How to Build a Scheduler

April 23, 2009

1 How to Build a Scheduler

Up till now we have used a very simple loop such as

while(1)
{
taskA(Q);
taskB();
taskCQ);
time_delay();
}

To make a very basic non-premptive, round-robin scheduler. We can call this a
static scheduler because the order of the task execution will never change. In
this section we will expand our basic scheduler to give it some new features:

e The ability of a task to halt itself.

e The ability of a task to sleep for a while.

1.1 Part I Using function pointers to start a task

Throught the course we are using the terms “task” and “function” almost in-
terchangably. This is because we implement our tasks with C functions. How
can we manipulate these functions so that they do not nescessarily execute in a
fixed order?

We learned that the syntax:

type (*name) (type argl, type arg2, ...)

indicates a function pointer called name which can point to any function having
the same prototype. For example

int (*fp) (char x, int y, double z)

creates a function pointer fp which can point to any function which returns
an int and has three arguments which are char, int, double respectively.
With function pointers we can write code that can start an arbitrary function.
For example:

EEA472 How to Build a Scheduler

Example: start function

void start_function(void (*functionPTR) ())
{
functionPTR();
}

Now our basic scheduler could be written:

while(1)
{
start_function(taskA);
start_function(taskB);
start_function(taskC);
time_delay();

1.2 Part 11 Keeping lists of functions

For our scheduler to be smarter than the basic while (1) loop,. we need to be
able to put functions into lists. That way we can keep track of which functions
are ready, waiting, and inactive. One approach would be a single list of tasks,
with a corresponding array of integers to determine which state the task is in.
Although logically OK. This approach is not preferred at this point, because
the scheduler will have to do a lot of looking through the list to find which tasks
are in a certain state.
We can create an array of function pointers as follows:

#define NUMBER_OF_FUNCTIONS 10

void (xlist_of_functions[NUMBER_OF_FUNCTIONS]) (void *p)

In the example above we created an array which could hold 10 function
pointers. Each function pointer in the array must point to a function with the
prototype:

void function(void *p)

This is a good prototype for tasks because they do not need to return a value
and the void pointer parameter is a flexible way to pass a parameter to a task
that is being created (although we will not use this much).

Here then is some pseudocode for a main program and scheduler function:

//function prototypes for tasks
void taskA(void *p);
void taskB(void *p);

EEA472 How to Build a Scheduler

// function prototype for scheduler
void scheduler();

#define NTASKS 4

//lets make the task list global
// an array of function pointers, each one has a void* parameter.
void (*readytasks[NTASKS]) (void *p);

main()
{
// initialize array of pointers to tasks
readytasks[0] = taskA;
readytasks[1] = taskB;

readytasks[3]= NULL; // NULL signals the last task in the list.

// now start scheduler

while(1) {
scheduler();
time_delay(); // tune or use timer for 1ms loop time
}

} // end of main

Here, we have set up an array to contain pointers to the task as a global
variable (so that it will be visible to both main and the scheduler function
(not shown). Then, inside main(), we have initialized each element of the
array to point to one of our tasks. The scheduler function will do the following
(pseudocode)

Scheduler function (pseudocode)

scheduler () {

if (readytasks[task_index] == NULL && task_index != 0) task_index=0;

if (readytasks[task_index] == NULL && task_index == 0) {
// figure out something to do because there are no tasks to run!
3

start_function(readytasks[task_index]);

task_index++; // Round Robin/we’re taking turns

return;

3

EEA472 How to Build a Scheduler

1.3 part IIT Manipulating the Task Lists

So far, we have just made a more complicated form of our basic while(1) loop
scheduler. Now let’s allow tasks to halt themselves by calling a function called
halt me(). First, we need to generate a second list for the tasks which might
be halted. Let’s call it haltedtasks[]. Now, the scheduler can work as before,
but when a task calls halt_me(), the following things have to happen:

halt_me function

halt_me() {
* identify which task is currently running (i.e. look at task_index)
* copy the function pointer from readytasks[task_index]
to the haltedtasks array
* move the remaining tasks up in readytasks[] to fill the
empty hole and copy NULL into the last element.
* increment the index of the haltedtasks array.
return;

}

When halt_me returns to the task, the task should return and then it will
not be started again by the scheduler since the current task has been deleted
from readytasks

Sleep

Now let’s try to set up a Sleep(int d) function which can let our tasks go to
sleep for d msec. For reasons we can go into later, we need to implement sleep
in a slightly awkward way. A function which wants to sleep will have to look
like:

Typical Task using sleep()

task_c(p) {
compute for a while;
sleep(10);
return;

}

We will impose the requirement that the new sleep(d) function will not
put the task to sleep until the task that called it has returned. How would the
scheduler work now? As above, we need to generate a new list for tasks which
are waiting for time delays. Lets call it waitingtasks[]. Then we also have
to make an array for the time delays for each wainting task. When a function
calls sleep(d) the following things should happen

EEA472 How to Build a Scheduler

Sleep function (pseudocode)

sleep(int d) {
*x copy function pointer from readytasks[task_index]
to the waitingtasks[] array.
* clean up readytasks[] as in halt_me();
* copy the d into the delays array with the same index
as the function pointer has in waitingtasks[]

}

Now the scheduler must keep track of waiting times for any tasks which are
sleeping and perhaps wake them up by moving them back to the readytasks
array. Let’s add some pseudocode to the bottom of the scheduler function
above:

Keeping track of sleep delays

* for each element of waitingtasks which is not NULL:
decrement the delay value d.
if (d==0) move the function pointer to the end
of the readytasks[] array and remove it
from waitingtasks.
// end of scheduler
return;

}

1.4 An Alternate Data Structure for Scheduling

So far we have used arrays of function pointers to keep track of the tasks in each
state. We also used an array of delay values for the remaining delay of sleeping
tasks. Another approach is to keep everything about the task in a struct and
then manipulate the structs to change task states. We call such structs Task
Control Blocks (TCB’s). For example, we could define the TCB as follows:
Let’s set up a struct which contains everything we need to track about a Task:

typedef struct TCBstruct {

void (xftpr) (void *p); // the function pointer
void *arg_ptr; // the argument pointer
unsigned short int state; // the task state
unsigned int delay; // sleep delay

} tcb;

Now we have a single place that stores everything about a task. Now we can
set up an array of tcb’s to hold all tasks and define constants for the states:

#define STATE_RUNNING 0

EEA472 How to Build a Scheduler

#define STATE_READY 1
#define STATE_WAITING 2
#define STATE_INACTIVE 3

tcb TaskList [N_MAX_TASKS];
Then we can set up the task list as follows:

int j=0;
int task_B_Arg;

TaskList[j].ftpr = task_AQ);
TaskList[j].arg_ptr = NULL;
TaskList[j].state STATE_INACTIVE;
TaskList[j].delay = -1;

jtts

TaskList[j].ftpr = task_BQ);

task_B_Arg = 56; // some arbitrary value
int *ip = &task_B_Arg;

TaskList[j].arg_ptr = (void*)ip;
TaskList[j].state = STATE_READY;
TaskList[j].delay = -1;

jt+t;

TaskList[j].fptr = NULL;

. etc ...

We have initialized the scheduler with two tasks, A and B. Their information
goes into the first two entries in TaskList[]. Task A has no argument (more
precisely the single void pointer argument will not be used), and starts out in
STATE_INACTIVE. This means that it will have to be started by some other task.
We want to start task B with an argument of 56, so we set an integer to 56,
make a pointer which points to it, and then cast it to void* before assigning it
to the arg.ptr member. Task B starts in STATE_READY so that it will go into
the CPU as soon as possible. The next element of TaskList[] is set to NULL
which will be our signal for no more tasks.

Now, halt_me() just has to figure out which element of TaskList[] it cur-
rently belongs to and change its state from STATE_RUNNING to STATE_INACTIVE.
Similarly, if Task B called a function to start Task A, then that function would
just have to change Task A’s state from STATE_INACTIVE to STATE_RUNNING.

In Class Exercise: Starting, Stopping, Delay

Write pseudocode for halt me(), start_task(int task), and delay(int d)
a task. Assume t_curr is an integer which points to the currently running task.

EEA472 How to Build a Scheduler

halt_me() {
TaskList [t_curr] .state = STATE_INACTIVE;
}

start_task(int task_id) {
TaskList[task_id] .state = STATE_READY;
}

delay(int d) {
TaskList[t_curr].delay = d;
TaskList [t_curr] .state STATE_WAITING;
}

	How to Build a Scheduler
	Part I Using function pointers to start a task
	Part II Keeping lists of functions
	part III Manipulating the Task Lists
	An Alternate Data Structure for Scheduling

