
Simultaneous Approximations for Adversarial and Stochastic

Online Budgeted Allocation

Vahab S. Mirrokni ∗ Shayan Oveis Gharan‡† Morteza Zadimoghaddam ‡§

September 29, 2011

Abstract

Motivated by applications in online ad allocation, we study the problem of simultaneous
approximations for the adversarial and stochastic online budgeted allocation problem. This
problem consists of a bipartite graph G = (X,Y,E), where the nodes of Y along with their
corresponding capacities are known beforehand to the algorithm, and the nodes of X arrive
online. When a node of X arrives, its incident edges, and their respective weights are revealed,
and the algorithm can match it to a neighbor in Y . The objective is to maximize the weight of
the final matching, while respecting the capacities.

When nodes arrive in an adversarial order, the best competitive ratio is known to be 1−1/e,
and it can be achieved by the Ranking [16], and its generalizations (Balance [14, 19]). On
the other hand, if the nodes arrive through a random permutation, it is possible to achieve a
competitive ratio of 1 − ε [9]. In this paper we design algorithms that achieve a competitive
ratio better than 1− 1/e on average, while preserving a nearly optimal worst case competitive
ratio. Ideally, we want to achieve the best of both worlds, i.e, to design an algorithm with the
optimal competitive ratio in both the adversarial and random arrival models. We achieve this
for unweighted graphs, but show that it is not possible for weighted graphs.

In particular, for unweighted graphs, under some mild assumptions, we show that Bal-
ance achieves a competitive ratio of 1− ε in a random permutation model. For weighted graphs,
however, we show that this is not possible; we prove that no online algorithm that achieves an
approximation factor of 1− 1

e for the worst-case inputs may achieve an average approximation
factor better than 97.6% for random inputs. In light of this hardness result, we aim to design
algorithms with improved approximation ratios in the random arrival model while preserving
the competitive ratio of 1− 1

e in the worst case. To this end, we show the algorithm proposed
by [19] achieves a competitive ratio of 0.76 for the random arrival model, while having a 1− 1

e
ratio in the worst case.

1 Introduction

Online bipartite matching is a fundamental optimization problem with many applications in online
resource allocation, especially the online allocation of ads on the Internet. In this problem, we are
∗Google Research, 76 9th Ave, New York, NY 10011, Email:mirrokni@google.com.
†Department of Management Science and Engineering, Stanford University. Supported by a Stanford Graduate

Fellowship. Email:shayan@stanford.edu.
‡The work was done while the author was a summer intern at Microsoft Research New England.
§MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA. Email:morteza@mit.

edu.

1

mirrokni@google.com
shayan@stanford.edu
morteza@mit.edu
morteza@mit.edu

given a bipartite graph G = (X,Y,E) with a set of fixed nodes (or bins) Y , a set of online nodes
(or balls) X, and a set E of edges between them. Any fixed node (or bin) yj ∈ Y is associated with
a total weighted capacity (or budget) cj . Online nodes (or balls) xi ∈ X arrive online along with
their incident edges (xi, yj) ∈ E(G) and their weights wi,j . Upon the arrival of a node xi ∈ X, the
algorithm can assign xi to at most one bin yj ∈ Y where (xi, yj) ∈ E(G) and the total weight of
nodes assigned to yj does not exceed cj . The goal is to maximize the total weight of the allocation.
This problem is known as the AdWords problem, and it has been studied under the assumption
that maxi,j wi,j

minj cj
→ 0, in [19, 8, 9].

Under the most basic online model, known as the adversarial model, the online algorithm does
not know anything about the xi’s or E(G) beforehand. In this model, the seminal result of Karp,
Vazirani and Vazirani [16] gives an optimal online 1− 1

e -competitive algorithm to maximize the size
of the matching for unweighted graphs where wij = 1 for each (xi, yj) ∈ E(G). For weighted graphs,
Mehta et al. [19, 8] presented the first 1− 1

e -approximation algorithm to maximize the total weight
of the allocation for the AdWords problem and this result has been generalized to more general
weighted allocation problems [8, 12].

Other than the adversarial model, motivated by applications in online advertising, various
stochastic online models have been proposed for this problem. In such stochastic models, online
nodes xi ∈ X arrive in a random order. In other words, given a random permutation σ ∈ Sn, the
ball xσ(t) arrives at time time t for t = 1, 2, . . . , n. In this case, the seminal result of Devanur and
Hayes [9] gives a 1− ε-approximation for the problem if the number of balls n is a prior information
to the algorithm, and OPT

wij
≥ O(m logn

ε3
), where m := |Y |. This result has been generalized and

improved in several followup works [11, 1, 24], and its related models like the iid models with known
or unknown distributions have been studied extensively [13, 4, 20, 10]1. These stochastic models
are particularly motivated in the context of online ad allocation. In this context, online nodes
correspond to page-views, search queries, or online requests for ads. In these settings, the incoming
traffic of page-views may be predicted with a reasonable precision using a vast amount of historical
data.

All these stochastic models and their algorithms are useful only if the incoming traffic of on-
line nodes (e.g. page-views) can be predicted with a reasonably good precision. In other words,
such algorithms may rely heavily on a precise forecast of the online traffic patterns, and may not
react quickly to sudden changes in the traffic. In fact, the slow reaction to such traffic spikes
impose a serious limitation in the real-world use of stochastic algorithms in practical applications.
This is a common issue in applying stochastic optimization techniques for online resource alloca-
tion problems (see e.g., [25]). Various methodologies such as robust or control-based stochastic
optimization [5, 6, 25, 23] have been applied to alleviate this drawback. In this paper, we study
this problem from a more idealistic perspective and aim to design algorithms that simultaneously
achieve optimal approximation ratios for both the adversarial and stochastic models. Our goal is to
design algorithms that achieve good performance ratios both in the worst case and in the average
case.

Our Contributions and Techniques. In this paper, we study simultaneous approximation
algorithms for the adversarial and stochastic models for the online budgeted allocation problem.
Our goal is to design algorithms that achieve a competitive ratio strictly better than 1 − 1/e on
average, while preserving a nearly optimal worst case competitive ratio. Ideally, we want to achieve

1In the iid stochastic models, online nodes are drawn iid from a known or an unknown distribution.

2

the best of both worlds, i.e, to design an algorithm with the optimal competitive ratio in both the
adversarial and random arrival models. Toward this goal, we show that this can be achieved for
unweighted graphs, but not for weighted graphs. Nevertheless, we present improved approximation
algorithms for weighted graphs.

For weighted graphs we prove that no algorithm can simultaneously achieve nearly optimal
competitive ratios on both the adversarial and random arrival models. In particular, we show that
no online algorithm that achieve an approximation factor of 1 − 1

e for the worst-case inputs may
achieve an average approximation factor better than 97.6% for the random inputs (See Corollary
5.3). More generally, we show that any algorithm achieving an approximation factor of 1 − ε in
the stochastic model may not achieve a competitive ratio better than 4

√
ε in the adversarial model

(See Theorem 5.1). In light of this hardness result, we aim to design algorithms with improved
approximation ratios in the random arrival model while preserving the competitive ratio of 1 − 1

e
in the worst case. To this end, we show an almost tight analysis of the algorithm proposed in
[19] in the random arrival model. In particular, we show its competitive ratio is at least 0.76, and
is no more than 0.81 (See Theorem 3.1, and Lemma 5.5). Combining this with the worst-case
ratio analysis of Mehta et al. [19] we obtain an algorithm with the competitive ratio of 0.76 for
the random arrival model, while having a 1 − 1

e ratio in the worst case. It is worth noting that
unlike the result of [9] we do not assume any prior knowledge of the number of balls is given to the
algorithm.

On the other hand, for unweighted graphs, under some mild assumptions, we show a general-
ization an algorithm in [14] achieves a competitive ratio of 1− ε in the random arrival model (See
Theorem 4.1). Combining this with the worst-case ratio analysis of [14, 19], we obtain an algo-
rithm with the competitive ratio of 1− ε in the random arrival model, while preserving the optimal
competitive ratio of 1 − 1

e in the adversarial model. Previously, a similar result was known for a
more restricted stochastic model where all bins have equal capacities [21]. For the case of small de-
grees, an upper bound of 0.82 is known for the approximation ratio of any algorithm for the online
stochastic matching problem (even for the under the iid model with known distributions) [20].

Our proofs consist of three main steps. (i) The main technique is to define an appropriate
potential function as an indefinite integral of a scoring function, and interpret the online algorithms
as a greedy algorithm acting to improve these potential functions by optimizing the corresponding
scoring functions (see Section 2); these potential functions may prove useful elsewhere. (ii) The
second important component of the proof is to write a factor-revealing mathematical program
based on the potential function and its changes. (iii) Finally, the last part of the proofs involve
changing the factor-revealing programs to a constant-size LP and solve it using a solver (in the
weighted case), or analyzing the mathematical program explicitly using an intermediary algorithm
with an oracle access to the optimum (in the unweighted case). The third step of the proof in
the weighted case is inspired by the technique employed by Mahdian and Yan [18] for unweighted
graphs, however, the set of mathematical programs we used are quite different from theirs.

All of our results hold under two mild assumptions: (i) large capacities (i.e., maxi,j wi,j
minj cj

→ 0),
and (ii) a mild lower bound on the value of OPT: the aggregate sum of the largest weight ball
assigned to each bin by the optimum is much smaller than OPT, i.e.,

∑
j maxi:opt(i)=j wi,j � OPT.

Both of these assumptions are valid in real-world applications of this problem in online advertising.
The first assumption also appears in the AdWords problem, and the second assumption aims to
get rid of some degenerate cases in which the optimum solution is very small.

3

Other Related Work. For unweighted graphs, it has been recently observed that the Karp-
Vazirani-Vazirani 1− 1

e -competitive algorithm for the adversarial model also achieves an improved
approximation ratio of 0.70 in the random arrival model [15, 18]. This holds even without the
assumption of large degrees. It is known that without this assumption, one cannot achieve an
approximation factor better than 0.82 for this problem (even in the case of iid with known distri-
butions) [20]. This is in contrast with our result for unweighted graphs with large degrees.

Online budgeted allocation and its generalizations appear in two main categories of online
advertising: AdWords (AW) problem [19, 8, 9], and the Display Ads Allocation (DA) problem [12,
11, 1, 24]. In both of these problems, the publisher must assign online page-views (or impressions) to
an inventory of ads, optimizing efficiency or revenue of the allocation while respecting pre-specified
contracts. In the DA problem, given a set of m advertisers with a set Sj of eligible impressions
and demand of at most n(j) impressions, the publisher must allocate a set of n impressions that
arrive online. Each impression i has value wij ≥ 0 for advertiser j. The goal of the publisher is
to assign each impression to one advertiser maximizing the value of all the assigned impressions.
The adversarial online DA problem has been studied in [12] in which the authors present a 1− 1

e -
competitive algorithm for the DA problem under a free disposal assumption for graphs of large
degrees. This result generalizes the 1 − 1

e -approximation algorithm by Mehta et al [19] and by
Buchbinder et. al. [8]. Following a training-based dual algorithm by Devanur and Hayes [9] for
the AW problem, training-based (1 − ε)-competitive algorithms have been developed for the DA
problem and its generalization to packing linear programs [11, 24, 1] including the DA problem.
These papers develop a (1 − ε)-competitive algorithm for online stochastic packing problems in
which OPT

wij
≥ O(m logn

ε3
) (or OPT

wij
≥ O(m logn

ε2
) applying the technique of [1]) and the demand of

each advertiser is large, in the random-order and the i.i.d model. Although studying a similar set
of problems, none of the above papers study the simultaneous approximations for adversarial and
stochastic models, and the dual-based 1 − ε-competitive algorithms for the stochastic variants do
not provide a bounded competitive ratio in the adversarial model.

Dealing with traffic spikes and inaccuracy in forecasting the traffic patterns is a central issue in
operations research and stochastic optimization. Various methodologies such as robust or control-
based stochastic optimization [5, 6, 25, 23] have been proposed. These techniques either try to
deal with a larger family of stochastic models at once [5, 6, 25], try to handle a large class of
demand matrices at the same time [25, 2, 3], or aim to design asymptotically optimal algorithms
that re-act more adaptively to traffic spikes [23]. These methods have been applied in particular
for traffic engineering [25] and inter-domain routing [2, 3]. Although dealing with similar issues,
our approach and results are quite different from the approaches taken in these papers. Finally, an
interesting related model for combining stochastic and online solutions for the Adwords problem is
considered in [17], however their approach does not give an improved approximation algorithm for
the iid model.

1.1 Notation

Let G(X,Y,E) be a (weighted) bipartite graph, where X := {x1, . . . , xn} is the set of online nodes
(or balls), and Y := {y1, . . . , ym} is the set of fixed nodes (or bins). For each pair of nodes xi, yj , wi,j
represents the weight of edge (xi, yj). Each online node yj is associated with a weighted capacity
(or budget) cj > 0. The online matching problem is as follows: first a permutation σ ∈ Sn is chosen
(the distribution may be chosen according to any unknown distribution): at times t = 1, 2, . . . , n,
the ball xσ(t) arrives and its incident edges are revealed to the algorithm. The algorithm can assign

4

this ball to at most one of the bins that are adjacent to it. The total weight of balls assigned to
each bin yj may not exceed its weighted capacity cj . The objective is to maximize the weight of
the final matching.

Given the graph G, the optimum offline solution is the maximum weighted bipartite matching
in G respecting the weighted capacities, i.e, the total weight of balls assigned to to a bin yj may
not exceed cj . For each ball xi, let opt(i) denote the index of the bin that xi is being matched to
in the optimum solution, and alg(i) be the index of the bin that xi is matched to in the algorithm.
Also for each node yj ∈ Y , let oj be the weighted degree of yj in the optimum solution. Observe
that for each j, we have 0 ≤ oj ≤ cj . By definition, we have the size of the optimum solution is
OPT =

∑
j oj . Throughout the paper ,we use OPT as the total weight of the optimal solution, and

ALG as the total weight of the output of the online algorithm.
Throughout this paper, we make the assumption that the weights of the edges are small com-

pared to the capacities, i.e., maxi,j wi,j is small compared to mini cj . Also we assume that the
aggregate sum of the largest weight ball assigned to each bin by the optimum is much smaller than
OPT i.e.,

∑
j maxi:opt(i)=j wi,j � OPT. In particular, let

γ ≥ max

max
i,j

wi,j
cj

,

√∑
j maxi:opt(i)=j wi,j

OPT

 (1)

the guarantees of our algorithm are provided for the case when γ → 0. For justifications behind
these mild assumptions, see the discussion in the introduction. Throughout this paper, wlog we
assume that the optimum matches all of the balls, otherwise we can throw out the unmatched ball
and it can only make the competitive ratio of the algorithm worse.

2 Main Ideas

In this section, we describe the main ideas of the proof. We start by defining the algorithms as
deterministic greedy algorithms optimizing specific scoring functions. We also define a concave
potential function as an indefinite integral of the scoring function, and show that a “good” greedy
algorithm must try to maximize the potential function. In Section 2.1, we show that if σ is chosen
uniformly at random, then we can lower-bound the increase of the potential in an ε fraction of
process; finally in Section 2.2 we write a factor-revealing mathematical program based on the
potential function and its changes.

We consider a class of deterministic greedy algorithms that assign each incoming ball xσ(t) based
on a “scoring function” defined over the bins. Roughly speaking, the scoring function characterizes
the “quality” of a bin, and a larger score implies a better-quality bin. In this paper, we assume
that the score is independent of the particular labeling of the bins, and it is a non-negative, non-
increasing function of the amount that is saturated so far (roughly speaking, these algorithms try to
prevent over-saturating a bin when the rest are almost empty). Throughout this paper, we assume
that the scoring function and its derivative are bounded (i.e., |f ′(.)|, |f(.)| ≤ 1). However, all of
our arguments in this section can also be applied to the more general scoring functions that may
even depend on the overall capacity ci of the bins. At a particular time t, let rj(t) represent the
fraction of the capacity of the bin yj that is saturated so far. Let f(rj(t)) be the score of bin yj at
time t. When the ball xσ(t+1) arrives, the greedy algorithm simply computes the score of all of the
bins and assigns xσ(t+1) to the bin yj maximizing the product of wσ(t+1),j and f(rj(t)).

5

Kalyanasundaram, and Pruhs [14] designed the algorithm Balance using the scoring function
fu(rj(t)) := 1− rj(t) (i.e., the algorithm simply assigns an in-coming ball to the neighbor with the
smallest ratio if it is less than 1, and drops the ball otherwise). They show that for any unweighted
graph G, it achieves a 1 − 1/e competitive ratio against any adversarially chosen permutation σ.
Mehta et al. [19] generalized this algorithm to weighted graphs by defining the scoring function
fw(rj(t)) = (1− e1−rj(t)). Their algorithm, denoted by Weighted-Balance , achieves a competitive
ratio of 1 − 1/e for the AdWords problem in the adversarial model. We note that both of the
algorithms never over-saturate bins (i.e., 0 ≤ rj(t) ≤ 1). Other scoring functions have also been
considered for other variants of the problem (see e.g. [17, 12]). Intuitively, these scoring functions
are chosen to ensure that the algorithm assigns the balls as close to opt(xσ(t)) as possible. When
the permutation is chosen adversarially, any scoring function would fail to perfectly monitor the
optimum assignment (as discussed before, no online algorithm can achieve a competitive ratio
better than 1− 1/e in the adversarial model). However, we hope that when σ is chosen uniformly
at random, for any adversarially chosen graph G, the algorithm can almost capture the optimum
assignment. In the following we try to formalize this observation.

We measure the performance of the algorithm at time t by assigning a potential function that
in some sense compares the quality of the overall decisions of the algorithm w.r.t. the optimum.
Assuming the optimum solution saturates all of the bins (i.e., cj = oj), the potential function
achieves its maximum at the end of the algorithm if the balls are assigned exactly according to the
optimum. The closer the value of the potential function to the optimum means a better assignment
of the balls. We define the potential function as the weighted sum of the indefinite integral of the
scoring functions of the bins chosen by the algorithm:

φ(t) :=
∑
j

cj

∫ rj(t)

r=0
f(r)dr =

∑
j

cjF (rj(t)).

In particular, we use the following potential function for the Balance and the Weighted-Balance al-
gorithms respectively:

φu(t) : = −1
2

∑
j

cj(1− rj(t))2 (2)

φw(t) : =
∑
j

cj(rj − erj(t)−1). (3)

Observe that since the scoring function is a non-increasing function of the ratios, its antiderivative
F (.) will be a concave function of the ratios. Moreover, since it is always non-negative the value
of the potential function never decreases in the running time of the algorithm. By this definition
the greedy algorithm can be seen as an online gradient descent algorithm which tries to maximize
a concave potential function; for each arriving ball xσ(t), it assigns the ball to the bin that makes
the largest local increase in the function.

To analyze the performance of the algorithm we lower-bound the increase in the value of the
potential function based on the optimum matching. This allows us to show that the final value
of the potential function achieved by the algorithm is close to its value in the optimum, thus
bound the competitive ratio of the algorithm. In the next section, we use the fact that σ is chosen
randomly to lower-bound the increase in εn steps. Finally, in section 2.2 we write a factor-revealing
mathematical program to compute the competitive ratio of the greedy algorithm.

6

2.1 Lower bounding the increase in the potential function

In this part, we use the randomness defined on the permutation σ to argue that with high probability
the value of the potential function must have a significant increase during the run of the algorithm.
We define a particular event E corresponding to event that the arrival process of the balls is
approximately close to its expectation. To show that E occurs with high probability, we only
consider the distribution of arriving balls at 1/ε equally distance times; as a result we can mainly
monitor the amount of increase in the potential function at these time intervals. For a carefully
chosen 0 < ε < 1, we divide the process into 1/ε slabs such that the kth slab includes the [knε +
1, (k + 1)nε] balls. Assuming σ is chosen uniformly at random, we show a concentration bound on
the weight of the balls arriving in the kth slab. Using that we lower bound φ((k + 1)nε)− φ(knε)
in Lemma 2.2.

First we use the randomness to determine the weight of the balls arriving in the kth slab. Let
Ii,k be the indicator random variable indicating that the ith ball will arrive in the kth slab. Observe
that for any k, the indicators Ii,k are negatively correlated: knowing that Ii,k = 1 can only decrease
the probability of the occurrence of the other balls in the kth slab (i.e., P

[
Ii,k|Ii′,k = 1

]
≤ P [Ii,k]).

Define Nj,k :=
∑

i:opt(i)=j wi,jIi,k as the sum of the weight of the balls that are matched to the jth

bin in the optimum and arrive in the kth slab. It is easy to see that Eσ [Nj,k] = ε·oj , moreover, since
it is a linear combination of negatively correlated random variables it will be concentrated around
its mean. Define h(k) :=

∑
j |Nj,k − εoj |. The following Lemma shows that h(k) is very close to

zero for all time slabs k with high probability. Intuitively, this implies that with high probability
the balls from each slab are assigned similarly in the optimum solution.

Lemma 2.1. Let h(k) :=
∑

j |Nj,k − εoj |. Then Pσ

[
∀k, h(k) ≤ 5γ

εδ OPT
]
≥ 1− δ.

Proof. It suffices to upper-bound P
[
h(k) > 5γ

εδ OPT
]
≤ δε; the lemma can then be proved by a

simple application of the union bound. First we use Azuma-Hoeffding concentration bound to
compute E [|Nj,k − εoj |]; then we simply apply the Markov inequality to upper-bound h(k).

Let Wj :=
√

2
∑

i:opt(i)=j w
2
i,j , for any j, k, we show E [|Nj,k − εoj |] ≤ 3Wj . Since Nj,k is a linear

combination of negatively correlated random variables Ii,k for opt(i) = j, and E [Nj,k] = ε · oj by
a generalization of the Azuma Hoeffding bound to negatively correlated random variables [22] we
have

E [|Nj,k − ε · oj |] ≤ Wj

{ ∞∑
l=0

P [|Nj,k −E [Nj,k] | ≥ l ·Wj]

}
≤Wj

1 + 2
∞∑
l=1

e
−

l2W2
j

2
P
i:opt(i)=j w

2
i,opt(i)

≤ Wj

(
1 + 2

∞∑
l=1

e−l
2

)
≤ 3Wj . (4)

Let wmax(j) := maxi:opt(i)=j wi,j . Since W 2
j as twice the sum of the square of the weights assigned

to the jth bin is a convex function we can write Wj ≤
√

2wmax(j)oj . Therefore, by the linearity of

7

expectation we have

E [h(k)] ≤
∑
j

3
√

2wmax(j)oj ≤ 5
∑
j

wmax(j)/γ + γoj
2

≤ 5{ 1
2γ

∑
j

wmax(j) +
γ

2
OPT} ≤ 5γOPT,

where the last inequality follows from assumption (1). Since h(k) is a non-negative random variable,
by the Markov inequality we get P

[
h(k) > 5γ

εδ OPT
]
≤ δε. The lemma simply follows by applying

this inequality for all k ∈ {0, . . . , 1/ε} and using the union bound.

Let E be the event that ∀k, h(k) ≤ 5γ
εδ OPT. The next lemma shows that conditioned on E , one

can lower-bound the increase in the potential function in any slab (i.e., φ((k + 1)nε) − φ(knε) for
any 0 ≤ k < 1/ε):

Lemma 2.2. Conditioned on E, for any 0 ≤ k < 1/ε, t0 = knε, and t1 = (k + 1)nε we have

φ(t1)− φ(t0) ≥ ε
∑
j

{ojf(rj(t1))} −
6
√
γ

εδ
OPT.

Proof. First we simply compute the increase of the potential function at time t + 1, for some
t0 ≤ t < t1. Then, we lower-bound the increase using the monotonicity of the scoring function f(.).
Finally, we condition on E and lower-bound the final expression in terms of OPT. Let σ(t+ 1) = i,
and assume the algorithm assigns xi to the jth bin (i.e., alg(i) = j); since the algorithm maximizes
wi,jf(rj(t)) we can lower-bound the increase of the potential function based on the optimum. First
using the mean value theorem of the calculus we have:

cj

{
F (rj(t) +

wi,j
cj

)− F (rj(t)
}

= cj

{
wi,j
cj

f(rj(t)) +
1
2

(
wi,j
cj

)2

f ′(r∗)

}
,

for some r∗ ∈ [rj(t), rj(t) + wi,j/cj]. Since the derivative of f(.) is bounded (i.e., |f ′(r)| ≤ 1 for all
r ∈ [0, 1]), we get

φ(t+ 1)− φ(t) = cj

{
F (rj(t) +

wi,j
cj

)− F (rj(t)
}
≥ wi,opt(i)f(ropt(i)(t))− wi,j

wi,j
cj

≥ wi,opt(i)f(ropt(i)(t1))− γwi,j , (5)

where the first inequality follows by the greedy decision chosen by the algorithm wi,jf(rj(t)) ≥
wi,opt(i)f(ropt(i)(t)), and the last inequality follows by assumption (1).

Consider a single run of the algorithm; wlog we assume that ALG ≤ OPT. We can monitor the
amount of increase in the potential function in the kth slab as follows:

φ(t1)− φ(t0) ≥
t1−1∑
t=t0

{
wσ(t),opt(σ(t))f(ropt(σ(t))(t))− γwσ(t),alg(σ(t))

}
≥

∑
j

∑
t0≤t<t1,opt(σ(t))=j

f(rj(t1))wσ(t),j − γOPT

=
∑
j

f(rj(t1))Nj,k − γOPT

8

where the second inequality follows by the fact that f(.) is a non-increasing function of the ratio,
and

∑
t0≤t<t1 wσ(t),alg(σ(t)) ≤ ALG ≤ OPT, and the equality follows from the definition of Nj,k.

By lemma 2.1 we know Nj,k is highly concentrated around ε · oj . Conditioned on E , we have
h(k) ≤ 5γ

εδOPT , thus:

φ(t1)− φ(t0) ≥ ε
∑
j

f(rj(t1))oj −
∑
j

|Nj,k − εoj | − γOPT ≥ ε
∑
j

f(rj(t1))oj − h(k)− γOPT

≥ ε
∑
j

f(rj(t1))oj −
6γ
εδ

OPT

where the first inequality follows by the assumption |f(.)| ≤ 1.

2.2 Description of the factor-revealing Mathematical Program

In this section we propose a factor-revealing mathematical program that lower-bounds the com-
petitive ratio of the algorithms Balance and Weighted-Balance . In Sections 3, and 4 we derive
a relaxation of the program and analyze that relaxation. Interestingly, the main non-trivial con-
straints follows from the lower-bounds obtained for the amount of increase in the potential function
in Lemma 2.2.

The details of the program is described in MP(1). It is worth noting that the last inequality in
this program follows from the monotonicity property of the ratios. In other words, we assume the
ratio function rj(t) is a monotonically increasing function w.r.t. to t.

MP(1) minimize 1
OPT

∑
j min{rj(n), 1}cj

s.t.
∑

j cjF (rj(t)) = φ(t) ∀t ∈ [n],
ε
∑

j ojf(rj((k + 1)nε))− 6γ
εδ OPT ≤ φ((k + 1)nε)− φ(knε) ∀k ∈ [1ε − 1],

oj ≤ cj ∀j ∈ [m],∑
j oj = OPT,

rj(t) ≤ rj(t+ 1) ∀j, t ∈ [n− 1].

The following proposition summarizes our arguments and shows that the program MP(1) is a
relaxation for any deterministic greedy algorithm that works based on a scoring function. It is
worth noting that the whole argument still follows when the scoring function is not necessarily
non-negative; we state the proposition in this general form.

Proposition 2.3. Let f be any non-increasing, scoring function of the ratios rj(t) of the bins such
that |f(r)|, |f ′(r)| ≤ 1 for the range of ratios that may be encountered in the running time of the
algorithm. For any (weighted) graph G = (X,Y), and ε > 0, with probability at least 1− δ, MP(1)
is a factor-revealing mathematical program for the greedy deterministic algorithm that uses scoring
function f(.).

Since the potential function F (.) is a concave function, this program may not be solvable in
polynomial time. In section 4, we show that after adding a new constraint it is possible to analyze
it analytically for the unweighted graphs. To deal with this issue for the weighted graphs, we write
a constant-size LP relaxation of the program that lower-bounds the optimum solution (after losing

9

a small error). Finally, we solve the constant-size LP by an LP solver, and thus obtain a nearly
tight bound for the competitive ratio of the Weighted-Balance (see section 3 for more details).

In the rest of this section, we write a simpler mathematical program that will be used later
in section 3 for analyzing the Weighted-Balance algorithm. In particular, we simplify the criti-
cal constraint that measures the increase in the potential function by further removing the term
−6γ
εδ OPT. Moreover, since Weighted-Balance never over-saturates bins we can also add the con-

straint rj(n) ≤ 1 to both MP(1) and MP(2) and still have a relaxation of Weighted-Balance .

MP(2) minimize
∑

j rj(n)cj
s.t.

∑
j cj(rj(t)− erj(t)−1) = φ(t) ∀t ∈ [n],

ε
∑

j oj(1− erj((k+1)nε)−1) ≤ φ((k + 1)nε)− φ(knε) ∀k ∈ [1ε],
oj ≤ cj ∀j ∈ [m],∑

j oj = 1.
rj(t) ≤ rj(t+ 1) ∀j, t ∈ [n− 1],
rj(n) ≤ 1 ∀j ∈ [m].

In the next Lemma we show that the optimum value of MP(2) is at least (1−
√

12γ
ε2δ

) of MP(1):

Lemma 2.4. For any weighted graph G, we have MP(1) ≥ (1 − α) min{1,MP(2)}, where α :=√
12γ
ε2δ

.

Proof. Wlog we can replace OPT = 1 in MP(1). Let s1 := {rj(t), cj , oj , φ(t)} be a feasible solution
of the MP(1). If

∑
j rj(n)cj ≥ (1−α) we are done; otherwise we construct a feasible solution s2 of

the MP(2) such that the value of s1 is at least (1− α) of the value of s2. Then the lemma simply
follows from the fact that the cost of the value of the optimum solution of MP(1) is at least of
(1− α) of the value of the optimum of MP(2).

Define s2 := {rj(t), cj/(1− α), oj , φ(t)/(1− α)}. Trivially, s2 satisfies all except (possibly) the
second constraint of MP(2). Moreover, the value of s1 is (1− α) times the value of s2. It remains
to prove the feasibility of the second constraint of MP(2), i.e.,

ε(1− α)
∑
j

oj(1− erj((k+1)nε)−1) ≤ φ((k + 1)nε)− φ(knε),

for all k ∈ [1/ε]. Since s1 is a feasible solution of MP(1) we have

φ((k + 1)nε)− φ(knε) ≥ ε
∑
j

oj(1− erj((k+1)nε)−1)− ε

2
α2

≥ ε
∑
j

oj(1− erj((k+1)nε)−1)

{
1−

ε
2α

2

ε
2

∑
j oj(1− rj((k + 1)nε)

}
, (6)

where the last inequality follows from the assumption that 0 ≤ rj(t) ≤ 1, and the fact that
1− ex−1 ≥ 1

2(1− x) for x ∈ [0, 1]. On the other hand, since
∑

j rj(n)cj < 1− α, we can write:∑
j

oj(1− rj((k + 1)nε)) ≥ 1−
∑
j

cjrj(n) ≥ α

The lemma simply follows from putting the above inequality together with equation (6).

10

3 The Competitive Ratio of Weighted-Balance

In this section, we lower-bound the competitive ratio of the WEIGHED-BALANCE algorithm in
the random arrival model. More specifically, we prove the following theorem:

Theorem 3.1. For any weighted graph G = (X,Y), and δ > 0, with probability 1−δ, the competitive
ratio of the Weighted-Balance algorithm in the random arrival model is at least
0.76(1−O(

√
γ/δ)).

To prove the bound in this theorem, we write a constant-size linear programming relaxation of
the problem based on MP(2) and solve the problem by an LP solver. The main two difficulties
with solving program MP(2) are as follows: first, as we discussed in section 2.2, MP(2) is not a
convex program; second, the size of the program (i.e., the number of variables and constraints)
is a function of the size of the graph G. The main idea follows from a simple observation that
the main inequalities in MP(2), those lower-bounding the increase in the potential function, are
indeed lower-bounding the increase in the potential function only at constant (i.e., 1/ε) number of
times. Hence, we do not need to keep track of the ratios and the potential function for all t ∈ [n];
instead it suffices to monitor these values at 1/ε critical times (i.e., at times knε for k ∈ [1/ε]), for
a constant ε. Even in those critical times it suffices to approximately monitor the ratios of the bins
by discretizing the ratios into 1/ε slabs.

For any integers 0 ≤ i < 1/ε, 0 ≤ k ≤ 1/ε, let ci,k be the sum of the capacities of the bins
of ratio rj(knε) ∈ [iε, (i + 1)ε), and oi,k be the sum of the weighted degree of the bins of ratio
rj(knε) ∈ [iε, (i+ 1)ε) in the optimum solution, i.e.,

ci,k :=
∑

j:rj(knε)∈[iε,(i+1)ε)

cj , oi,k :=
∑

j:rj(knε)∈[iε,(i+1)ε)

oj . (7)

Now we are ready to describe the constant-size LP relaxation of MP(2). We write the LP relaxation
in terms of the new variables ci,k, oi,k. In particular, instead of writing the constraints in terms of
the actual ratios of the bins, we round down (or round up) the ratios to the nearest multiple of ε
such that the constraint remains satisfied. The details are described in LP(1).

LP(1) minimize 1
1−1/e

{
φ(1

ε)−
∑1/ε−1

i=0 ci,k(iε/e− eiε−1)
}

s.t.
∑1/ε−1

i=0 ci,k(iε− eiε−1) ≤ φ(k) ∀k ∈ [1ε]∑1/ε−1
i=0 εoi,k+1(1− e(i+1)ε−1) ≥ φ(k + 1)− φ(k) ∀k ∈ [1ε − 1]

ci,k ≥ oi,k ∀i ∈ [1ε − 1], k ∈ [1ε]∑1/ε−1
i=0 oi,k = 1 ∀k ∈ [1ε] :∑1/ε−1
l=i cl,k+1 ≥

∑1/ε−1
l=i cl,k ∀i ∈ [1ε − 1], k ∈ [1ε − 1]

In the next Lemma, we show that the LP(1) is a linear programming relaxation of the program
MP(2):

Lemma 3.2. The optimum value of LP(1) lower-bounds the optimum value of MP(2).

Proof. We show that for any feasible solution s := {rj(t), cj , oj , φ(t)} of MP(2) we can construct
a feasible solution s′ = {c′i,k, o′i,k, φ′(k)} for LP(1) with a smaller objective value. In particular,
we construct s′ simply by using equation (7), and letting φ′(k) := φ(knε). First we show that all

11

constraints of LP(1) are satisfied by s′, then we show that the value of LP(1) for s′ is smaller than
the value of MP(2) for s.

The first equation of LP(1) simply follows from rounding down the ratios in the first equation
of MP(2) to the nearest multiple of ε. The equation remains satisfied by the fact that the potential
function φ(.) is increasing in the ratios (i.e., Fw(r) = r− er−1 is increasing in r ∈ [0, 1]). Similarly,
the second equation of LP(1) follows from rounding up the ratios in the second equation of MP(2),
and noting that the scoring function is decreasing in the ratios (i.e., fw(r) = 1− er−1 is decreasing
for r ∈ [0, 1]). The third and fourth equations can be derived from the corresponding equations in
MP(2). Finally, the last equation follows from the monotonicity property of the ratios (i.e., rj(t)
is a non-decreasing function of t).

It remains to compare the values of the two solutions s, and s′. We have

1
1− 1/e

φ′(1
ε

)−
1/ε−1∑
i=0

c′i,1/ε
(
iε/e− eiε−1

) ≤ 1
1− 1/e

φ(n)−
∑
j

cj(
rj(n)
e
− erj(n)−1)

=

∑
j

cjrj(n),

where the inequality follows from the fact that r/e−er−1 is a decreasing function for r ∈ [0, 1], and
the last inequality simply follows from the definition of φw(.) (i.e., the first equation of MP(2)).

Now we are ready to prove Theorem 3.1:
Proof of Theorem 3.1. By Proposition 2.3, for any ε > 0, with probability 1 − δ the competitive
ratio of Weighted-Balance is lower-bounded by the optimum of MP(1). On the other hand, by

Lemma 2.4 the optimum solution of MP(1) is at least (1 −
√

12γ
ε2δ

) of the optimum solution of
MP(2). Finally, by Lemma 3.2 the optimum solution of MP(2) is at least the optimum of LP(1).

Hence, with probability 1− δ the competitive ratio of Weighted-Balance is at least (1−
√

12γ
ε2δ

) of
the optimum of LP(1).

The constant-size linear program LP(1) can be solved numerically for any value of ε > 0. By
solving this LP using an LP solver, we can show that for ε = 1/250 the optimum solution is greater
than 0.76. This implies that with probability 1− δ the competitive ratio of Weighted-Balance is at
least 0.76(1−O(

√
γ/δ)).

Remark 3.3. We also would like to remark that the optimum solution of LP(1) beats the 1− 1/e
factor even for ε = 1/8; roughly speaking this implies that even if the permutation σ is almost
random, in the sense that each 1/8 of the input almost has the same distribution, then Weighted-
Balance beats the 1− 1/e factor.

4 The Competitive Ratio of Balance

In this section we show that for any unweighted graph G, under some mild assumptions, the
competitive ratio of Balance approaches 1 in the random arrival model.

Theorem 4.1. For any unweighted bipartite graph G = (X,Y,E), and δ > 0, with probability
1 − δ the competitive ratio of Balance in the random arrival model is at least 1 − β

P
i cj

OPT , where
β := 3(γ/δ)1/6.

12

First we assume that our instance is all-saturated meaning that the optimum solution saturates
all of the bins (i.e., cj = oj for all j), and show that the competitive ratio of the algorithm is at
least 1− 3(γ/δ)1/6:

Lemma 4.2. For any δ > 0, with probability 1−δ the competitive ratio of Balance on all-saturated
instances in the random arrival model is at least 1− β.

Then we prove Theorem 4.1 via a simple reduction to the all-saturated case.
To prove Lemma 4.2, we analyze a slightly different algorithm Balance’ that always assigns an

arriving ball (possibly to an over-saturated bin); this will allow us to keep track of the number of
assigned balls at each step of the process. In particular we have

∀t ∈ [n] :
∑
j

cjrj(t) = t, (8)

where rj(t) does not necessarily belong to [0, 1]. The latter certainly violates some of our assump-
tions in Section 2. To avoid the violation, we provide some additional knowledge of the optimum
solution to Balance’ such that the required assumptions are satisfied, and it achieves exactly the
same weight as Balance .

We start by describing Balance’ , then we show that it still is a feasible algorithm for the
potential function framework studied in Section 2; in particular we show it satisfies Proposition
2.3. When a ball xi arrives at time t+ 1 (i.e., σ(t+ 1) = i), similar to Balance , Balance’ assigns it
to a bin maximizing wi,jfu(rj(t)); let j be such a bin. Unlike Balance if rj(t) ≥ 1 (i.e., all neighbors
of xi are saturated), we do not drop xi; instead Balance’ assigns it to the bin yopt(i).

First note that although Balance’ magically knows the optimum assignment of a ball once all of
its neighbors are saturated, it achieves the same weight matching. This simply follows from the fact
that over-saturating bins does not increase our gain, and does not alter any future decisions of the
algorithm. Next we use Proposition 2.3 to show that MP(1) is indeed a mathematical programming
relaxation for Balance’ .

By Proposition 2.3, we just need to verify that |fu(.)|, |f ′u(.)| ≤ 1 for all the ratios we might
encounter in the run of Balance’ . Since fu(r) = (1 − r), and the ratios are always non-negative,
it is sufficient to show that the ratios are always upper-bounded by 2. To prove this, we crucially
use the fact that Balance’ has access to the optimum assignment for the balls assigned to the over-
saturated bins. Observe that the set of balls assigned to a bin after it is being saturated, is always
a subset of the balls assigned to it in the optimum assignment. Since the ratio of all bins are at
most 1 in the optimum, they will be upper-bounded by 2 in Balance’ .

The following is a simple mathematical programming relaxation to analyze Balance’ in the
all-saturated instances:

MP(3) minimize
∑

j min{rj(n), 1}cj
s.t.

∑
j cjrj(t) = t t ∈ [n],

ε
∑

j cj(1− rj((k + 1)nε))− 6γ
εδ OPT ≤ φu((k + 1)nε)− φu(knε) ∀k ∈ [1ε − 1],

Note that the first constraint follows from (8), and the second constraint follows from the second
constraint of MP(1), and the fact that cj = oj in the all-saturated instances.

Now we are ready to prove Lemma 4.2:
Proof of Lemma 4.2. With probability 1− δ, MP(3) is a mathematical programming relaxation of
Balance’ . First we sum up all 1/ε second constraints of MP(3) to obtain a lower-bound on φu(n),

13

and we get φu(n) is very close to zero (intuitively, the algorithm almost manages to optimize the
potential function). Then, we simply apply the Cauchy-Schwarz inequality to φu(n) to bound the
loss of Balance’ .

We sum up the second constraint of MP(3) for all k ∈ {0, 1, . . . , 1
ε −1}; the RHS telescopes and

we obtain:

φu(n)− φu(0) ≥ OPT (1− 6γ
ε2δ

)− ε
1/ε−1∑
k=0

∑
j

cjrj((k + 1)nε) ≥ n(1− 6γ
ε2δ

)− ε2n
1/ε−1∑
k=0

(k + 1)

≥ n(
1
2
− ε

2
− 6γ
ε2δ

)

where the first inequality follows by the assumption that the instance is all-saturated, and the
second inequality follows from applying the first constraint of MP(3) for t = (k + 1)nε, and the
fact that OPT = n. Since φu(0) = −1

2

∑
j(1− rj(0))2 = −n/2, we obtain φu(n) ≥ −n(ε2 + 6γ

ε2δ
).

Observe that only the non-saturated bins incur a loss to the algorithm, i.e.,

Loss(Balance’) =
∑

rj(n)<1

cj(1− rj(n)).

Using the lower-bound on φu(n) we have∑
rj(n)<1

cj(1− rj(n)) ≤
√ ∑
rj(n)<1

cj(1− rj(n))2 ·
∑

rj(n)<1

cj ≤
√
−2φu(n) · n ≤ n

√
ε+

12γ
ε2δ

,

where the first inequality follows by the Cauchy-Schwarz inequality, and the second inequality
follows from the definition of φu(n). The lemma simply follows from choosing ε = 2(2γ/δ)1/3 in
the above inequality.

Next we prove Theorem 4.1; we analyze the general instances by a reduction to all-saturated
instances.
Proof of Theorem 4.1. Let G = (X,Y) be an unweighted graph, similar to Lemma 4.2 it is
sufficient to analyze Balance’ on G. For every bin yj we introduce cj − oj dummy balls that are
only adjacent to the jth bin, and let G′ = (X ′, Y) be the new instance. First we show that the
expected number of non-dummy balls matched by Balance’ in G′ is at most the expected size of
the matching that Balance’ achieves in G. We analyze the performance of Balance’ on G simply
using Lemma 4.2, and eliminating the effect of dummies.

Fix a permutation σ ∈ S|X′|; let W ′(σ) be the number of non-dummy balls matched by Bal-
ance’ on σ. Similarly, let W (σ[X]) be the size of the matching obtained on σ[X] in G, where σ[X] is
the projection of σ on X. Using an argument similar to [7, Lemma 2] (e.g., the monotonicity prop-
erty), one can show that W ′(σ) ≤ W (σ[X]) for all σ ∈ S|X′|. Hence, to compute the competitive
ratio of Balance’ on G, it is sufficient to upper-bound the expected number of non-dummy balls
not-matched by Balance’ on G′. The latter is certainly not more than the total loss of Balance’ on
G′ which is no more than β

∑
j cj by Lemma 4.2.

5 Hardness Results

In this section, we show that there exists a family of weighted graphs G such that for any ε > 0,
any online algorithm that achieves a 1− ε competitive ratio in the random arrival model, does not

14

achieve an approximation ratio better than a function g(ε) in the adversarial model, where g(ε)→ 0
as ε→ 0. More specifically, we prove something stronger:

Theorem 5.1. For any constants δ, ε > 0, there exists family of weighted bipartite graphs G =
(X,Y) such that for any (randomized) algorithm that achieves 1−ε competitive ratio (in expectation)
on at least δ fraction of the permutations σ ∈ S|X|, does not achieve more than 4

√
ε (in expectation)

for a particularly chosen permutation in another graph G′.

As a corollary, we can show that any algorithm that achieves the competitive ratio of 1 − 1/e
in the adversarial model can not achieve an approximation factor better than 0.976 in the random
arrival model. Moreover, at the end of this section, we show that for some family of graphs the
Weighted-Balance algorithm does not achieve an approximation factor better than 0.81 in the
random arrival model (see Lemma 5.5 for more details). This implies that our analysis of the
competitive ratio of this algorithm is tight up to an additive factor of 5%. We start by presenting
the construction of the hard examples:

Example 5.2. Fix a large enough integer l > 0, and let α :=
√
ε; let Y := {y1, y2} with capacities

c1 = c2 = l. Let C and D be two types of balls (or online nodes), and let the set of online nodes X
correspond to a set of l copies of C and l/α copies of D. Each type C ball has a weight of 1 for y1,
and a weight of 0 for y2, while a type D ball has a weight of 1 in y1 and a weight of α in y2.

First of all, observe that the optimum solution achieves a matching of weight 2l simply by
assigning all type C balls to y1, and type D balls to y2. On the other hand, any algorithm that
achieves the competitive ratio of 1− ε in the random arrival model should match the balls in a way
“very similar” to this strategy. However, if the algorithm uses this strategy, then an adversary may
construct an instance by preserving the first l balls of the input followed by l/α dummy balls. But
in this new instance it is “much better” to assign all of the first l balls to y1. In the following we
formalize this observation.
Proof of Theorem 5.1. Let G be the graph constructed in Example 5.2, and let A be a (randomized)
algorithm that achieves 1−ε competitive ratio (in expectation) on at least δ fraction of permutations
σ ∈ Sn, where n = l + l/α, for some constant δ > 0. First we show that there exists a particular
permutation σ∗ such that there are at most lα balls of type C among {σ∗(1), . . . , σ∗(l)}, and
algorithm A achieves at least (1 − ε)2l on σ∗. Then we show that the (expected) gain of A from
the first l balls is at most 4l

√
ε. Finally, we construct a new graph G′ = (X ′, Y) and a permutation

σ′ such that the first l balls in σ′ is the same as the first l balls of σ∗. This will imply that A does
not achieve a competitive ratio better than 4

√
ε on G′.

To find σ∗ it is sufficient to show that with probability strictly more than 1− δ the number of
type A balls among the first l balls of a uniformly random chosen permutation σ is at most lα. This
can be proved simply using the Chernoff-Hoeffding bound. Let Bi be a Bernoulli random variable
indicating that xσ(i) is of type C, for 1 ≤ i ≤ l. Observe that Eσ [Bi] = α

1+α , and these variables
are negatively correlated. By a generalization of Chernoff-Hoeffding bound [22] we have

P

[
l∑

i=1

Bi > αl

]
≤ e−

lα3

6 < δ,

where the last inequality follows by choosing l large enough. Hence, there exists a permutation σ∗

such that the number of type C balls among its first l balls is at most lα, and A achieves (1− ε)2l
on σ∗.

15

Next we show that the (expected) gain of A from the first l balls of σ∗ is at most 2l(α+ ε/α) =
4l
√
ε. This simply follows from the observation that any ball of type D that is assigned to y1 incurs

a loss of α. Since the expected loss of the algorithm is at most 2lε on σ∗, the expected number of
type D balls assigned to y1 (in the whole process) is no more than 2lε

α . We can upper-bound the
(expected) gain of the algorithm from the first l balls by lα+ 2lε

α + lα, where the first term follows
from the upper-bound on the number of A balls, and the last term follows from the number of B
balls (that may possibly be) assigned to y2.

It remains to construct the adversarial instance G′ together with the permutation σ′. G′ has
the same set of bins, while X ′ is the union of the first l balls of σ∗ with l/α dummy balls (a dummy
ball has zero weight in both of the bins). We construct σ′ by preserving the first l balls of σ∗, filling
the rest with the dummy balls (i.e., xσ′(i) = xσ∗(i) for 1 ≤ i ≤ l). First, observe that the optimum
solution in G′ achieves a matching of weight l simply by assigning all of the first l balls to y1. On
the other hand, as we proved the (expected) gain of the algorithm A is no more than 4l

√
ε on G′.

Therefore, the competitive ratio of A in this adversarial instance is no more than 4
√
ε.

The following corollary can be proved simply by choosing δ small enough in Theorem 5.1:

Corollary 5.3. For any constant ε > 0, any algorithm that achieves a competitive ratio of 1 − ε
in the random arrival model does not achieve strictly better than 4

√
ε in the adversarial model. In

particular, it implies that any algorithm that achieves a competitive ratio of 1− 1
e in the adversarial

model does not achieve strictly better than 0.976 in the random order model.

It is also worth noting that Weighted-Balance achieves at least 0.89 competitive ratio in the
random arrival model for Example 5.2, and the worst case happens for α ≈ 0.48. Next we present
a family of examples where the Weighted-Balance does not achieve a factor better than 0.81 in the
random arrival model.

Example 5.4. Fix a large enough integer n > 0, and α < 1; again let Y := {y1, y2} with capacities
cl = n, and c2 = n2. Let X be a union of n identical balls each of weight 1 for y1 and α for y2.

Lemma 5.5. For a sufficiently large n, and a particularly chosen α > 0, the competitive ratio of
the Weighted-Balance in the random arrival model for Example 5.4 is no more than 0.81.

Proof. First observe that the optimum solution achieves a matching of weight n simply by assigning
all balls to y1. Intuitively, Weighted-Balance starts with the same strategy, but after partially
saturating y1, it sends the rest to y2 (note that each ball that is sent to y2 incurs a loss of 1 − α
to the algorithm). Recall that r1(n) is the ratio of y1 at the end of the algorithm. The lemma
essentially follows from upper-bounding r1(n) by 1+1/n+ln(1−α(1−e1/n−1)). Since the algorithm
achieves a matching of weight exactly r1(n)n+ (1− r1(n))nα, and OPT = n, the competitive ratio
is r1(n) + (1 − r1(n))α. By optimizing over α, one can show that the minimum competitive ratio
is no more than 0.81, and it is achieved by choosing α ' 0.55.

It remains to show that r1(n) ≤ 1 + 1/n+ ln(1− α(1− e1/n−1)). Let t be the last time where
a ball is assigned to y1 (i.e., r1(t − 1) + 1/n = r1(t) = r1(n)). Since the ball at time t is assigned
to y1, we have

1 · fw(r1(t− 1)) ≥ α · fw(r2(t− 1)) ≥ α · fw(
1
n

),

where the last inequality follows by the fact that the ratio of the second bin can not be more than
α · n/c2 < 1/n, and fw(.) is a non-increasing function of the ratios. Using fw(r) = 1 − er−1, and
r1(t− 1) + 1/n = r1(n) we obtain that r1(n) ≤ 1 + 1/n+ ln(1− α(1− e1/n−1)).

16

References

[1] S. Agrawal, Z. Wang, and Y. Ye. A dynamic near-optimal algorithm for online linear program-
ming. Computing Research Repository, 2009. 2, 4

[2] D. Applegate and E. Cohen. Making routing robust to changing traffic demands: algorithms
and evaluation. IEEE/ACM Trans. Netw., 16(6):1193–1206, 2006. 4

[3] Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Räcke. Optimal oblivious routing in polynomial
time. J. Comput. Syst. Sci., 69(3):383–394, 2004. 4

[4] B. Bahmani and M. Kapralov. Improved bounds for online stochastic matching. In ESA, pages
170–181, 2010. 2

[5] A. Ben-Tal and A. Nemirovski. Robust optimization - methodology and applications. Math.
Program., 92(3):453–480, 2002. 2, 4

[6] D. Bertsimas, D. Pachamanova, and M. Sim. Robust linear optimization under general norms.
Oper. Res. Lett., 32(6):510–516, 2004. 2, 4

[7] B. Birnbaum and C. Mathieu. On-line bipartite matching made simple. SIGACT News,
39:80–87, March 2008. 14

[8] N. Buchbinder, K. Jain, and J. Naor. Online Primal-Dual Algorithms for Maximizing Ad-
Auctions Revenue. In Proc. ESA, page 253. Springer, 2007. 2, 4

[9] N. Devanur and T. Hayes. The adwords problem: Online keyword matching with budgeted
bidders under random permutations. In ACM EC, 2009. 1, 2, 3, 4

[10] N. R. Devanur, K. Jain, B. Sivan, and C. A. Wilkens. Near optimal online algorithms and fast
approximation algorithms for resource allocation problems. In ACM Conference on Electronic
Commerce, pages 29–38, 2011. 2

[11] J. Feldman, M. Henzinger, N. Korula, V. S. Mirrokni, and C. Stein. Online stochastic packing
applied to display ad allocation. In Proceedings of the 18th annual European conference on
Algorithms: Part I, ESA’10, pages 182–194, Berlin, Heidelberg, 2010. Springer-Verlag. 2, 4

[12] J. Feldman, N. Korula, V. Mirrokni, S. Muthukrishnan, and M. Pal. Online ad assignment
with free disposal. In WINE, 2009. 2, 4, 6

[13] J. Feldman, A. Mehta, V. Mirrokni, and S. Muthukrishnan. Online stochastic matching:
Beating 1 - 1/e. In FOCS, 2009. 2

[14] B. Kalyanasundaram and K. Pruhs. On-line network optimization problems. In Developments
from a June 1996 seminar on Online algorithms: the state of the art, pages 268–280, London,
UK, 1998. Springer-Verlag. 1, 3, 6

[15] C. Karande, A. Mehta, and P. Tripathi. Online bipartite matching with unknown distributions.
In STOC, 2011. 4

[16] R. Karp, U. Vazirani, and V. Vazirani. An optimal algorithm for online bipartite matching.
In Proc. STOC, 1990. 1, 2

17

[17] M. Mahdian, H. Nazerzadeh, and A. Saberi. Allocating online advertisement space with
unreliable estimates. In ACM Conference on Electronic Commerce, pages 288–294, 2007. 4, 6

[18] M. Mahdian and Q. Yan. Online bipartite matching with random arrivals: A strongly factor
revealing lp approach. In STOC, 2011. 3, 4

[19] A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani. Adwords and generalized online matching.
J. ACM, 54(5):22, 2007. 1, 2, 3, 4, 6

[20] H. Menshadi, S. Oveis Gharan, and A. Saberi. Offline optimization for online stochastic
matching. In SODA, 2011. 2, 3, 4

[21] R. Motwani, R. Panigrahy, and Y. Xu. Fractional matching via balls-and-bins. In APPROX-
RANDOM, pages 487–498, 2006. 3

[22] A. Panconesi and A. Srinivasan. Randomized distributed edge coloring via an extension of the
chernoff-hoeffding bounds. Siam Journal on Computing, 26:350–368, 1997. 7, 15

[23] B. Tan and R. Srikant. Online advertisement, optimization and stochastic networks. CoRR,
abs/1009.0870, 2010. 2, 4

[24] E. Vee, S. Vassilvitskii, and J. Shanmugasundaram. Optimal online assignment with forecasts.
In ACM EC, 2010. 2, 4

[25] H. Wang, H. X. 0002, L. Qiu, Y. R. Yang, Y. Zhang, and A. G. Greenberg. Cope: traffic
engineering in dynamic networks. In SIGCOMM, pages 99–110, 2006. 2, 4

18

	Introduction
	Notation

	Main Ideas
	Lower bounding the increase in the potential function
	Description of the factor-revealing Mathematical Program

	The Competitive Ratio of Weighted-Balance
	The Competitive Ratio of Balance
	Hardness Results

