bound on the number
of available colors for all vertices of graph which holds with high probability at stationarity. We use the
following notation throughout this section and the next one. For a coloring configuration X and a vertex v
let A(X,v) be the set of colors available to v. In other words, A(X,v) is all colors that are not appeared on
any neighbors of v in X.

Lemma 7.2. Let G be a triangle-free graph with mazimum degree A, € > 0 and ¢ > A+ 1. For a uniformly
random q-coloring of G, we have

P [Elv D JA(X, )| < g(e B9 — e)} < e,

Proof. Fix a vertex v. We condition on the colors of all vertices which are not neighbors of v. We call the
conditional information F. Observe that, conditioned on F, all neighbors of v are colored independently.
This is because they form an independent set (by the traingle-free assumption).

Let X, . be the random variable indicating that a neighbor u of v is colored with c.
|A(X,v)| = Z H(1 — Xew)-

Therefore,
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where the first inequality follows by the AM-GM inequality. Note that since X, ,’s are independent under
F, and A(X,v) is a Lipschitz function of X éus it follows that we have strong concentration on the above
expected bound. Therefore, the claim simply follows by McDiarmid’s inequality and a union bound.

Recall that McDiarmids inequality says that for any function f(Xi,...,X,) which is a Lipshitz function
with Lipshitz constant 1 of independent variables X7, ..., X, we have

2

P(lf(X1,..., %) —Ef(Xq,...,X,)| > ¢ <e /™

Equipped with the above lemma, let o &~ 1.763... be such that a = e!/®. Then, for ¢ = Aa, and for
A > Q(logn) we have

ge 81> gem1/e = L _ A
«

Therefore, if we take a slightly larger ¢, say ¢ = Aa(1 + ¢€), for A > 6% log n, we have that with probability
1 —1/n a random coloring X satisifies the following: For all v, |[A(X,v)| > A(1 + Q(e)).

7.1 Improved bound on Coupling

In this section step we show that if in a coloring X all vertices have strictly more than A available colors,
then we can couple X with any proper coloring Y such that the distance decreases in expectation. Note
that as a special case, this will also give us a proof of the ¢ > 2A + 1 bound from last lecture using ordinary
coupling.

We work with a slightly different Markov chain: We choose a random vertex v and we assign a color that is
not appeared in any of its neighbors uniformly at random, i.e., we work with the Heat-Bath chain as opposed
to the Metropolis rule.

Lemma 7.3. Let X be a proper coloring of G such that for some 0 < 8 < 1 and all vertices v,

A
A(X >
| ( 7’U>| — 1 _ /B
Then, for every Y € Q, there exists a coupling (X,Y) — (X', Y') such that

E[d(X’,Y")|X,Y] < (1 - B/n)d(X,Y).

Note that in particular, if ¢ > 2A 4 1, then, we can let 8 > Q(1/A), and the above lemma would simply
imply the mixing.

Proof. We use a coupling strategy similar to the one we considered last time. First of all, both XY
choose the same vertex v. For every color ¢ € A(X,v) N A(Y,v) both chains choose ¢ with probability
min{m, m} Note that in all other cases v will end up with different colors in X', Y. So, we don’t
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need to specify how to match the rest of the events. Now, observe that
_ L AKX ) NAY )|
Flee@Zarll = 1 AR o] 1A, o)
max{A(X,v), A(Y,v)} — [A(X,v) N A(Y, v)|
max{A(X,v), A(Y,v)}

{u~wv:ex(u) # ey (w)}

max{A(X,v), A(Y,v)}
1-p

< T‘{UNU:C)((U)#CY(U')}‘

Note that the second to last inequality can be justified as follows: Say |A(X,v)| > |A(Y,v)|. Then, for
every color in ¢ € A(X,v) \ (A(X,v) N A(Y,v)) there must be a vertex u that is a neighbor of v such that
cy (u) = ¢ # cx(u). The last inequality follows by the assumption of the lemma.

IN

Therefore, for every vertex v,

Flex (o) # evr (0] < 2 Hum s ext) #er i+ (12 1) Tex(0) # evo)].

Summing this over all v, we get

E[d(X',Y")|X,Y] < 1n_A5 (Ad(X,Y)) + (1 _ 1) d(X,Y) = (1 _ 5) d(X,Y)

n n

as desired. O

7.2 Coupling with stationarity

Using lemmas 7.2 and 7.3, to prove Theorem 7.1, it remains to show that for a coupling proof it is enough
to show that for most states X the distance decreases:

Theorem 7.4. Suppose that the distance function d(.,.) is integral. For ¢ > 0 and S C Q) suppose that for
al X € Q and Y € S there is a coupling (X,Y) — (X', Y") such that

E[d(X',Y")|X,Y] < (1 - e)d(X,Y).

ifw(S)>1 then

€
" 2diam(Q)’

<0 (log(diim(Q))) .

Proof. The main insight of the proof is that in a coupling proof we can always assume Xy = z for some state
x € Q and Yy ~ 7. Therefore, for all ¢,

P[Y; ¢ S]=1—n(95).

As usual if X =Y, then X’ = Y’. Otherwise, if Y; is not in S we just follow an independent coupling of
X4, Y;. Otherwise, we use the coupling promised in the statement of the theorem.

Now, observe that on the event that Y; ¢ S, we have no control on the d(X;11,Y:41) but we know in the
worst case it is at most diam(€2). Otherwise, we know the distance decreases. Therefore,

E[d(X',Y")] = E[dX Y)Y € S|P[Y € S| +E[d(X', Y)Y ¢ S]P[Y ¢ S]

< (1-€)d(X,Y) + diam(Q) - m < (1—¢/2)d(X,Y).
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where we used that d(X,Y) > 1 because X # Y and d(.,.) is integer. So, the chain mixes in time
O(+ log(diam(2))). O

This completes the proof of Theorem 7.1.

7.3 Mixing Time Using Eigenvalues

In this section we discuss a spectral theory of reversible Markov chains. Based on this theory in the next
lecture we introduce the path technology which will be one of the strongest tools to analyze Markov chains.

Note that we particular focus on reversible chains because every chain that we will use in our counting tasks
is reversible.

In this section we will treat the Markov kernel K as an operator. It turns out that K is not a symmetric
matrix (operator). But, it has real eigenvalues. There are several ways to see this. Perhaps, one of the
cleanest ways is to study K in a different linear product space, in which K is self-adjoint, i.e., symmetric.
The inner product space L?(7) is defined as follows:

(fr9) =D f@)g(z)m(x).

In particular, || f|| = />, f(x)?7(z).
Recall that for any vector/function f,
Kf(x) = K(y,x)f(y).
y

Although K is not a symmetric matrix, it is self-adjoint with respect the above inner product, i.e., for any
two functions f,g, (K f,g) = (f, Kg). This is because,

(Kf.g) =3 Kf@)g@)n(@) = 3 (Z K(x,y>f<y>> g()(x)
= 3 K(o.y) fy)g(a)(x)

= > K(.2)f@g@)r(y) = (f, Kg).

Now, we can apply the spectral theorem: K has orthonormal set of eigenvalues A1 > .-+ > X with
corresponding eigenvectors 11, ..., %)q| such that for all i,
K = i,

and for all 4 # j,

(i, ¥5) = 0.
It is not hard to see that we always have \; = 1 and ¥; = 1 because K is stochastic. Furthermore, also by
stochasticity, |A;| <1 for all i > 2.

We can translate the ergodicity properties of a Markov chain to this language. A (reversible) Markov chain
is irreducible iff Ay < 1, and a (reversible) markov chain is aperiodic, i.e., it is not bipartite, iff ;g > —1.
Let

A= max [Ai] = max{ A, | Anl}-
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Next, we show that if \* < 1, then we can bound the mixing time by log(n)/(1 — A*).

Firstly, it turns out that it is more convenient to measure the mixing time in Ly distance as opposed to the
total variation distance; this is because eigenvalues are “Ly properties” of the chain.

Definition 7.5 (Lp distance). For a kernel K, the L, distance of K'(x,.) to stationary is defined as

1/p
K(x, P
= (Z m(y) ‘W((y)y) -1 ) .

y
1 1 K'(z
HKt(x,.)—WHTV = §Z|Kt(x7y)—7r §Z7T ‘ ’
Yy Yy

-1

‘ K'(z,.)

p

Here, we are thinking of K'(x,y)/m(y) as a function of y.

Observe that

< (7.1)

Kt(x, 2

Y

1HW_

N =

2

So, if we prove that the Lo distance is small, it automatically implies that the total variation distance is
small. Note that if p = oo, then the distance of K*/7 from 1 is equal to max, |K*(z,y)/m(y) — 1].

Theorem 7.6. Let \* = max;s1 |\;| = max{\a, [A\n|}. Then,

Kt L /\*2t
T o — m(z)
Therefore, by (7.1),
o < B\E@) (=)
S S N

Note that the above bound this bound is ideal in applications where 7 is very far from a uniform distribution.
In these scenarios we want to start the chain from a state with large 7(z). This idea is usually called a warm
start.

Proof. First, observe that for any eigenvector i; we have

(Ze0) = 2 0 hnt) = N (o),

—~ ()

Note that by above, <K7i, 1) = 1. Therefore,

K! K!

7 -1= Z <7Tx,7l1i> ¥ = Z)\W%(mw
i>1

And,
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The only nontrivial step is the last inequality which holds because

Z"/}z Z ¢177>

where 1, is the indicator function of . O
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