The First Five Computer Science Principles
Pilots: Summary and Comparisons

Lawrence Snyder, University of Washington
Tiffany Barnes, University of North Carolina, Charlotte
Dan Garcia, University of California, Berkeley
Jody Paul, Metropolitan State College of Denver
Beth Simon, University of California, San Diego

Abstract

In academic year 2010-2011 five professors at different colleges were asked to
implement the vision of AP Computer Science Principles. The “vision” was not a
packaged curriculum ready to be taught, but rather a curriculum framework
specified as Computer Science’s Seven Big Ideas and its Six Computational Thinking
Practices. The resulting pilot courses reflected a broad interpretation of the 7+6,
while still achieving the goals of serving women and under-represented populations.
This paper, written by the five instructors, describes those courses.

After a brief overview of the purpose and objectives of teaching pilot courses in the
context of the CS Principles project, a summary by each of the teams follows. The
summaries are similarly structured to permit easy comparisons across the courses.
Finally, a quantitative comparison is presented allowing for further understanding
of how the courses connected to the CS Principles content.

Introduction

In 2010 the Computer Science Principles course existed primarily as two documents,
titled, “Seven Big Ideas of Computer Science,” (Table 1) and “Six Computational
Thinking Practices” (Table 2). These included bulleted lists of short phrases, which
gave the topics and a few key terms for each. What would these topics look like as a
college course?

Five instructors from five different colleges were selected to pilot a college course
based on the bulleted information during academic year 2010/2011:

* Metropolitan State College of Denver MSCD Jody Paul

* University of California, Berkeley UCB Dan Garcia & Brian Harvey
* University of California, San Diego UCSD Beth Simon

* University of North Carolina at Charlotte UNCC Tiffany Barnes

* University of Washington, Seattle UW Larry Snyder

© ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for
your personal use. Not for redistribution. The definitive version was published in ACM Inroads, {VOL
3,ISS 2, (June 2012)} http://doi.acm.org/10.1145/2189835.2189852

AP Computer Science Principles: Seven Big Ideas (Fall 2010)

I. Computing is a creative human activity that engenders innovation and promotes exploration.
Il. Abstraction reduces information and detail to focus on concepts relevant to understanding
and solving problems.
Ill. Data and information facilitate the creation of knowledge.
IV. Algorithms are tools for developing and expressing solutions to computational problems.
V. Programming is a creative process that produces computational artifacts.
VI. Digital devices, systems, and the networks that interconnect them enable and foster
computational approaches to solving problems.
VIl. Computing enables innovation in other fields including science, social science, humanities,

arts, medicine, engineering, and business.
Table 1. List of the Seven Big Ideas, August 2010, [1]

The schools were the home institutions of five

AP C ter Sci Principles: Si
members of the AP Computer Science ompurer Science Frinclpres: ix

Computational Thinking Practices (Fall 2010)

Advisory Committee. Drawing on Advisory 1. Analyzing the effects of computation

Board members made sense because the

2. Creating computational artifacts
instructors had been party to many of the 3. Using abstractions and models
early development discussions, and therefore, 4. Analyzing problems and artifacts
had a thorough understanding of the project’s 5. Communicating processes and results
goals, emphasis and constraints. 6. Working effectively in teams

. . Table 2. List of the Six Computational Thinking Practices [August
Although the target curriculum was ultimately 2010]

a high school course, piloting at colleges made
sense, because “advanced placement courses” are designed to give college credit.

The pilot instructors had two basic goals.

Convert Topics to Content. Because the specification of the Computer Science
Principles course took the form of a curriculum framework, an important goal for
the pilots was to make the CS Principles content explicit. Though the content
represented by the framework’s list of topics and objectives and its broad assertions
of desired results may have been clear to its creators, it allowed for many
interpretations by readers. [llustrating what CS Principles is as classroom content
would serve as a tangible interpretation that could be studied and reviewed by a
much larger audience.

lllustrate a “typical” CS Principles Course. By definition, an AP course teaches content
taught in college courses. High school students taking the AP course, and performing
well on an AP test, expect to “get credit for” or to “place out of” those college courses.
Such courses are not a standardized part of the CS college curricula; see for example
ACM’s Computer Curriculum 2007 [3]. Further, because computing is taught in
several variations - Computer Engineering, IT, IS, etc. - there was no consensus as

to what the college target - or targets - should be. The five pilot courses were
intended to be exemplars of such college courses.

The course summaries below demonstrate that the five courses are very different
from each other. Only two pilots - UCB and UNCC - even attempted to use similar

approaches, and although the resulting courses overlap, they were still substantially
different courses. Nevertheless, all of the courses taught the CS Principles content.
The fact that they are different emphasizes that teaching the fundamental content of
computer science can be done in many different ways. This fact also illustrates that
campuses differ significantly in how that content fits into their existing course
offerings and their campus roles.

Overview of the Pilots
The five pilots spanned a period beginning in late August, 2010 (MSCD) through
May, 2011 (UNCC), with one or more pilots underway during that whole period.

Because the courses were not required to “be the same,” they represent a very
interesting combination of approaches. While reading each of them, notice the
following characteristics.

Table 3. Pilot Overview: “S” is a semester-long course, “Q” is a quarter-long course;
“hours” counts total course contact hours; “size” is initial enrollment.

School Instructor 1st Offering Title Hours | Size
MSCD Paul Fall 10 S | “Living in a Computing World” 55 20
UCB Garcia/Harvey | Fall 10 S | “The Beauty & Joy of Computing” 98 80
UCSD Simon Fall 10 Q | “Fluency with Information Technology” 50 580
UNCC Barnes Spring 11 S | “The Beauty & Joy of Computing” 40 22
uw Snyder Winter 11 Q | “Computer Science Principles” 50 22

MSCD - The course is very opportunistic and student driven, beginning with
student input: What do you want to know? What do you want to learn from this
courses? It takes happenstance and current news as additional drivers. It seems
that the resulting course would very closely match the student needs.

UCB - The pilot was the result of curricular revisions that had already been
underway for 18 months. The result benefits from an enormous amount time
and development effort, extensive resources, significant contact time, and
experienced staff. As a “gateway to the major” course, it has successfully
attracted majors.

UCSD - By far the largest piloting effort and a degree requirement for much of
the class, UCSD’s course applied a Peer Instruction pedagogy as a means of
engaging students and giving them responsibility for their learning. Lectures
were replaced by student engagement with challenging questions involving peer
discussion.

UNCC - Drawing heavily on Berkeley’s experience, UNCC’s Beauty and Joy of
Computing pilot used a structured class period to introduce concepts and apply
them immediately in lab activities. This approach helped to accommodate the
substantial contact time disparity between UCB and UNCC offerings.

UW - Following a dozen years of teaching a related concept-rich introduction
(Fluency), the UW pilot was a new design derived directly from the Seven Big
Ideas and Six CT Practices. Relying on a more conventional lecture/demo with
structured labs format, students quickly developed teach-it-to-yourself

capabilities.

Each contribution provides extensive links to relevant material including the entire
corpus of class materials, http://csprinciples.org.

CS Principles Pilot at Metropolitan State College of Denver

Author: Jody Paul
Course Name: Living in a Computing World
Pilot: Fall semester, 2010

a) How Living in a Computing World Fit In At MSCD:

Metropolitan State College of Denver (MSCD) is a public, open enrollment, non-
residential college attended by 23,000 undergraduate students, 94% of whom are
from metropolitan Denver. MSCD has a statutory mission of providing access for
underserved and low-income students. It is ranked in the top 100 schools in the USA
for graduating Latino students and students of color.

Computer Science faculty in the Department of Mathematical and Computer
Sciences recognized the opportunity to pilot the course Living in a Computing World
(LiaCW) as a means to further the objective of making knowledge of computing
accessible to all students. The course was open to all with the only requirement
being that the students be “college ready”; that is, minimally eligible to enroll in
College Algebra 1 and English 1. LiaCW did not satisfy any degree requirements
other than college-residency units. The course thus had no prerequisite courses nor
was it prerequisite to any other course.

b) Course Specifics

* (lass Sessions: Two 110-minute periods per week

* Course: 15-week semester, yielding 55 contact hours

* Credit Hours: 4 semester credit hours

* Fulfills Requirements: none (residency only)

e Attendance: 20 enrolled; 18 at term’s end

¢ Algorithm Specification: structured English; LightBot; Scratch
* Grading: activities, assignments, exams

c) Class Pedagogy and Content The class employed an opportunistic approach that
emphasized human-to-human interaction.

The order of course content was guided by opportunities arising from the
environment of students and their world. On the first day of class, students
articulated items of individual and collective interest in response to prompts like
“things you've wondered about,” “what you would like to know,” and “what you’d
like to be able to do.” These formed the surface agenda for the course and the
collection was revisited and updated during the semester. In addition, happenstance
and current events were considered opportunities to leverage the associated

interest that could facilitate addressing intended content. Such events arose in the
news and in the lives of individuals and groups of students.

Class sessions were comprised of shorter sub-sessions during which students
primarily interacted with one another toward a purpose. The pedagogical goals
were usually to activate a concept, encourage curiosity, and facilitate discovery.
Concept activation refers here to engaging in an activity that results in desired
information being transferred from long-term memory to consciousness. Such
activation and recollection was one foundational element that enabled acquisition of
the intended CS Principles content.

Another key element was that of leveraging curiosity in order to encourage the
cognitive processing necessary to connect new concepts into a student’s existing
knowledge framework. The goals were for the activities to arise from the interests
of students themselves and to provide both sufficient challenge to be interesting and
appropriate challenge to be rewarding. If the challenge was too little, students
would be bored; if the challenge was too great, students would be frustrated; either
way, learning would be compromised. Achieving the desired balance was difficult
even with the small number of students.

Instructor presentations (lectures) were minimized as they were thought to be less
engaging and less effective than active-learning experiences. However, the high
resource burden necessary to develop active-learning experiences across the entire
CS Principles content was too great and this objective was not met to the desired
degree. That is, resource cost was a significant impediment to more effective

pedagogy.

The course content was drawn from the items articulated in the CS Principles
curriculum framework with each of the major areas identified as a big idea receiving
roughly the same amount of emphasis. The pilot course environment and timeframe
permitted only a subset of the curriculum framework to be addressed.

d) Evidence of Student Work
The combination of much activity
being done by students during
class time with the relatively
small class size resulted in little
difficulty for the instructor and
community assistants to directly
observe and assess the nature of
work and associated learning. In
addition, students were required
to reflect on each activity and to
report insights, observations, and
key ideas from each.

Students created animated dialogs regarding social and ethical issues, such as this
image from a clip that highlighted privacy concerns associated with social
network postings

e) What Worked And Didn’t

Active Learning. This was, unsurprisingly, a primary contributor to successful
learning outcomes. Greatest engagement and retained knowledge appeared to be
associated with the active learning experiences.

Lecture. Some students found lectures to be the most comfortable, perhaps because
lectures were more consistent with their past experiences and expectations and
were much less demanding of their attention. Students reported enjoying the
presentations, but the associated reflections were generally less focused and
personalized.

Numeric Examples. This was, without doubt, the most devastating error in the
pedagogy. An early appearance of a numerically-based example was sufficient to
cause alienation from the concept. This may have been due to the math phobia
common among the student population. Far more effective was to introduce and
activate a concept using a non-numeric example.

Lightbot. Using the Lightbot game proved to be a very effective tool for concept
activation, curiosity stimulation, and discovery learning.

B) @15 LS.

Light-Bot is a “video game” that introduces many
basic programming concepts in a tutored activity
students find enjoyable.

AP CS Principles Pilot at University of California, Berkeley

Authors: Daniel D. Garcia, Brian Harvey, and Luke Segars
Course Name: CS10: The Beauty and Joy of Computing
Pilot: Autumn semester 2010 (and other offerings cited)

a) How CS10 Fits In At UC Berkeley:

The course is intended for non-CS majors. For students in the

College of Letters and Sciences, it fulfills the "Quantitative °
Reasoning" breadth requirement. It is not required for CS majors,

but some intended CS majors with no prior programming 0
experience decide to take it as preparation for our first course for

CS majors. In addition, many non-CS majors enjoy CS10 enough
to continue with the sequence for majors.

The department, on our recommendation, stopped offering our

two other venerable (Scheme programming-only) non-CS major

classes so these students would all flow through CS10. We have since seen a
dramatic growth in enrollment, from 80 students in both fall 2010 and spring 2011
terms to 240 in both fall 2011 and spring 2012 terms. In the spring of 2011, the
course was chosen by the UC Online Instruction Pilot Program (OIPP) as an online
course pilot, and we hope to go live with the online version of CS10 in the fall of
2012.

b) Course Specifics

e Lectures: Two 50-minute periods per week, MW

e Labs: Two 110-minute closed labs driven by Moodle activities with Teaching
Assistant (TA) and Lab Assistant supervision, TTh

e Discussion: One 50-minute recitation period led by TA (used for lecture

review, programming problem work in small teams, reading discussions, CS

Unplugged exercises, role playing, computer disassembly, group design of

video games, project work, etc.)

Format in a given week: Lecture - Lab - Lecture - Lab - Discussion

Course: 14-week semester, yielding 7 * 14 = 98 contact hours

Credit Hours: 4 semester credit hours

Fulfills Requirements: Quantitative Reasoning

Attendance: 80 started; 76 finished

Programming Language: Scratch and Build Your Own Blocks (BYOB) based

on Scratch. Soon to be browser-based Snap! which works on mobile devices.

e Grading: Weekly reading quizzes and homework (15%), 2-3 page paper
[later evolving into a 1-page blog with 3 mandatory response paragraphs to
other students posts] (15%), Midterm Project (15%), Final Project (15%),
Quest [early, sanity-check exam, halfway between a “quiz” and a “test”] (5%),
Midterm (15%), and Final (20%).

c) Course Design

The name of the course originated from Grady Booch’s SIGCSE 2007 Keynote in
which he exhorted us to share the “Passion, Beauty, Joy and Awe” (PBJA) of
computing. We simplified the name (fearing that “awe” may imply more “fear” than
“wonder,” and that “passion” is internal, not taught) to “Beauty and Joy of
Computing" (BJC). Our whimsical logo captures the spirit of the course, while
paying homage to its roots (the colors of the B]C letters come from BYOB and the
Blown to Bits book).

Between the course title, the idea that this may be the last computing course many
students ever take, and the need to adequately prepare them for CS61A4, several key
design principles emerged (many directly from the SIGCSE panels!):

As much as possible, show beautiful and joyful examples of computing. This
includes leveraging (and extending via BYOB) the incredibly well-designed,
simple-yet-powerful graphical development environment of Scratch,
delightful fractals to teach recursion, elegant higher-order functions that use
abstraction to hide messy details of control flow, showing how climate
simulations are saving the planet, the internet is wonderfully enabling, etc.

Half of the course should be the societal implications of technology. We
assigned an incredible book, Blown to Bits (Abelson, Ledeen, and Lewis),
which we supplement with videos and other readings.

Programming should be joyful, so allow students to choose any project they
wish .

Deep learning happens by doing, not by listening, so use the lab-centric model
of instruction (here, 4 hours of Moodle-driven labs per week).

Show relevance of computing to the students. Every lecture begins with a
“technology in the news” discussion, selected to be most relevant to the
student demographic. They are culled from Slashdot, Technology Review, NY
Times Technology, CNN Technology, Digg, etc.

Lecture should be engaging, so employ peer instruction through clickers that
are provided as free loaners to all students.

Invite guest speakers from industry to share “behind the scenes, how the
technology behind our business works” talks, to reinforce & ground the
importance of the big ideas. We've been fortunate to have accessible and
inspiring talks from engineers Raffi Krikorian from Twitter™ and Tao Ye
from Pandora™.

Exciting computing research areas should be presented, by experts in that
area. These should be a broad “here’s the entire field” overview, not a
narrow “here’s my research” talk. We invited departmental faculty Bjoern

Hartmann and Armando Fox to speak on HCI and Cloud Computing, and
course instructors added their survey of the field of artificial intelligence.

Make the entire course free to students, so the class can be exported to high
schools easily. Everything from the IDE to the book is available for free.

Learning to program can be deeply frustrating, so encourage both their
three-week projects to be done in pairs (even the occasional teams of three).

[t sometimes takes a while for this material to “click” and students often have
a bad day, so allow a high score on a later exam to overwrite a poor
performance on an earlier exam.

Lecture Topics (and number of lectures on that topic)

Abstraction (1) - Abstraction as a reasoning and problem solving tool
Video Games (1) - The development of video game platforms and
technology, games with a purpose (GWAP)

3D Graphics (1) - Fundamentals of 3D graphics (a fun, “How It Works”
explanation)

Algorithms (2) - Divide and conquer algorithms and analysis techniques
Functions (1) - How to create functions in BYOB and the beautiful
implications

Programming Paradigms (1) - The benefits and trade-offs of each
Concurrency (1) - Dealing with concurrency on one computer, both
historical and BYOB-based

Distributed Computing (1) - Dealing with concurrency between computers,
both historical and BYOB-based

Recursion (3) - Emphasis on graphical recursion (fractals) and non-linear
recursion since looping constructs are available

Social implications of computing (2) - Discussion of the ethical, economic,
security and privacy implications of computing (Education, privacy, risks,
Patents and copyrights, war, community, etc.)

Applications that changed the world (1) - Commentary and technical
details of some applications of computing that have changed the world
(Transistor, PC, WWW, Internet, Search Engines, Google Maps, Video
Conferencing, Social Computing, Cloud Computing, etc.)

Computing in Industry (1) - Industrial guest (Twitter, in Fall 2011 we
added Pandora) explains how they use computing

Saving the World with Computing (CS + X) (1) - Guest from Lawrence
Berkeley National Labs talks about climate simulation, protein folding, digital
humans, and other supercomputer activities that are saving the world

¢ Higher Order Functions and Lambda (2) - Higher order functions and
lambda. The same programming ideas introduced in CS3 (the beauty and
power of functions as data, anonymous functions)

* C(Cloud Computing (1) - Fundamentals of cloud computing (a “How it Works”
explanation)

* Game Theory (1) - Deep Blue and general game strong solving techniques

* Artificial Intelligence (1) - Historical progress and current directions and
innovation in Al

* HCI (1) - Historical progress and current directions and innovation in
Human-Computer Interfaces

* Limits of Computing (1) - Revisit analysis techniques and discuss NP
problems, computers are finite (for representations)

* Future of Computing (1) - Discussion of current and future areas of
innovation and research

* Wrap-up (1) - Project demos and a sneak peak at EECS undergrad course
offerings

Lab Topics (and number of labs on that topic)
¢ Learn Scratch (3)

* Learn BYOB (1) - Learn how to create “functions” or “Blocks” in BYOB
e Lists (2)

¢ Algorithms (2)

* Concurrency (1)

* Distributed Computing (1)

* Recursion (3)

¢ Higher Order Functions and Lambda (2)

¢ Hash Table (1)

* Simulations (1)

* Work on projects (6)

Reading List: See the course web site (below) for a complete list.

d) Evidence of Student Work

Student papers were topical and interesting. Samples titles: Net neutrality,
Prosthetic Arms, Record Companies No Longer Rule the Roost, Computers in
Astrophysics, News for the Information Age, Al & Transportation and Electronic
Privacy.

Three programming projects (across three consecutive years of teaching the course)
were chosen as the best that students ever produced (in only three weeks):

Picoboard Guitar Hero (Pierce Vollucci and Sina Saeidji, fall 2009); these students
used a USB PicoBoard sensor board and a keyboard and built their own guitar, then
wrote a Guitar Hero-style game to train them to play it! The musician would press
keyboard keys for different notes and pluck one of the wire frets, which would
complete a circuit, and the PicoBoard would let BYOB know what note to play. They
performed “The Battle Hymn of the Republic” during the final presentations!

Magic Machine 3.0 (Max Dougherty and Victor Lymar, fall 2010); this incredible
program featured an editable 2D grid; time vs instrument (with higher-pitched
instruments at the top, drums at the bottom). Clicking in a grid location placed a
blue square there, meaning that note should be played at that time. A grey vertical
bar slid to the right (and reset on the left after it reached the end), and played the
multi-track loop over and over. The user could change the instrument using the
words on the left column and change editing modes using the words on the top.

Player 1 Lives [. Player 2 Lives [0
Player 2 Lives [| S

Kinect Archery (Jim Knudstrup, Amanda Atkinson and Vivian Lo, fall 2011); these
students hooked up a Microsoft Kinect to BYOB, and authored a very playable
archery game that used the Kinect to aim the bow, and physics to control the
trajectory of the arrows. Video available at http://youtu.be/wlHwbCcujvo

e) What Worked And Didn’t

Sufficient development time, outstanding team, small half pilot ... worked. The course
was developed over the eighteen months prior to the official AP CS pilot by three
teaching-track faculty and ten of the strongest graduate and undergraduate teachers.
By the time we launched with the full course pilot in the fall of 2010, we felt we had
debugged most of the issues with the software and course content.

Peer Instruction ... worked. Students responded that they were delighted they didn’t
need to pay for clickers (as in all their other classes) and that it made lecture more
interesting and dynamic.

Videotaping lectures ... mostly worked. We learned that it’s hard to have a well-lit
instructor as well as a dark screen, and to keep lecturers from pacing the floor.

BYOB ... mostly worked. Several key bugs were squashed during the fall 2009 “half
pilot” as development continued. The from-the-ground rewrite now in progress
(called Snap!) will address the remaining speed problems and will run in a browser
and on every smart mobile device.

2-3 Page Paper ... didn’t scale, and didn’t take advantage of the social component. The
care and effort we gave to the papers for the half-pilot (each of the co-instructors
read every paper) clearly didn’t scale as we moved to 80 students for the pilot. We
replaced this assignment with a one-page blog where students were required to
read three other students’ blogs (two assigned by us, the other of their choice) and
write at least a single paragraph of reflected commentary for each.

f) Links, Resources, Acknowledgments

The fall 2010 pilot was co-taught by Dan Garcia and Brian Harvey, with help from
teaching assistants Luke Segars and Jon Kotker. The fall 2009 pre-AP course was
co-developed by Dan, Brian, Jon, Mike Clancy, Colleen Lewis, George Wang, Glenn
Sugden, Stephanie Chou, Brandon Young, Wayland Siao, Gideon Chia, and Daisy
Zhou, with collaboration of local high school teachers Ray Pedersen, Eugene Lemon
and Josh Paley.

The entire course curriculum is available at http://bjc.berkeley.edu. We offer
teacher preparation workshops to groups of 20 or more teachers in a locality;
participants get a stipend and we bring an experienced BJ]C instructor to your site.
See the web site for more details.

The current class Web Site:

http://inst.eecs.berkeley.edu/~cs10/

Build Your Own Blocks (BYOB) based on Scratch, and Snap!
http://byob.berkeley.edu

Testimonials about CS10 : The Beauty and Joy of Computing
http://www.youtube.com/playlist?list=PL48C2AF5762B2D32D

Fall 2010 High-Definition lecture videos:
http://www.youtube.com/playlist?list=PLECBD29A17AAF6EF9

ensemble Computing Portal for commenting and rating BJC learning items

http://www.computingportal.org/bjc_collection

AP CS Principles Pilot at University of California, San Diego

Authors: Beth Simon (UCSD) and Quintin Cutts (University of Glasgow)
Course Name: CSE3 Fluency with Information Technology
Pilot: Fall 2010 quarter and Winter 2011 quarter

a) How CSE3 Fits In At UCSD:

UCSD’s Computer Science and Engineering department has offered CSE3, Fluency
with Information Technology for a decade. In the past 5 years or so, it has been a
required course for two groups on campus: psychology majors and students
enrolled in UCSD’s Sixth College undergraduate program. At UCSD all students have
their general education requirements set through their choice of a “college”; and
Sixth College’s focus is on culture, art, and technology. The Pilot offerings in Fall
2010 and Winter 2011 served ~1000 students. Sixth students (primarily freshmen)
accounted for 70% of the population and were spread across all majors except
engineering. Psychology majors were primarily juniors or seniors. The course was
~60% women. The course content of CSE3 had been under evaluation for a year
when Dr. Simon was presented with the opportunity to pilot CS Principles. Upon
review, the newly recommended CSE3 curriculum appeared to fulfill the grand
majority of CS Principles learning goals and, hence, seemed a great fit.

b) Course Stats

* Lectures: 2 80-minute periods, TTh

* Labs: 1 120-minute closed lab with TA instruction, spread over the week

* Course: 10-week quarter, yielding 50 contact hours

* Credit Hours: 4

* Fulfills Requirements: General Ed for Sixth College, Psychology Major

e Attendance: Fall 2010: 580 started; 572 finished. Winter 2011: 456 started;
447 finished

* Programming Language: Alice followed by Excel

* Grading: daily quizzes, daily peer instruction/clicker questions, 9 lab
exercises, individual programming project, midterm, final

* Pilot: Fall quarter, 2010, Winter quarter 2011

c) Course Design

The course was designed with the following key underlying questions: If this were
the last course someone was to take in computing, what would you want them to
know? What do you want them to get out of it? Our answer to this was to help
students develop not only the knowledge, but the visceral understanding that
computers are:

1. Deterministic - they do what you tell them to do
2. Precise - they do exactly what you tell them to do, and

3. Comprehensible - the operation of computers can be analyzed and
understood.

As such, we agreed with the CS Principles belief that “programming” is one of the
best tools we have for helping students get at the heart of computing - that you can
provide directions to the computer and it will do what you say. But our previous
experiences led us to believe that simply “getting students to program” didn’t
effectively convey that message to the masses. We’d seen all too many students
leave introductory programming experiences not with a sense of control, but with a
more firmly developed sense of mystery, that computers can’t be understood and
you just move things around and change stuff until things finally do what you want.

We took as our mantra to students that we didn’t care so much if they could write a
program to do something - if they couldn’t also explain how it worked and be able
to analyze what it did and why. Analysis and communication - not program writing
- was our goal for students. To support them in developing these skills, we adopted
course design based in the Peer Instruction pedagogy [4]. In a nutshell, Peer
Instruction recognizes that it is students who need to do the learning (not the
professor) and provides the structure and time for students to spend in analysis and
discussion of challenging questions that engage them in confronting difficult
concepts. The standard course “lecture” is replaced by a two-part process:

1) Preparatory work outside of lecture (pre-reading of the textbook, though in
this class augmented by work in Alice building the programs described in
the text) and

2) Replacement of standard “demoing” or explanations with a series of
multiple-choice questions where students are engaged in analyzing a
problem or some code, and describing what the code does or selecting
some code to make a specific thing happen.

The preparatory work involving program building derives from our awareness of
students’ need for real experience of programming concepts and constructs if they
are going to have meaningful discussions about what programs mean. Simply
reading about programming doesn’t give the necessary depth of experience or
engagement - learners need to actually see the constructs working.

The in-class multiple-choice questions are asked using a specific format. First, each
student attempts the question him/her-self (and indicates their answer
electronically with a clicker). Then, students spend a few minutes discussing the
question with a pre-assigned group of 3 students. The groups are exhorted not just
to agree on the answer they think is correct, but to also explain their thinking to
each other and to discuss why the wrong answers are wrong. Finally, a second
round of answers is collected by clicker, and a class-wide discussion is led where
students are asked to share the thinking and ideas discussed in their groups. The
instructor can augment these explanations by modeling how she thinks about the
problem and clarifying any specific misunderstandings that might persist.

Homework Lab Exam

; Q
- U ” 2
D - L SO o g
First Exposure: Practice

With resources and Knowledge Show Knowledge

Feedback Analysis via Discussion mastery ~ Mastery

Schematic diagram of the peer-teaching approach.

Final assessment of understanding is measured through weekly 2-hour closed labs
(covering the previous week’s materials) and standard exams (mostly multiple-
choice questions, with some written explanations and code writing required).

In addition, students completed both a 4-week individual project in Alice to create a
digital animation or video game of social value (communicating their views on a
subject of import to society, or providing educational value). The course goals were
also supported by three “Technology and Society” assignments that sought to focus
students on how the programming concepts they were learning existed in the world
around them. These also engaged students in digital communication techniques
such as discussion forum posting and wiki creation and editing. The way in which
these additional assignments were able to link the students’ programming work
with their everyday lives sought to give meaning to the whole process.

The course content was derived from Learning to Program in Alice (Dann, Cooper,
Pausch) Chapters 1,2 (sequential execution), 4 (methods, parameters), 5 (events), 6
(functions and if statements), 7 (loops), and 9 (arrays/lists); and a popular Excel
book (basic formulas and functions, managing large datasets, exploring data with
PivotTables).

d) Evidence of Student Success/Valuation

As a general education course, one important metric of success is pass rate for the
course. Yes, this course needs to be rigorous and provide students the training and
understanding to be confident and capable in using technology in their lives.
However, students also need to be able to succeed in the course without lengthening
their time to degree. Given high failure rates in standard introductory computing
courses, this is a non-trivial issue. The pass rate for the fall term was 98% and the
pass rate for the winter term was 97%.

But did we succeed in meeting our educational goals? To help measure this, we
sought answers to questions like: “What if this is the last computing course these
students ever take? What are they getting out of it? Does this satisfy us with regards
to what an informed populace should know?” We were teaching “programming” but
our lectures focused students on analyzing programs to illuminate core concepts
and skills. We asked students about their experience in lab during Week 8:

Learning computing concepts may have opened many doors for you in your future
work. Although you may not ever use Alice again, some of the concepts you have
learned may become useful to you. Some examples include:

* Understanding that software applications sometimes don’t do what you expect,
and being able to figure out how to make it do what you want.

* Being able to simulate large data sets to gain a deeper understanding of the
effects of the data.

* Understanding how software works and being able to learn any new software
application with more ease, i.e. Photoshop, Office, MovieMaker, etc.

Aside from the examples given, or enhancing the examples given, please describe a
situation in which you think the computing concepts you have learned will help you in
the future.

A more complete analysis of students’ answers can be found in [5], however we
found seven categories of response types among students’ responses, with students
reporting on average at least two of these each:

* Transfer, near: can apply new skills in software use

* Transfer, far: can use problem solving skills in other areas of life

* Personal Problem Solving Ability: Debugging - can logic it out, attempt to, or
deal with, unexpected behavior

* Personal Problem Solving Ability: Problem Design - can develop plan to solve
technical problem, can see what requirements exist

* View of Technology: greater appreciation or understand of technology

* Confidence: increased ability to do things on computer, a can-do attitude

¢ Communication: communicate better about technology

The student answers themselves convinced us that the class had had a notable
impact on many students’ lives. As an example, one student answered:

“The things I learned in Alice can help me not to be so frightened in general when
dealing with technology. Although I am not certain I have absolutely mastered every
concept in Alice, I am certain that I have learned enough to bring me confidence to
apply these ideas in the technological world. This is a big deal for me, as I do consider
myself quite technologically challenged. I think this class has given me tools for life,
that can be applied to both my life at home, socially, and at work.”

e) What Worked And Didn’t

The Language. Worked. The drag-and-drop nature of Alice did provide students the
reduced frustration and cognitive load in developing programs - enough so that we
were able to ask students to “develop” programs on their pre-class preparation,
without them getting stuck half-way. However, just as important was the fact that
the execution model of an Alice program is “visible” to students - that is, for every
instruction they create they can “see” the effect of that instruction in execution of

their program. (Note: we didn’t cover variables in our seven weeks of instruction -
somewhat a shock to us as instructors initially, but, in the end, a critical
recommendation from Steve Cooper). In group discussions in class it was clear how
students would match up observed behavior and instructions - and how they came
to understand that debugging is a comprehensible process of matching code with
outcomes.

Peer Instruction. Worked. Peer Instruction’s core premise is to provide students the
opportunity and excuse to engage with deep challenging concepts. Originally
developed in physics to help address the fact that students could “plug and chug”
their way to correct answers without really understanding applicable physical laws,
Peer Instruction was an excellent fit for the goals of this course. Programming is a
great tool for engaging students, because they can see for themselves if they have
“got it right”. However, that’s also a potential pitfall. We used Peer Instruction to
keep students focused on the goal of understanding how programs and
programming concepts worked - not just getting a program to do what you want.

Excel. Worked. It was surprisingly rewarding to cover “basic” Excel topics after
having done Alice. Students were somewhat amazed to see how previous
experiences with Excel could now be seen in a new light. Students saw how a
function like sum was, well, a function. It takes parameters and returns a number
value. Nested if statements in Excel were equally easy. Students could identify (on
the exam) that VLOOKUP is a loop over an array of items with an if-statement inside.

Focus on Analysis and Communication. Needed improvement. The first term of the
pilot we did not make clear enough to students (from the beginning) that our goal
was to help them develop technical analysis and communication skills, both to be
able to interact with computers better themselves, and to be able to interact more
effectively with computing professionals. Students are spending a lot of time
programming in Alice, and it’s important to emphasize almost daily how learning to
use Alice is just a means to an end - the end being an understanding that computers
are deterministic, precise, and comprehensible.

Multiple Classrooms via Video. Didn’t work. For reasons outside the scope of this
pilot, each term the class was offered simultaneously in three rooms co-located in
one building. The instructor “lectured” in one room and video of her was streamed
live to the adjoining rooms. Although all rooms were staffed with actively engaged
tutors and TAs (e.g. as support during discussion periods) and that the instructor
walked among all the rooms during most every discussion period, students made it
clear that they didn’t like this “video” format - though the concern was primarily
among freshmen; upper division students felt that the style of the classroom (using
Peer Instruction) was all that really mattered.

f) Links, Resources, Acknowledgments

The pilot was taught by Beth Simon, but collaboratively developed and inestimably
improved by Quintin Cutts, visiting on sabbatical from the University of Glasgow.

Extreme thanks go to our intrepid army of TAs and undergraduate tutors (all 40+ of
them), without whom the course could not have been the same.

A web site for educators interested in adopting our curriculum:
http://www.ce21sandiego.org/

AP CS Principles Pilot at University of North Carolina at Charlotte

Author: Tiffany Barnes
Course Name: The Beauty and Joy of Computing (course number pending)
Pilot: Spring semester, 2011

a) How BJC Fits In At UNC Charlotte:

UNC Charlotte’s Computer Science department offers ITCS1212, Introduction to
Computer Science, a course with an accompanying lab, which is taught to 300
students (typically freshmen) from across campus each semester. It is a required
course for a few departments. ITCS1212 is consistently over-subscribed and further
expansion is resource limited. This course is the first in a series of courses for CS
and IT majors, and teaches basic programming concepts in C++. Non-majors find
this course difficult and leave it unsure about how it connects to any other subjects.

ITCS 1203 Beauty and Joy of Computing is a preliminary course, cross-listed for
Computer Science and Information Science, intended to introduce non-majors and
majors with little to no computing experience to the general concepts of computing.
Beauty and Joy of Computing stresses the connection between computing and other
disciplines while building a strong foundation in general computing concepts
through hands-on visual and interactive projects.

b) Course Stats

* Lectures: 2 75-minute periods, TTh
e Labs: Built into the lecture schedule, about % of class time
* Course: 16-week semester, yielding 40 contact hours
* Credit Hours: 3
* Fulfills Requirements:
o Computer Science General Elective (Spring 2011/Fall 2011)
o Future: Hopefully General Ed, Mathematical and Logical Reasoning
e Attendance: 22 started; 20 finished
* Programming Language: SNAP! (BYOB, a version of Scratch), Applnventor,
GameMaker, and StarLogo TNG
* Grading: 21 homework assignments, 13 labs, midterm, final

c) Class Content The class followed the schedule shown below.

Classes usually consisted of an introduction to a topic via Powerpoint slides and
videos, a CS Unplugged style class activity or a discussion, and a lab. Class topics
were chosen to be relevant and to illustrate computing’s connection to society and
innovation. Labs gave students hands-on experience with the material. Most of the
lab exercises were done in pairs to be completed as homework. Students were thus
motivated to complete as much of the labs in class as possible. The intention was for
each lab to be doable by students in under 2 additional hours outside of class.

Weekly readings emphasized the impacts of computing, both positive and negative,
on society, and were usually discussed through online forum discussions.

The class focused on making computing relevant while also demonstrating
fundamental computing concepts in a hands-on interactive way. Guest lectures from
departmental faculty and a doctoral student emphasized computing research topics
and how they impact society.

* Richard Souvenir - Computer Vision (classifying what’s in a picture/video)

* Jamie Payton - Participatory sensing (incentivizing crowdsourced data
collection)

* Lane Harrison - Visualization (how it can help people solve problems)

* IBM Watson - Campus-wide presentation by a Project manager at IBM

* UNC Charlotte research overview; opportunities for undergraduate research

Students reported that the class filled gaps they had in computing knowledge, even
for those who took the course as an elective in their senior year in computing. Two
students applied for and participated in a summer REU after the course; one of these
was a business major who is changing his major to IT.

Topic List for UNC Charlotte’s Beauty and Joy of Computing course

1. Welcome & Orientation 23. Usability testing of projects
2. Scratch Intro lab 24. Project presentations

3. Scratch Controls & Variables lab 25. Applnventor lab

4. Video Games lecture 26. Applnventor lab 2

5. Gamemaker Intro lab 27.Simulation BYOB lab

6. BYOB - make your own blocks lab 28. StarLogo TNG simulation lab
7. 00 Programming; Controls lab 29. Higher Order Functions lab
8. Algorithms lecture; Lists Intro lab 30. Final exam (includes societal
9. Complexity; Using Lists lab impact essay)

10. Artificial Intelligence - Videos

11. Search and Sort Algorithms

12. Recursion Unplugged activity

13. Recursion; Fractals lab

14. Midterm review

15. Midterm

16. Project Introduction

17. Project Proposal Presentations

18. Applications that Changed the
world - demos; discussion

19. Computer Vision & Visualization
guest lectures

20. Research opportunities &
Visualization guest lecture

21. HTML and usability

22.Project work (lab)

d) Evidence of Student Work

Of particular importance in our class is promoting students to use computing for
their own goals. Projects ranged from a math multiplication game, to a Jeopardy!
Interface, to a colonial times history lesson, to a tournament scheduler, to a memory
and math game that was actually used for kindergarteners.

[move [N0[prob#

l:’count 3 | |Fmove 2 '

problems wrong pl'ul:lll?ms righ

7 X FNOT?F 464 =
0

- ' .__:::
Lt = length: 1 i - =length:2 2

[‘v Whats ? K ? v -
Al ¢

Water Bender was a favorite project in the class. It's a math practice game, where
you solve randomly generated multiplication problems to save a tree; solving one
problem douses one spark that can ignite the tree. This program was quite
challenging for the students to design - the sparks travel toward the tree, and speed
up as time goes on, becoming faster as the player misses more problems. The
impressive thing about this game was that it was tuned to match with the player’s
ability. This is difficult to accomplish in any game, let alone one made in 4 weeks by
novices.

e) What Worked And Didn’t

Scratch/BYOB/SNAP! This easy-entry programming environment based on one
made for children made it easy for novices to learn to program. However, we did
jump right in and scared a few might-have-taken-this-class students away with labs
to complete at home. The extension of Scratch that allows you to make your own

blocks, and those that allow for higher-order functions, make it easy to teach
advanced concepts in an early course.

GameMaker, AppInventor. Students were very excited to learn to make games and
Android phone applications. GameMaker was easier for programming large
numbers of objects, and made a great contrast for talking about programming
paradigms, since it is more strongly object-oriented than Scratch/BYOB/SNAP! App
Inventor helped students feel that they could make cutting edge programs that
other people might actually use. Since it uses the Scratch programming interface,
learning it was easy.

StarLogo TNG: This environment felt clunky compared to the rest, and since it ran
slowly on our old laptops, this feeling was magnified. Some students liked the
simulation aspect but we felt we could have found or created labs that made a better
connection to biology and student’s lives or at least other subjects.

HTML. We did one class and homework on HTML but it was much less exciting than
other topics. Many students had already looked at HTML before; we felt we could
have skipped this topic since students can learn it easily on their own.

Abstraction. It’s the #2 idea in the “Big [deas” list, and it was a topic addressed most
weeks. We felt this was a success - students did seem to be working at the right
level of abstraction on most projects. This might not be as explicit as it could be.

Sequencing. Student feedback showed appreciation for learning multiple tools but
wished for them to be “chunked” so all BYOB was together and the other
applications came later. This was done in Fall 2011 and worked well.

Projects. Allowing students to choose their own projects and teams was a great
success. We initially planned for 2 projects but reduced it to one after we saw the
high quality of those turned in. In Fall 2011, we went back to 2 projects but the
second was a small one to demonstrate deeper understanding of one newly
introduced tool (GameMaker, AppInventor, or StarLogo TNG). This allowed students
to spend more time in one tool they enjoyed. Usability testing in class really drove
home the importance of testing code and just how difficult it is to get that final level
of polish to a piece of software.

Readings. Understanding of the readings would be better if they were explicitly
discussed in class or if there were peer reviews of one another’s posts in the forums.

f) Links, Resources, Acknowledgments

UNC Charlotte’s Beauty and Joy of Computing class was adapted from Dan Garcia
and Brian Harvey’s BJC class at Berkeley. The UNC Charlotte class is distinct in that
it has less than half of the contact hours of the Berkeley course, but supplements the
course with learning multiple programming environments and tools. This is
accomplished via fewer and shorter lectures, lab time in class, and discussion of
readings done online.

The pilot teaching assistants were Drew Hicks (then and now a doctoral student and
now NSF Graduate Research Fellow) and Shaun Pickford (then undergraduate, now
graduated with a job at Microsoft). Drew and Shaun helped extensively in preparing
course lectures and CS Unplugged activities.

Four high school teachers in Charlotte including Sharon Jones, Beth Frierson,
Renada Poteat, and Brian Nivens, observed some days of the course, worked
through labs, and designed assessment questions for adoption when the course is
offered in high schools.

* The class Moodle (login as guest): http://moodle.game2learn.com/

* The BYOB/SNAP! Page http://byob.berkeley.edu/

* The Blown to Bits textbook: http://www.bitsbook.com/

* GameMaker: free download available at http://yoyogames.com

* App Inventor: http://appinventoredu.mit.edu/

e StarLogo TNG: http://education.mit.edu/projects/starlogo-tng

* The Beauty and Joy of Computing “Frabjous CS” project site for Dan Garcia,
Brian Harvey, and Tiffany Barnes project to train 100 HS teachers to teach
BJC: http://bjc.berkeley.edu

AP CS Principles Pilot at University of Washington

Author: Lawrence Snyder
Course Name: CSE120 Computer Science Principles
Pilot: Winter Quarter 2011

a) How CSE120 Fits In At UW:

UW’s Computer Science and Engineering department has offered CSE100, Fluency
with Information Technology for a decade in collaboration with the University’s
Information School. That class is taught to 150 students (typically freshmen) per
quarter from across campus. It is a required course for a few departments. FIT100 is
consistently over-subscribed and further expansion is resource limited. The course
is general interest, and is considered preliminary to the standard introductory
sequence, Computer Programming | & 2.

CSE120 Computer Science Principles was added as a new preliminary class. It is
distinguished from Fluency as follows: Both classes are concepts classes that teach
similar content: Fluency emphasizes concepts to make students more facile with
computation; Principles emphasizes concepts as science and stresses the clever and
amazing ideas of CS as a science.

b) Course Stats

* Lectures: 3 50-minute periods, MWF

e Labs: 2 50-minute closed labs with TA instruction, TTh

* Course: 10-week quarter, yielding 50 contact hours

¢ (Credit Hours: 5

* Fulfills Requirements: General Ed, Quantitative & Symbolic Reasoning
e Attendance: 22 started; 22 finished

* Programming Language: Processing and XML with some HTML/CSS

¢ Grading: 20 homework assignments, 5 lab exercises, midterm, final

c) Class Content The class followed the schedule shown below.

Lectures were a combination of conventional Powerpoint slides, online demos and
discussion. Labs were generally designed to give students hands-on experience with
material illustrating or implementing concepts discussed in the preceding lecture.
Some of the lab exercises were graded.

In general a homework assignment would be given at each lecture to be turned in
prior to the next lecture. The exercises were varied, and doable within two hours by
a typical student. Students were asked to spend one hour per day engaged in class
work, as opposed to two hours in one sitting. Eventually the assignments became
larger and spanned several classes. Lab time was allocated so the TA could answer

questions. Though students preferred the less frequent assignments, at the start the
relentless every-other-day schedule brought everyone quickly up to speed with
basic concepts, esp. programming ideas.

The class emphasized using CS Principles in other majors, rather than trying to
motivate students to major in CS. (UW’s program has severely limited enrollment
and accepts far fewer than the number of qualified students.) Two guest lectures
from departmental faculty emphasized the use of fundamental CS for non-technical
purposes.

* Richard Ladner: Accessibility - Using Computing To Help The Handicapped
* Zoran Popovic: FoldIt and Other Games To Make The World Better

Students found both lectures extremely inspirational. Regarding majoring in CS
specifically, there was an “Ask The Advisor” reception (with pizza) before the first
Watson Jeopardy Match. Several students have started the path to be CS majors.

Topic List for UW’s CS Principles in Time Sequence

1 Welcome & Orientation

“What [Value” writing exer. (lab)
Lightbot: Game or Programming?
FTP Review & Portfolio Page (lab)
Digitization: History of 0 & 1
Computing in Social Setting

Bits: Counting in bases 2, 16 (lab)
Basic Processing Ideas

. Q & A on Processing (lab)

10. Digital Representation

11. MLK Holiday - no class

12. Writing Processing Pgms (lab)
13. Pac-Man - Abstract in Proc’g

14. Populating Portfolio Page (lab)
15.If's and For’s in Processing

16. Color, RGB, binary arithmetic

17. Practice w/binary adding (lab)
18. Fetch/Executing - How it works
19. Work on Own Programs (lab)

20. Sports Timer: Abstraction Layers
21. Digital, Analog, Bits “R” Universal
22. Practice writing Functions (lab)
23. Complexity, Universality Principle
24.Work on Turtle Game HW (lab)
25. Midterm Review and Recap

26. Midterm Exam - In class 1 hr
27.Lab Canceled

28.Recursion - Examples/Uses

OO U W

29. Practice Recursion in Proc’g (lab)
30. Reasoning: Algorithm Correctness
31. Artificial Intelligence - Jeopardy
32. Pair Programming Intro (lab)
33.Internet Structure + WWW

34. Pair Programming Project (lab)
35.DNS and Large Scale Systems

36. Presidents Day

37.Guest Lec: Ladner, Accessibility
38. Searching, Page Rank, Big Data
39.DIY Instruction in HTML (lab)
40. Debugging Principles

41. Guest Lec: Popovic Games 4 Good
42.DIY Instruction in CSS (lab)

43. Data, Meta-data, XML

44. Try Out XML Structuring (lab)
45. Database Structure

46. Crypto + Steganography

47.XML & XSL practice (lab)

48. Review and Recap

49. Help w/Final Project (lab)

50. Party Hats & Pizza

Creativity is the #1 “Big Idea” and it was #1 in the
class. As soon as the rudiments of programming in Processing were presented, the
students were assigned the task of inventing two interactive “art works.” (See the
class web site, linked below.) Later in the course students were asked to invent and
implement a game, in order to practice the basics of working in pairs. Though they
were not using game development software, Processing is effective enough that they
could focus on the concepts, even if totally glitzy features were not available.

An example was Matar Gokiburi developed by two women, one a native Spanish
speaker (for whom matar is “kill”), and one a native Japanese speaker (for whom
gokiburi are “cockroaches”). Analogous to a typing drill, the player must type the
letter fast as the cockroaches scurry around the screen.

Matar Gokihuri

INSTRVCTION

YOU HAVE 40 SECONDS TO 'NMATAR' = KILL (IN SPANISH)
THE 'GOKIBURI' = COCKROACHES (IN JNPANESE). TYPE THE
LETTER OF EACH GOKIBUKI.

ONE GOKIBURI SHOWS UP FOR 1.5 SECONDS. IF YOU MISS
HIM, YOU GET RED X ON THE BLUE BAR AT THE BOTTOM
OF THE SCREEN.

IF YOU MISS 3 GOKIBURI, YOU LOSE, AND GOKIBURI WILL
COME AND CLIMB UP YOUR LEGS!! KILL THEM TO KEEP
YOUR BEAUTIFUL LEGS CLEAN!! WANNA PLAY :)?

CLICK PLAY TO START THE GAME.

The Language. UW'’s CS Principles was an outlier among the pilots in that it did not
use a drag and drop programming language. The Processing decision was motivated
by preferring a “real” tool used in practice. Whether that is advantageous can be
debated. (Students who later took CSE142 Computer Programming in Java I said it
“was no problem ... we'd seen most of it in CS Principles.”) But the main criticism
against symbolic programming- the so called “syntax barrier” - did not present any
significant difficulties. The Processing IDE is very helpful, “Did you forget a
semicolon?”, and students quickly got past those issues. Indeed, there was wide
agreement that Processing is just plain fun.

Lightbot. Using the video game Lightbot 2.0 as a first-day exercise to introduce basic
computational ideas - specify-then-execute, sequential specification/sequential
execution, limited instruction repertoire, functions, repetition, etc. - was
enormously effective, and smoothed the way into Processing well.

HTML/CSS. Because of the sequencing glitches mentioned below, teaching HTML
and CSS wasn'’t fitting into the schedule, so students were given a cheat sheet and a
3-slide introduction, and asked to learn it on their own. This turned out to be highly
successful. Students did learn it on their own. But, they were in effect learning the
point that they could teach themselves technology. That turned out to be an
unintended, but very valuable result.

Abstraction. It’s the #2 idea in the “Big [deas” list, and it was a topic addressed in
some way most weeks. Though I didn’t test closely for their understanding, my
perception based on the discussions suggests a good level of understanding by the
2/3 point of the class.

Sequencing. The rational order for the topics was revised after a few weeks in order
to prepare for the debut of the Watson system and the Jeopardy competition.
Though it was sensible to do this, it seemed like the course lost momentum for a
week or two after that.

Concept Gradient. Using Lightbot and the supportive world of Processing, it was
possible to introduce concepts without going too fast, but that didn’t prevent me
from assigning a couple of “killer” homework exercises. Most students survived
them, but they need to be fixed. Curiously, these mistakes didn’t ruin most students’
self-confidence.

f) Links, Resources, Acknowledgments

The pilot was co-taught with Susan Evans, a Seattle high school teacher; she gave a
few lectures, designed projects and vetted all assignments. The teaching assistant
was Brandon Blakeley, a graduate student in CSE.

The class Web Site: www.cs.washington.edu/cse120

Blog written while teaching CS Principles: csprinciples.cs.washington.edu/blog/

Class documents zipped together:

www.cs.washington.edu/education/courses/cse120/11wi/dist/distribute.html

The Processing Home Page - notice the Exhibition and Learning Links

Www.processing.org

Lightbot 2.0 - it’s accessible from many sites

armorgames.com/play/6061 /light-bot-20

Analysis

The five pilots were taught “under a microscope.” Extensive surveying, weekly
conference calls, instructor summaries and other methods were used to gather data
to understand how well the courses were succeeding. The final report on the pilot 1
courses [6] gives complete data. For the purposes on this article, a few selected
graphs seem most useful.

Attracting Diverse Students

As indicated in other articles in this issue, a major goal of the CS Principles effort
was to attract a population of students that includes many who are not predisposed
to study computing. The field not only battles negative stereotypes, but its labor
pool must be enlarged both to meet expected demand, but also to introduce more
diverse opinions, especially considering the importance of social media.

The results are very encouraging.

Gender and Racial/Ethnicity Distribution

Most of the pilots were obligated to advertise for students because the CS Principles
course was new. These efforts were generally directed at under-represented
populations.

The gender balance over the five pilots showed 59% women, 41% men among the
654 students reporting [6].

Racial and ethnic diversity is summarized in the following chart. Notice that because
of the characteristics of the computing field, the Asian/Asian American group is not
considered under-represented. Overall the under-represented population was
11.1% of the total of 661 students reporting [6].

1.4% 4.8%

Overall Student Success
A careful analysis of
student performance
over the five pilots
summarized the
diversity issue as
follows:

In addition, the results of a
Mann- Whltney test ¥ Hispanic/Latino M Black/ African American ™ White
indicated that Statistically M Asian/Asian American ™ Other Multiracial/Multiethnic

significant differences
were found between the final grades of non-underrepresented students (median=3.30)
and underrepresented students (median=3.00). Non-underrepresented students had an
average grade of a “B+" compared to underrepresented students who had an average

grade of “B.” However, the effect size was below the accepted standards for even a
“small” effect size indicating a significant difference but not a substantial difference
between the final grades of non-underrepresented and underrepresented students.

Lastly, there were no significant differences between the final median grade for males
and females, this indicates that, based on final grades as a measure, females learned as
well in the course as males. [6]

Apportioning The Seven Big Ideas

Though the Seven Big Ideas may have been the intellectual foundation of the pilots,
there was no specification of how much class time should be allocated to each. It
may have been a goal of the piloters to balance the topics across the course, but
many other considerations affected the course content. In the end, there was
variation among the five, although collectively a rough balance was achieved.

The following five figures show the allocation of class time to the Seven Big Ideas
during the term by institution. The sixth figure is the summary over all pilots. The
data was reported at the end of each week by the instructor, and aggregated by
Kathy Haynie [6].

As outlined above, the Big Ideas in use during the 2010-11 pilots of CS Principles
related to 1. Creativity, 2. Abstraction, 3. Data and Information, 4. Algorithms, 5.
Programming, 6. Systems, 7. Impacts of computing.

It is perhaps not surprising that taken together the pilots allocated the most time to
Idea 5, programming. It’s a difficult topic to learn. But, CS Principles is not a
programming class, and programming accounted for less than a quarter of the
contact time, narrowly edging out Idea 4, algorithms. The least amount of the class
concerned Big Idea 6, “systems.” This may indicate the instructor’s view of where
technology falls into the curriculum, but there was also some confusion on the part
of some piloters (and the Advisory Board) about which topics were included under
the term “systems”. The Advisory Board later clarified Idea 6 as follows: 'Internet:
The Internet pervades modern computing', as well as other minor wording revisions.

Overall the report [6] indicates that the pilots were successful at “packaging” the
ideas and practices into a course, and within that, engaging under-represented
groups.

MSC Denver UC Berkeley

H Big ldea 1 M Big ldea 1

¥ Big Idea 2 M Big Idea 2
1 Big Idea 3

M Big Idea 4

i Big Idea 3
¥ Bigldea 4
M Big Idea 5
1 Big Idea 6

Big Idea 7

W Bigldea 5
1 Big Idea 6

Big Idea 7

UC San Diego UNCC
M Big Idea 1 .
M Big Idea 1
¥ Big Idea 2
M Big Idea 2
W Big Idea 3
W Bigldea3
M Big Idea 4
mRi
¥ Big Idea 5 Big Idea 4
ERi
= BigIdea 6 Big Idea 5
& Big Idea 7 " Bigldea 6
Across Institutions
W Bigldea 1 H Bigldea 1
M Big Idea 2 M Bigldea2
i Bigldea 3 1 Big Idea 3
¥ Big Idea 4 H Big ldea 4
W Bigldea 5 W Bigldea5
i Bigldea 6 i Big Idea 6
1 Big Idea 7 “Bigldea?7

Acknowledgments

The work described herein was funded by the National Science Foundation grant
0938336. Additionally, early development of UC Berkeley’s pilot was funded by a

grant from Lockheed Martin. All funding is gratefully acknowledged.

References

[1] Seven Big Ideas of Computer Science, 2010, www.csprinciples.org/home/about-

the-project

[2] Six Computational Thinking Practices, 2010, www.csprinciples.org/home/about-

the-project

[3] CS Curriculum 2008 Update, ACM, www.acm.org/education/curricula-

recommendations

[4] Simon, B. Cutts, Q. Peer Instruction: A Teaching Method to Foster Deep

Understanding. Communications of the ACM, Feb 1, 2012.

[5] Cutts, Q., Esper, S., Simon, B. Computing as the 4th “R”: A General Education
Approach to Computing Education. In proceedings of the International Computing
Education Research Conference, 2011.

[6] Kathleen Haynie and Vonda Johnson, “AP CS: Principles Course, Evaluation
Report for Year 2”, July 12, 2011.

Author information

Lawrence Snyder

Department of Computer Science and Engineering
University of Washington

Seattle WA 98195-2350
snyder@cs.washington.edu

Tiffany Barnes

Department of Computer Science
University of North Carolina at Charlotte
Charlotte, NC 28223
tiffany.barnes@uncc.edu

Dan Garcia

Department of Electrical Engineering and Computer Sciences
Computer Science Division

University of California, Berkeley

Berkeley, CA 94720-1776

ddgarcia@cs.berkeley.edu

Jody Paul

Department of Mathematical and Computer Sciences
Metropolitan State College of Denver

Denver, Colorado 80204

jody@acm.org

Beth Simon

Department of Computer Science and Engineering
University of California, San Diego

La Jolla, CA 92093-0404

bsimon@cs.ucsd.edu

Categories and Subject Descriptors: K.3.2 [Computers and Education]: Computer and
Information Science Education — Computer science education, Curriculum

General Terms: Experimentation, Human Factors, Design, Management, Measurement

Keywords: Computer science education, pedagogy, CS Principles

