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Likewise, when a long series of identical computations is to be performed, such as those 
required for the formation of numerical tables, the machine can be brought into play so as 
to give several results at the same time, which will greatly abridge the whole amount of the 
processes. 

-General L. F. Manabrea (1842) 

Manabrea's remark, referring to a design option for Babbage's Analytical 
Engine, has been cited (Hockney & Jesshope 198 1) as the earliest reference to 
parallelism in computer design. The fact that Babbage considered parallelism 
allows us to conjecture that nearly a century and a half ago he understood the 
obvious, but nevertheless, Fundamental Law of Parallel Computation: A 
parallel solution utilizing p processors can improve the best sequential solu- 
tion by at most a factor of p. 

This law's truth follows from the observation that a speedup greater than a 
factor of p implies the existence of a better sequential solution. It provides an 
upper limit on achievable performance that has been difficult to approach in 
practice, much less to achieve. After only two decades of serious study 
(Hockney & Jesshope 1981) and only preliminary analysis of the limits to 
speedup (Hwang & Briggs 1984, p. 28), it is certainly premature to be 
pessimistic about our ultimate success at attaining the maximum predicted 
benefits of parallelism. Still, there are reasons to be cautious. 

As a practical matter the scientific and commercial problems that are most 
in need of speedup are the so-called compute-bound problems (Bardon & 
Curtis 1983) since the YO-bound problems would yield to better data 
transmission technology not more processing capability (Boral & DeWitt 
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1983). These compute-bound problems are generally superlinear, typically 
exhibiting sequential time complexity in the range 0(n2) to 0(n4) for pro- 
blems of size n. The reason O(n4) problems are common in science and 
engineering is that they often model physical systems with three spatial 
dimensions developing in time. 

A frequent challenge with these problems is not to solve a fixed-size 
instance of the problem faster, but rather to solve larger instances within a 
fixed time budget. The rationale is simple: The solutions are so com- 
putationally intensive that problem instances of an interesting size do not 
complete execution in a tolerable amount of time. Here "tolerable" means the 
maximum time the machine can be monopolized or the scientist can wait 
between experiments. Thus, with present performance the scientist solves a 
smaller-than-desirable problem to assure tolerable turnaround. The fact that 
the tolerable turnaround time will remain constant implies that increased 
performance will be used to attack larger problems. 

What is the effect of parallelism on problem size? Keeping time fixed at t 
and (unrealistically) assuming the best possible speedup, it follows that 
superlinear problems can be improved only sublinearly by parallel computa- 
tion. Specifically, if a problem takes 

sequential steps, and if the application of p processors permits an increase in 
the problem size by a factor of m, 

t = c (n~n )~ lp ,  then 

the problem size can increase by at most a factor of 

For example, to increase by two orders of magnitude the size of a problem 
whose sequential performance is given by 

requires, optimistically, 100,000,000 processors! 
This observation, which I will call the Corollary of Modest Potential, is 

simply an interpretation of the Fundamental Law in the context of superlinear 
problems-the problems that matter. It states that in terms of extending our 
grasp, in permitting us to solve problems that are now too computationally 
intensive, parallel computation offers only a modest potential benefit. Notice, 
too, that the argument above is generous in focussing on low-degree polyno- 
mials. For interesting problems whose best sequential running time is of a 
higher degree or is exponential, the potential improvement is correspondingly 
more modest. 
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The Corollary was not formulated as an argument against parallelism. 
Parallel computation is perhaps the most promising way to improve computer 
performance now that technological advancements are approaching their 
inevitable physical limits. Rather, the Corollary has been formulated to 
emphasize that introducing overhead must be scrupulously avoided in the 
implementation of parallel systems, both in languages and in architectures. 
Because its benefit is so modest, the whole force of parallelism must be 
transferred to the problem, not converted to "heat" in implementational 
overhead. 

This review assesses recent developments in parallel architecture and lan- 
guage in light of the Corollary's mandate for efficiency. Because the interface 
between these two elements is rarely smooth, the friction metaphor of ill- 
fitting parts producing heat generally applies. Thus, a secondary agenda item 
is to define a clean interface point between language and architecture from 
which both specialties may depart. 

Preliminaries 
Parallel computation means different things to different researchers, so it is 
important to delimit the range of interest here. A parallel computer is com- 
posed of multiple processor elements, each capable of executing a stored 
program, and used collectively to solve one problem. For present purposes 
their organization must generalize so the number of processors can grow 
without a serious performance penalty. (A small set of processors attached to 
a bus is not treated here because buses simply are not scalable.) This defini- 
tion does not include distributed computer networks, pipelines or vector 
computers, or special purpose parallel computers embedded in larger systems. 

To execute a parallel algorithm on a parallel computer requires that at least 
two encodings be performed: 

algorithm 5 program computer 

where a programmer performs the first translation and a compiler performs 
the second. As we shall see, substantial overhead may be introduced with . 

both encodings, but the importance of performance implied by the Corollary 
will motivate us to seek ways of avoiding it in both. In the final analysis, the 
parallel programming language-the medium in which the program is ex- 
pressed, the target of the first translation and the source of the second 
translation-is the most critical element in effective parallel computation. 

Language: The Medium is the Message 
Although it is well known that languages like FORTRAN, LISP, APL and 
SNOBOL are universal in the sense of Turing computability, it is also 
acknowledged that each engenders a different programming style, each differs 
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in its suitability for programming a particular algorithm, and each favors 
particular problem solving methodologies. What makes these languages 
equivalent from a computability point of view and apparently dissimilar from 
the programmer's point of view is efficiency. The distinctions are annihilated 
in the grossly inefficient Godel encoding that proves their equivalence, but the 
distinctions are exposed when writing an efficient program. The form of 
expression, the selection and use of control structures, and the type and 
management of data representations all influence the processing that can be 
efficiently and conveniently expressed. If sequential languages, or more 
generally sequential language constructs, influence the form and structure of 
the programs for sequential processors, it is reasonable to conjecture that 
parallel language constructs, the medium of expressing parallelism, control 
and shape the form and extent of the actions and interactions of parallel 
processors. ' 

Because this point-that language greatly influences the form and efficien- 
cy of a parallel program-is so central to the following discussion, it is 
necessary to be more specific: A programming language's semantics define an 
abstract machine model, or simply model, that is the conceptual device 
executing the language; the "instruction set" for this machine is the set of 
language constructs. So, ALGOL-like languages define a machine providing 
a nested naming environment with name scoping, recursion, call-by-name 
parameters, control structures, dynamically allocated arrays, etc (Naur l963), 
while LISP-like languages define a machine providing a dynamic naming 
environment with S-expressions and lists, lambda binding, recursion, map- 
car, etc (McCarthy 1960). When the processing required for a particular 
algorithm matches that provided by a language's model, programming that 
algorithm will be convenient and the implementation will be efficient; matrix 
operations in ALGOL-like languages are a good example. But when the 
algorithm's requisite processing does not match that provided by the lan- 
guage's model, as with SNOBOL-like string matching expressed in APL or 
matrix operations expressed in pure LISP, the programming is difficult and 
the program is turgid and inefficient. 

These difficulties are introduced by having to program around the lan- 
guage-that is, to implement constructs not in the language with the facilities 
of the language. The turgidity and inefficiency derive from two sources. First, 
the required instruction sequencing must be realized as a subsequence of those 
producible by the available control operators; and the required data repre- 

'This last clause is a paraphrase of McLuhan's explanation of his famous dictum: " 'The 
medium is the message' because it is the medium that shapes and controls the scale and form of 
human association and action" (McLuhan 1964). 
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sentations must be realized by space-wasteful encodings using the available 
data structures, which do not capture the relationships needed for the algo- 
rithm. An extreme illustration is a matrix product program with the matrices 
implemented by S-expressions, car, and cdr rather than arrays with indexing, 
and the control implemented by recursion rather than for loops. Second, an 
extra level of interpretation is incurred when implementing a construct in any 
language as compared to having it available as a primitive. 

Thus, the medium shapes and controls the actions of the machine because 
efficiency of execution and the convenience and clarity of programming select 
for those computations (a subspace of all computations) directly expressible 
with the language constructs. 

Sequential Languages 
It follows immediately, then, that a sequential language such as FORTRAN is 
an unlikely candidate for programming a parallel machine, not so much 
because FORTRAN favors a certain subclass of algorithms---every language 
will be restrictive in this sense-but rather because without parallel constructs 
in the language, the subclass is chosen from sequential algorithms. Express- 
ing any computation in it entails specifying sequencing, whether or not it is 
essential to the formation of the result. Some of this sequentiality can be 
removed by systems such as Parafrase (Kuck et a1 1980) and PFC (Allen et a1 
1983), thus permitting possible concurrent execution. The parallelism that is 
thus identified is constrained by the underlying sequential algorithm, and the 
chief difficulty remains: This mechanism (providing a sequencing and de- 
pending on the compiler to discover that the data dependencies do not require 
it) is the only means of specifying parallelism, and there are forms of 
concurrency that cannot be specified this way. The problem with sequential 
languages is they have no parallel constructs. (Notice that Parafrase and PFC 
were developed not so much to make FORTRAN a parallel programming 
language for new programs, as to extract whatever parallelism is available in 
extant FORTRAN programs. ) 

The implication that "parallel" algorithms are different from "sequential" 
algorithms warrants scrutiny. Since there seems to be no adequate formal - 
definition, the intended distinction must be stated informally: Parallel algor- 
ithms exhibit the weakest possible ordering constraints, while sequential 
algorithms exhibit some artificial ordering restrictions. The distinction is 
nicely illustrated by the successive overrelaxation (SOR) computation used to 
solve linear systems of equations (Young 1971). A common implementation 
(Adams 1982) of this iterative technique using the "five point stencil" is to 
compute the (k + 1)st iteration from the kth iteration by traversing the SOR 
iteration array in row major order, 
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for i : = 1 to n do 
for j : = 1 to n do 

A[i, j ]  : = o x A[i, j ]  
+ (1 - o) X ((A[i, j - 11 + A[i - 1, j ]  
+ A[i, j + 11 + A[i + 1, j ] ) /4) ;  

The array is used simultaneously to store both old and new values. This 
provides some memory savings, but it serializes the row computations. That 
is, the program states that for a given sweep over the array, an element cannot 
be computed until the element to its left (and the one above it) have new 
values. 

The data dependencies are such that the rows can be computed con- 
currently, provided they are offset by one position to the left in each suc- 
cessive row; the frontier between the (k + 1)st and the kth iteration is a 45" 
line "marching" across the array. Thus, an iteration takes 2n - 1 steps. 

Normally, the loop pair is followed by a test for convergence, but if this 
pair of loops is nested inside a for loop on k, the successive iterations can be 
done simultaneously, provided there are enough of them. That is, with full 
concurrency, 2n - 1 steps are used for a start-up phase during which time 
successive 45" frontiers march across the array. This phase is followed by a 
steady state phase in which alternate array positions compute a new value on 
alternate steps. Finally, there is a 2n - 1 step shutdown phase as the last 
iterations finish up (see Figure 1). This is probably the maximum amount of 
concurrency that can be achieved with the common SOR. 

A more parallel alternative is known as the RedlBlack SOR computation 
(Young 1950; Adams 1982; Adams & Jordan 1986). The name derives from 
visualizing the iteration array as a checkerboard and computing new values 
for all "red squares" on one step and all "black squares" on the next step (see 
Figure 2). Thus, the data dependencies permit a complete iteration to be 
computed in two steps. 

Although the steady state of the fully concurrent common SOR appears 
similar in operation to the RedlBlack SOR, these are very different algo- 
rithms. They have different data dependencies and hence cannot be derived 
from one another by reordering the evaluation. The particular order of evalua- - 
tion of the common SOR leads to data dependencies that are not inherent in 
the solution of the problem. Thus, the common SOR has the characteristics of 
a sequential algorithm, while the RedIBlack SOR, an almost perfectly con- 
current algorithm, would be termed parallel. 

Notice that this digression has sought only to illuminate the distinctions 
between sequential and parallel algorithms, and there is no claim that the 
Red/Black algorithm cannot be specified in a sequential language. In fact, 
Parafrase and PFC will recognize the FORTRAN text of Figure 3 as the 
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Figure 1 Common SOR, assuming full concurrency, showing the iteration number of values 
completed and (being computed); (a) in the start-up phase, (b) in the steady-state phase, (c) in the 
shutdown phase. 

Red/Black data dependencies, although it is unclear whether this text is likely 
to appear in a program originally written for a sequential computer. The point 
of the digression is that the algorithms one formulates when thinking sequen- 
tially are qualitatively different from those formulated when exploiting 
parallelism. 

One way to overcome the inadequacies of a sequential language is to add 
some parallel constructs to it. This common approach seems to have a 
potential hazard, assuming that the resulting language is actually an extension 
of the original rather than a whole new language with the old name. The 
approach requires that the extended language "retain" its sequential abstract - 
machine model, since a program without parallel constructs must have the 
behavior of the original language's semantics. This can constrain the language 
design and influence the parallel facilities provided. 

To illustrate the phenomenon, postulate an abstract machine model using a 
stack to maintain procedure activations. Retaining this stack-based model in 
the extended language implies that processes activated within a procedure 
must all terminate before the procedure returns. Thus, one cannot call a 
procedure to fire up a set of processes and then return to the main program. To 
have process activations with nonnested lifetimes requires a heap memory 



296 SNYDER 

Figure 2 RedIBlack SOR showing iterations completed and (being computed). 

organization for procedure activation and thus a fundamental change to the 
model. Of course the model can be changed provided it is equivalent to the 
stack when no parallelism is used. But if the model can be changed, why 
constrain the language design by the artificial requirement of preserving the 
semantics of a sequential language? 

The argument is intended not as a proof that a sequential language is a poor 
starting point for parallel language design, but rather as an indication of the 
problem. "Add on" parallelism is not likely to be sufficient, and model 
development should not be constrained a priori to preserve sequential seman- 
tics. Just because a parallel language might reduce to a sequential language 
when there is only one processor, it does not follow that one can guess a good 
parallel generalization beginning with a sequential language. 

DO 10 I = 1, N-1, 2 
DO 20 J = 1, N-1, 2 
A[I, 31 = OMEGA+A[I,J] + (1 - OMEGA)*(A[I,J-11 

+ A[I-1,J] + A[I,J+l] + A[I+l,J])/4 
DO 30 J = 2, N, 2 
A[I+l,J] = OMEGA*A[I+l,J] + (1 - OMEGA) 

+(A[I+l,J-11 + A[I,J] 
+ A[I+l,J+l] + A[I+2,J])/4 

CONTINUE 
DO 40 I = 1, N-1, 2 

DO 50 J = 2, N, 2 
A[I,J] = OMEGA*A[I,J] + (1 - OMEGA)*(A[I,J-11 

+ A[I-1,J] + A[I,J+l] + A[I+l,J])/4 
DO 60 J = 1, N-1, 2 
A[I+l,J] = OMEGA+A[I+l,J] + (1 - OMEGA) 

*(A[I+l,J-11 + A[I,J] 
+ A[I+l,J+l] + A[I+Z,J])/4 

CONTINUE 

Figure 3 Serial program text defining the RedJBlack SOR Data Dependencies. 
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Parallel Languages 
The goal in parallel programming language design, then, is to discover a 
conceptually clean abstract machine model that matches the form of a cohe- 
rent subclass of parallel algorithms in the same way FORTRAN, LISP, APL, 
SNOBOL, etc match the algorithms they support well. But one other major 
constraint governs parallel language design besides the closeness of the match 
to a parallel algorithm subclass: the efficiency of the program's implementa- 
tion on a specific machine. 

The problem is that different sequential languages can be implemented with 
acceptable efficiency on any sequential machine; but there is a much greater 
diversity among parallel machines, making the matter of efficient im- 
plementation of a particular language on a particular machine problematical. 
Consider the options. 

A high level, abstract language that does not presume particular features of 
the underlying machine has the advantage of being portable between 
machines. It has the disadvantage of not being able to exploit particular 
hardware features, except insofar as the compiler is able to recognize the 
opportunity to do so; furthermore, the implementation of the high-level 
abstractions is likely to incur considerable overhead. A low-level language 
with machine-specific constructions will presumably exhibit good perform- 
ance and low overhead on some machines; but if it is worth porting to other 
machines at all, it is not likely to run well because of the software im- 
plementation of the features available in hardware on the preferred machines. 
The desire for high level abstract languages and the need to be efficient pose 
an apparently insurmountable gap to be covered by compiler technology. 

Type Architecture 
At the heart of the problem is the fact that there is no widely accepted parallel 
analogue to the sequential von Neumann machine. There is no idealized set of 
facilities that all physical machines tend to provide more or less efficiently 
and that compiler writers can expect to find in their target computers. If there 
were such an idealized parallel machine, then the dissimilarities among 
parallel computers just mentioned might be neutralized by architects who 
would make the diverse physical structures realize the idealization. We refer - 

to such an idealization as a type architecture2 and note that it is a standardiza- 
tion of the hardwarellanguage interface. 

A type architecture is not a rigid specification to which all architectures 
must conform and all languages adhere. It defines a region of consensus, 

 h he term is analogous to type species in taxonomy, the species of a genus with which the 
generic name is permanently associated. 
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being explicit about a few salient features and mute on everything else. For 
example, the von Neumann machine treats the concepts of a stored program, a 
program counter, the memory-processor relationship, etc and ignores address- 
ing modes, general purpose registers, virtual memory, etc. A type architec- 
ture, by establishing agreement on the main points of interest, reduces the 
differences to mere details. Notice that we have no reason to expect a single 
parallel type architecture to suffice. On the other hand, a proliferation of type 
architectures would not be desirable for two reasons. First, it would probably 
signal a failure to find the correct, unifying concepts; and second, if there 
actually are many fundamentally different ways to compute in parallel, then 
wide program portability may be hopeless, since it is doubtful that programs 
written in a language based on one type architecture would be convertible to 
efficient programs for machines based on another. 

Although no parallel type architecture has achieved wide acceptance, the 
paracomputer (Schwartz 1980) has developed a substantial following. It has 
been embraced by the theory community, where it is called the PRAM; more 
importantly, it has been used implicitly as a type architecture by advocates of 
extended sequential, high-level, and machine-independent parallel languages. 
However, it is an inappropriate choice for general parallel computation, as 
Schwartz apparently recognized and as I will demonstrate below, because it is 
unrealizable. Thus, in terms of defining a reference point between the abstrac- 
tions of language and the possible realizations of architecture, it is too 
abstract, too far from what can actually be built. 

Evaluating the Paracomputer 
The case against the pHacomputer as a type architecture begins with a concise 
example of its failure to serve that role well. Recall that the paracomputer is 
an idealized, shared-memory multiprocessor: 

One such model is that in which a very large number p of identical processors (each with a 
conventional order-code) share a common memory which they can read simultaneously in a 
single cycle. In such a model we also assume that during any access cycle any number of 
processors can simultaneously write to memory, and that a memory cell to which writes are 
simultaneously addressed by many processors will come to contain one of the quantities 
written to it (perhaps a randomly selected one of these quantities, or perhaps the minimum). 
We call this very general model of parallel computation the paracomputer model (Schwartz 
1980). 

Postulate a programming language based on the paracomputer, and suppose 
that the language is transparent in the sense that it has language constructs that 
permit a collection of processors to access the flat, shared memory with unit 
access time. A programmer, wishing to write a program to find the maximum 
of n elements with n = p processors, will discover in a search of the literature 
(Shiloach & Vishkin 1981) that Valiant's algorithm (Valiant 1975) is optimal 
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for this set of assumptions. The running time for this algorithm on the 
paracomputer is O(log1og n), as will be seen, but the performance of the 
program on a real machine will not be so good. 

The algorithm operates in stages; at the s stage, the n(s) distinct input 
values a l ,  . . . a,(,) are partitioned into the fewest number r of sets S1, S2, . . . 
Sr, of essentially equal size (abs(l~~l-I~~I)  5 1), such that 

r 

(I?') 5 p . 
i= 1 

For each set Si , ( '2 ' )  processors are assigned so that each processor compares 
one of the ( '2 ' )  distinct pairs of elements. The result of the comparison is 
recorded in an auxiliary Boolean array b,, . . . , blsil which is initialized to all 
1s at the start of the stage: Processor p assigns 0 to bk where k is the index of 
the smaller element of the pair. This operation requires concurrent writes to 
memory locations. It takes one step to find the maximum of the set, and the 
winner is identified as the (sole) element al with a corresponding bl = 1; that 
is, it was not the smaller of any of the ('9') distinct pairs of the set Si. Each 
winner of a set at stage s becomes an input to stage s + 1. The maximum of 
any set of n values can be found in loglog n + c stages. The bookkeeping 
details of the algorithm, which can be performed in constant time for each 
stage, are described in Shiloach & Vishkin (1981). 

As an example, the maximum of a set S of 1000 elements can be found as 
follows: 

stage 1 : S is divided into 332 sets of 3 elements each and 2 sets of 2 elements 
each; each 3-set requires (;) = 3 processors and each 2-set requires 
( 2 2 )  = 1 processor; a total of 998 = 996 + 2 processors are used to 
produce a set St of 334 winners. 

stage 2: St is divided into 46 sets of 7 elements each and 2 sets of 6 elements 
each; each 7-set requires ( Z )  = 21 processors and each 6-set requires 
(26) = 15 processors; a total of 996 = 966 + 30 processors are used 
to produce a set of St' of 48 winners. 

stage 3: St' is divided into 2 sets of 24 elements each which require (22 )  = 
276 processors each to find the maximum; a total of 552 processors - 

are used producing 2 winners. 

The maximum of the two values is computed directly and returned without 
another stage. Notice that the comparison depth of 4 is superior to the 
comparison depth of 10 for the obvious binary tree algorithm. 

As I'll explain below, the memory accesses that are assumed to take unit 
time for the paracomputer cannot be performed that rapidly on any physical 
machine. In fact, they will take at least fl(log n) time when the program 
runs-perhaps more--depending on the machine. Thus the observed running 
time of the program will be at least O(1og n loglog n) on any physical 
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machine. Contrast this with the fact that the same physical machine could 
realize O(1og n) performance on this problem: Assuming that the architecture 
"contains" a binary tree, that is, the processing elements can directly com- 
municate in a manner described by a binary tree, then they can percolate the 
maximum to the root in O(1og n) time. 

This is a serious matter. A machine that can find the maximum in O(1og n)  
time requires O(1og n loglog n)  to run the algorithm that is optimal for the 
paracomputer. The language, and by extension the type architecture on which 
it is based, have been harmful rather than helpful. Indeed, this maximum- 
finding example seems to be an instance of the earlier claim that the language 
influences the choice of algorithms, and here the language led the pro- 
grammer to the wrong choice. 

Unrealizability of the Unit Cost 
At the heart of the maximum-finding example is the claim that the facilities 
used in the optimal algorithm cannot be implemented with a constant unit 
cost. Moreover, it was claimed that these operations actually require at least 
O(log n)  time on any physical realization. Both of these claims are widely 
accepted, but it is still worthwhile to examine them closely. 

The unit-cost assumption means that independent of the number of pro- 
cessors and independent of the characteristics of the reference sequences 
performed by the other processors, there is a constant upper bound on the time 
for any processor to reference any memory location. This condition is 
obviously unrealizable in practice because among other things it violates the 
physical law that an arbitrary amount of information cannot be stored within a 
fixed transmission time of a point. But this is not a compelling justification for 
claiming the unrealizability of the unit-cost assumption, because similar 
reasoning would also compromise the widely accepted unit-cost memory- 
reference assumption for von Neumann machines with arbitrarily large mem- 
ory. Since it is more beneficial than harmful to ignore this physical limitation 
for the von Neumann type architecture, it seems constructive to do the same 
here. 

To translate this simplification into a form that is most useful to the present 
discussion, let us assume unit-time transmission over an arbitrarily long data . 

path. This permits the components of the parallel computer to be physically 
separated, as they must be, without that requirement's influencing the cost 
analysis out of all proportion to its actual importance. For distances encoun- 
tered in a parallel computer, the contribution of the physical distance to the 
transmission delay is so small at the speed of light as to be negligible.3 

3There are settings in which the transmission delays are substantially larger than those 
predicted by speed of light estimates. MOS VLSI chips are one example. But because other 
technologies (for example, ECL) do not have these problems, it seems justified that the type 
architecture be independent of this technological consideration. 
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Though the relative importance of distance can change with technology, for 
now we will assume information transfer- is not tied directly to distance. 

The unrealizability has more to do with the multiplicity of processing sites 
than with distance: Each of p processors is physically separated, each of the m 
memory locations is also physically separated, and the model of computation 
requires information to move between arbitrary pairs of these sites at each 
time step. To access an arbitrary memory location in unit time requires that a 
processor not collide with any other access, lest the collision produce a delay 
that causes the time unit to be e~ceeded .~  Thus each processor must have an 
independent path to each memory cell. Furthermore, there must be no deci- 
sion logic along the path, lest switching delays cause the time unit to be 
exceeded. Thus, each processor must have a direct path to each memory cell. 
Consequently, the unit-time property implies the need for mp direct, in- 
dependent paths. 

There are two essentially different approaches to implementing these in- 
dependent paths: Separate physical paths, m incident with each processor and 
p incident with each memory cell, violate the physical constraint that an 
arbitrary number of paths cannot fan into or out of a point. A single physical 
path connecting the processors and memories transmitting p data values in 
unit time violates the physical constraint that an arbitrary number of signals 
cannot be simultaneously multiplexed on a single datapath. A strategy based 
on a bounded degree or a bounded amount of multiplexing or a mixture of 
both leads only to a bounded number of direct, independent paths. Thus, the 
unit-time access to memory cannot be achieved. 

Though the paracomputer's unit-cost shared-memory property is generally 
unrealizable, physical machines have been built around these two techniques. 
The separate-physical-paths solution or cross bar is illustrated by the C.mmp 
(Wulf & Bell 1972) architecture where p = 16. The other extreme, the single 
physical path solution or bus, is illustrated by the Sequent (Fielland & Rogers 
1984) architecture, where p = 12. It is unclear how large p can be practically, 
but since cacheing is likely to be a critical component, recent analyses by 
Archibald & Baer (1985) suggest p = 64 is a serious barrier. Although the 
unit-time constraint cannot be realized for arbitrary machines, the memory 
sharing can be. With bounded fan-in and fan-out, a tree must be used to raise - 
the degree of both the processors and memories, engendering an fl(log m) 
access delay. This justifies the logarithmic performance degradation men- 
tioned in the maximum-finding example. 

41t is understood throughout this discussion that prohibitions such as "processor not collide" 
should properly be expressed as "processor not collide more than a bounded number of times" in 
order to provide for the possibility of violating the prohibition by a small but limited amount 
which can be absorbed into the time unit. Because it increases clarity without losing generality, 
we give the less tedious but more rigid condition. 
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Notice that in this analysis m refers to individual memory locations. It is 
customary, of course, to group many cells together into a memory module and 
treat them as a single unit. This reduces the value of m, yielding generally 
favorable architectural consequences (reduced hardware) and generally un- 
favorable performance consequences. First, because a memory module can- 
not be used simultaneously by more than one processor, there is a delay for all 
but one of the processors, whenever two or more accesses to a module occur 
at the same time. Second, there is overhead in arbitrating the possible multiple 
requests. Third, decoding the address, to find the proper memory location, 
requires fl(log n) time for an n word memory module. Since the constant is 
small, it can with little risk be ignored as with the von Neumann type 
architecture. Notice that all three of these performance-degrading properties 
increase with n, and the first is quite serious. 

Type Architecture's Influence on Language 
With its unrealizability established, the role of the type architecture in leading 
to the wrong maximum-finding algorithm can now be analyzed. Recognize 
that what is crucial here is the type architecture's role in defining a region of 
consensus between languages and machines; the issue is not simply that the 
paracomputer cannot be built. Indeed, its unrealizability has been widely 
acknowledged, but many scientists have gone on to argue that the paracompu- 
ter is just the kind of high-level language abstraction that contributes to 
effective and efficient programming. It should therefore be used even if the 
implementation gap must be covered by software. Obviously it doesn't 
contribute to efficient and effective programming. The purpose of this and the 
next section is to explain why. 

The fallacy in this argument-that the paracomputer is an ideal, high-level 
abstraction promoting effective programming-is that the paracomputer is not 
used here or elsewhere as an abstraction, but rather as a type architecture. The 
distinction is important: A language abstraction is an idealized structure 
expressed in terms of other basis facilities. A type architecture is the basis 
facility. 

The type architecture is the machine on which a language's abstract ma- 
chine model is implemented. That is, in formulating a language's semantics - 
and in expressing how the compiler is to implement the semantics, the role of 
the type architecture is that of target machine. This is completely appropriate 
because on the hardware side, physical machines will implement the type 
architecture's facilities. Thus the target machine on which the language model 
"runs" will exist. 

The language's abstract model might be quite transparent, providing facilit- 
ies that correspond directly to type architecture facilities. This is not a level of 
interpretation, but rather is a means by which source language features can 
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correspond one-to-one to machine language features; for example, gotos 
correspond to unconditional jumps. Alternatively, the language could provide 
one or more layers of abstraction implemented on top of the type architecture. 
The cost of this implementation, expressed in terms of type architecture 
facilities, is a fair statement of the cost of using the abstraction in a program, 
since architecture of this type can be directly implemented in hardware. So, 
the type architecture permeates the language, either explicitly or implicitly in 
the implementation of the language constructs. 

Paracomputer's Influence on Language 
The shortcomings of the paracomputer as a type architecture can now be 
explained in terms of the two translations mentioned earlier, the programm- 
er's translation p from algorithm to program and the compiler's translation c 
from program to linked object code. 

THE PROGRAMMER'S TRANSLATION In the maximum-finding problem, the 
programmer selected the algorithm that was optimal with respect to the 
unit-cost assumption of the language. This assumption in turn was simply 
inherited from the type architecture because the language was assumed to be 
transparent. Given that the problem of finding the maximum can be solved in 
O(1og n) time on a physical machine, and (optimistically) accepting that the 
program can be translated to run on a physical machine with O(1og n loglog n) 
execution time, the algorithm was not optimal for the actual existing con- 
ditions, and the programmer was poorly served by the type architecture. At a 
minimum, the programmer should have been told that the cost of each step 
was at least 0 (log n). This means that every program would have had this 
factor in its running time, so that to achieve an O(1og n) result, the original 
time complexity would have had to be constant. There is no constant-time 
maximum-finding algorithm for the shared memory unit-cost model. [Recall 
that for the n = p assumption the O(log1og n) algorithm is best.] It is 
impossible, therefore, to write a maximum-finding program in any language 
based on the paracomputer type architecture and achieve the best physically 
achievable execution time. This leads to a fundamental conclusion: 

A type architecture must accurately reflect costs. 

When it does not, the cost of the language's facilities will be biased, and the 
programmer will be unable to assess the running time of the program. 
Algorithms thought to be optimal will not be. Worse yet, certain performance 
cannot be achieved, no matter how much ingenuity is applied. 

To emphasize, the key point is not the magnitude of the difference but 
rather the provable necessity of a gap between the best physically realizable 
performance and the best physically realizable performance of a program 
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written in a paracomputer type language. Indeed, had care been taken to 
charge for the facilities actually provided by the paracomputer model, such as 
concurrent reading and writing, the gap would probably have been larger by at 
least a factor of O(1og n) (Snir 1985; Cook et a1 1986). (Answering the 
question exactly takes us into the pointless activity of physical analysis of 
formal models of computation.) Also, the fact that the paracomputer has 
concurrent read and write is relevant only to the details of this particular 
presentation, and not relevant to the fundamental argument; any model mis- 
representing important costs will suffice. 

THE COMPILER'S TRANSLATION Postulate a programming language based 
on the paracomputer as a type architecture, and consider the problem of 
compiling to some physical machine. The problem is substantial because the 
language designer, who regarded his job as complete when he expressed the 
language's abstract model in terms of the paracomputer, left a large gap 
between the paracomputer facilities and the physical machine. (The gap 
doesn't exist for a true type architecture, of course, since it can be imple- 
mented.) Moreover, the gap must be "spanned differently for each physical 
architecture unless someone takes the time to express the paracomputer's 
semantics in terms of a small set of facilities generally available on physical 
parallel computers (in which case this small set of facilities would be called a 
type architecture, the paracomputer would be called an abstraction, and the 
objectives we are advocating would be achieved). 

To appreciate the problems caused by the paracomputer from the compil- 
er's point of view, assume the target machine is a nonshared-memory parallel 
architecture. This may at first seem foolish, but unlike architectures with 
interconnection networks having all processors equidistant from each other 
(see next section), most nonshared-memory architectures have processors 
separated by varying distances. The ultracompute? for example, has all 
processors connected in a shuffle graph and thus the maximum distance 
between two processors is log n; the direct communication is but one. Most 
importantly for the present discussion, this minimum distance can be ex- 
ploited so that most nonshared memory machines can find the maximum of n 
values in O(1og n) time. [In fact, they can find the maximum of n log n 
elements in O(1og n) time (Schwartz 1980)!] 

Suppose that the programmer writes the appropriate binary tree percolate 
algorithm. If the compiler implements the literal shared-memory facilities, 

'Notice that the ultracomputer (Schwartz 1980) and the NYU Ultracomputer (Gottlieb et a1 
1983) are radically different machines: The former is a shuffle-connected nonshared-memory 
machine, the latter uses an omega network to connect processors to shared memory modules. The 
reasons for the difference seem to be largely historical (Gottlieb 1981). The reader should note the 
distinction and be advised that both machines are mentioned in these pages. 
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this algorithm will take at least 0(log2 n) time. Instead, the hope is for the 
compiler to implement the program in the ideal way, taking advantage of 
features of the underlying machine. To do so, the compiler must know that the 
values should be mapped onto the processors, one value per processor, and 
that the processing that percolates values towards the root should be allocated 
so that nodes adjacent in the tree are adjacent on the underlying architecture. 
It is generally impossible for the compiler to deduce such information from a 
program, of course. If there is any hope of having the compiler achieve the 
O(1og n) efficiency, then, the programmer must tell the compiler how to 
allocate memory, how to allocate processing, how to schedule 110, etc. But 
the paracomputer has undifferentiated processors and undifferentiated mem- 
ory. Structural components of the underlying machine are not visible from the 
program. There is no way to correlate entities of the source program with 
them. 

Using a "blind" scheme where the programmer specifies generic allocation 
and assignment information will not work for two reasons. First, without 
knowing the underlying machine, one doesn't know what to specify to aid the 
compiler. Second, without knowing the underlying machine, one cannot 
judge whether the postulated allocations are feasible, and their feasibility 
affects the choice of problem-solving techniques. This leads to a second 
fundamental conclusion: 

The type architecture must display the principal structural features of the 
architectures. 

Features hidden by the type architecture are hidden from the language; 
therefore the language designer cannot incorporate facilities for describing 
their use; without such facilities the programmer cannot tell the compiler how 
the program should be run, and with no help from the programmer the 
compiler must employ only generalized, inefficient translations. 

The conclusion is that the paracomputer cannot be used as a type architec- 
ture because it fails to reflect accurately the costs of physical machines and it 
fails to describe important structural features of physical machines. A candi- 
date type architecture, to serve in the paracomputer's stead, is described in a 
later section. Though it may have difficulties, the candidate type architecture 
meets these two requirements. 

As a postscript to our criticism of the paracomputer, some loose ends 
should be tied up. First, our criticism of Schwartz's paracomputer has been 
directed at the way it, or an equivalent machine, has been used by others; 
Schwartz (1980) used it as a theoretical tool and employed the ultracomputer 
in the role of what we would now describe as a type architecture. Second, the 
inadequacies of the paracomputer as a type architecture do no more to 
diminish the role of its theoretical equivalent, the PRAM, than the un- 
realizability of the Turing Machine does to diminish its importance as a 
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theoretical tool; this value lies in what they tell us about the nature of 
computation. Valiant's algorithm illustrates this point nicely. It seems to 
imply that the complication [O(log n) time] in finding the maximum is more 
attributable to the time required to bring the values together [O(log n)] than to 
the actual accumulation of the information since, when the time to bring the 
values together is removed by the paracomputer model, the time to accumu- 
late the information turns out to be smaller [O(loglog n)]. 

Shared-Memory Computers 
Although we have already noted that the direct implementations of the 
shared-memory facility have a serious limitation as the number of processors 
approaches 64, the indirect implementations have not yet been considered. 
These are the so-called dance hall architectures, a name assigned by Keller 
(1982) alluding to their characteristic structure of a set of processors lined up 
on one side of a processor interconnection network (dance hall) and a set of 
memory modules lined up on the other side. Recently proposed dance hall 
architectures include the NYU Ultracomputer (Gottlieb et a1 1983), the PASM 
Computer (Siegel et a1 1981), the Cedar Computer (Gajski et a1 1983), the 
Butteffly (Crowther et a1 1985), and the RP3 (Pfister et a1 1985). The salient 
property, it seems to me, is that all processors are "equidistant" from each 
other through the shared memory, and so cases like the Butteffly, where the 
memory wraps around to the processors giving each a direct connection to one 
module, are still dance hall architectures. (The Cedar machine has a second, 
direct path for processors within a cluster, but is still a dance hall architec- 
ture. ) 

The interconnection networks used for dance hall architectures typically 
have log p depth (Siegel 1985) and thus each reference to shared memory has 
at least O(1og p) delay. This delay is not like the trivial address decoding 
overhead which we argued earlier could be ignored; it is significant (Franklin 
& Dhar 1986) in current technologies even though every effort is made to 
make it as small as possible (Gajski et a1 1983). 

The corollary of our earlier argument is that dance hall architectures find 
the maximum of n values in 0(log2 n) time; the reader should be cautioned, 
however, that although this conclusion correctly implies superiority of non- . 

shared-memory architectures, this is to date only theoretically true. No non- 
shared memory machine has been engineered to have processor-to-processor 
communication execute as fast as the typical shared memory access of the 
dance hall architectures. 

A more serious problem with the interconnection network structure is that 
the O(1og p) performance is the collision-free performance and can be much 
worse when collisions arise. Borodin & Hopcroft (1982) have shown that a 
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deterministic (oblivious) routing strategy can take ~(fi) time in worst case 
to route messages across an interconnection network because of collisions. 

Many strategies have been developed to try to reduce collisions or their 
effect. The combining switch of the NYU Ultracomputer (Gottlieb et a1 1983) 
provides the ability to merge colliding requests to the same memory location. 
Clever allocation of data structures can avoid collisions when standard refer- 
ence sequences are used (Lawrie 1975). Architectural techniques can hide 
memory latency (Smith 1981). General mechanisms have also been studied to 
control the hazards of collisions (Valiant & Brebner 1981; Upfal & Wigder- 
son 1984). 

Alternative Type Architecture 
Criticizing the paracomputer as a type architecture is considerably easier than 
offering an alternative. Still, it is instructive to present a candidate parallel 
type architecture in order to illustrate a contrasting set of issues. Consider a 
Candidate Type Architecture: 

CTA: A finite set of sequential computers connected in a fured, bounded degree graph, with 
a global controller. 

Although this architecture has been widely used in the technical literature for 
presenting nonshared-memory parallel algorithms, its characteristics must 
still be amplified. 

finite set: This limitation, though necessary in practice, is analogous to the memory-size 
limitation in von Neumann machines-that is, it is no limitation at all. Programmers 
assume there is no bound and the compiler handles the case when it is exceeded (see section 
on exploiting graph properties). 

sequential computers: A von Neumann type architecture is presumed, and hence a locally 
stored program and data; the computers run asynchronously. The term "sequential" means 
"implements a sequential instruction stream" and is not intended to exclude parallelism in 
the form of coprocessors, pipelining, or other limited parallelism such as instruction 
packing (Fisher 1983) or multi gauging (Snyder 1985). 

connected: The term is intended to connote the ability to send a simple value between - 
computers efficiently (i.e. in small constant time) and the ability for each computer to 
transmit to its adjacent neighbors simultaneously. 

fued, bounded degree graph: The sequential computers are the vertices of the graph and 
the connections form the edges of the graph; the fact that it is a graph and not a hypergraph 
excludes buses; the bounded degree limitation is self-evident; the fixedness of the graph 
acknowledges the fact that a machine must be wired together in some permanent form. 

global controller. This is a sequential machine that can broadcast signals (for example, 
reset) or perhaps single values to all the computers, can address individual computers to 
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request single values, and can interrupt or be interrupted by them. This facility provides a 
weak control over the computers consistent with the multiple independent programs and 
asynchronous control. 

The nature of the type architecture is such that many aspects of parallel 
computers are omitted in the CTA definition. For example, whether the 
processors operate synchronously or asynchronously is not mentioned, but 
since asynchronous is more general, it must be assumed. I hope the features 
that have been defined are the critical ones for establishing a working con- 
sensus between architects and language designers. 

The CTA defines, by inheritance from the von Neumann type architecture, 
unit-cost memory access to a local memory; it is mute on the existence of any 
global memory. The processors are independent, communicating with a 
bounded number of neighbors over channels represented by the edges of the 
graph; they are capable of fine-grain communication, since transmission of 
simple values is explicitly mentioned. The small constant time assessed for 
interprocessor communication, though technically not achievable in the limit, 
is consistent with the earlier argument that data transmission is best viewed as 
independent of distance. Evidently, the CTA overcomes the problems of the 
paracomputer, since it assesses costs fairly and exposes the underlying struc- 
ture. 

CTA Architectures and Languages 
Recall that a type architecture is not a rigid specification to which all 
architectures must conform and all languages adhere; rather, it defines a 
region of consensus. Thus architectures and languages may be evaluated in 
terms of how closely they match the consensus. In the case of architectures, 
this means evaluating how efficiently they provide the facilities mandated by 
the type architecture. In the case of languages, it means assessing whether the 
abstract machine model would run on the type architecture. The following 
(nonexhaustive) review should solidify the intended meaning of the CTA. 

The ultracomputer of Schwartz (1980) is obviously an instance of the CTA, 
though the global controller is not explicitly mentioned. The Cosmic Cube 
(Seitz 1985) efficiently provides the requisite facilities of the CTA. It is not an - 

instance of the CTA, because the binary n-cube architectures have vertex 
degree (that is, the number of processors to which each processor is con- 
nected) of log n, and the CTA specifies bounded degree independent of the 
number of processors.6 The CHiP architecture (Snyder 1982) is another 
example of a generalized CTA; its configurability permits the CHiP computer 
to implement a variety of graph interconnections. 

%rsuing the taxonomic analogy further, the Cosmic Cube is in the CTA genus, but it is not 
the species that gives the genus its name. 
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It is permissible for machines to differ from (in this case generalize) the 
type architecture, as long as they provide the type-architecture facilities 
efficiently. The opposite is true for languages; a language can be based on the 
type-architecture facilities, or a subset of them, but it is not a type language if 
it is based on a super set. Thus, 

facilities(type architecture) C facilities(physica1 machine) 

facilities(type language) C facilities(type architecture) 

describe the constraints imposed by a type architecture. 
Systolic arrays (Kung & Leiserson 1980) are not architectures of the CTA 

type, since the processors are not von Neumann machines and the array is 
synchronous. Physical implementations have tended to use von Neumann 
machines as processing elements but retain the synchronous property (Dohi et 
a1 1985; Bromley et a1 198 1). Some machines are excluded from the CTA 
genus by virtue of being single-instruction stream computers (Bouknight et a1 
1972). Of course, the dance hall architectures are excluded because the 
processors are unconnected, communication must go through the log n depth 
network to the shared memory, and thus they fail to implement the bounded 
time communication requirement. The important property of all these 
architectures is not that they are different from the CTA but that they do not 
provide the facilities of the CTA with the requisite efficiency. 

These remarks have applied to architectures and are thus quantified over a 
family of machines: One effect of such quantification is that it confuses the 
properties of a whole family with the properties of individuals. Thus every 
single instruction stream, multiple data stream (SIMD) architecture is unable 
to run programs from CTA-type languages because these programs generally 
require multiple instruction stream; each machine fails to be of the CTA type. 
By contrast, dance hall architectures can run programs from CTA-type lan- 
guages quite efficiently until the number of processors gets so large that the 
logarithmic depth of the interconnection network cannot be treated as a 
constant; the individual machines are acceptable but they do not scale. 

To evaluate languages in terms of the CTA, one must determine whether - 
the language's model can be implemented on the CTA. This determination is 
complicated by the fact that the CTA is universal in the sense of Turing, so it 
can host any programming language, though to do so may require running the 
program on one processor. To avoid this problem and to bring the discussion 
into the realm of practical programming languages, agree that the test of 
whether a language is of CTA type is whether the language's model has been 
implemented on a CTA-type architecture, or whether it is known how to do 
SO. 

Cosmic Cube C (Su et a1 1985), the language designed for the Cosmic 
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Cube, is a CTA-based language if, as it appears, it does not rely significantly 
on the non-CTA property of the Cosmic Cube, the unbounded degree. Poker, 
(Snyder 1984a), the language designed for the CHiP architecture, is also a 
CTA-based language. OCCAM (INMOS 1984) is in principle a CTA-type 
language. 

An interesting kind of language qualifying as a CTA type is one developed 
for a more limited class of architectures; programs written in such a language 
must, by containment, run on a CTA. One example is Crystal (Chen 1986). 
This system was developed to generate systolic array programs from a set of 
recurrence equations. Since systolic arrays can be well approximated by the 
CTA architecture-all processors running the same code is equivalent to the 
SIMD operation, and regular (coarse-grain) signals from the controller can 
keep all the asynchronous processors adequately synchronized-the programs 
should run on a CTA. 

Most well-known parallel programming languages are not CTA-type lan- 
guages, since it is apparently not known how to implement them efficiently on 
a CTA-type machine. These include the data flow languages [e.g. VAL 
(Ackerrnan 1982)], which treat variables in a flat, undifferentiated name 
space. Extended sequential languages, for example FORTRAN 8X, are also 
not CTA-type languages since they preserve the shared memory of their 
namesake. Also, high-level parallel languages, for example Concurrent Pro- 
log (Shapiro 1984), have the added difficulty of a complex language model. 
All of these languages can possibly be converted into CTA-type languages by 
implementing their language models on the CTA. 

Evaluating the. CTA 
Although it meets the requirements of being cost accurate and structurally 
explicit, there are other considerations, and so the CTA is offered only as a 
candidate type architecture. Consequently, it is appropriate to evaluate the 
CTA to see what it does and does not offer. 

One apparent shortcoming of the CTA is the absence of any specific choice 
of graph. The justification for this decision is that no graph has emerged as the 
ideal, and to choose one now would simply be premature. Among the choices 
that could have been made are the shuffle exchange graph as used in the 
ultracomputer; the Cube Connected Cycles graph of Preparata & Vuillemin - 
(1981), and other "universal" graphs (Siege1 1985); the array-type structures, 
including the 8-, 6-, and 4-connected meshes and toruses and the linear 
(2-connected) mays; and finally trees of various species. Each graph family 
has its assets and liabilities, and so far we've had too little experience to make 
an optimum selection. 

The unspecified graph structure is probably a benefit from the architect's 
point of view since it places no a priori constraints on design decisions. 
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Language designers, on the other hand, do not appear to be well served by this 
feature of the CTA. This may be more an appearance than a reality, though, 
because designers must inevitably begin dealing with a graph-based type 
architecture, a more difficult medium than the malleable paracomputer. Hav- 
ing a specific graph to work with hardly seems a great simplification. 

The language designer's task is clear: Either implement an existing lan- 
guage's abstract model on the CTA or develop a new language and implement 
its model on the CTA. The implementation of an existing language might be 
favored because of a large body of existing software, but consider what must 
be done: The designer must define how variables and data structures are to be 
allocated to the local memories of the specific machines by a compiler. In 
addition, the revised language model must explain how references to nonlocal 
values are to be converted to sends and receives by the compiler; finally, 
synchronization and other control operators must be implemented, though the 
type architecture does not favor such centralized facilities as semaphores. 
These language model revisions are so difficult to achieve that one is inclined 
to recommend definition of a new language. The benefit is that new language 
facilities can shift some of the burden of allocation, 110 scheduling, syn- 
chronization, etc to the programmer and thus deliver efficiently executable 
programs. 

The programmer appears to be poorly served by the CTA. Shared memory 
might be a thing of the past; and if the new programming languages provide 
facilities for specifying memory and process allocation, interprocessor data 
transmission, syncfionization, etc, then programmers will have to do all of 
the detailed planning of the computation. This seems to complicate pro- 
gramming substantially. 

In reality, programmers will work harder only to the extent that language 
designers fail to measure up to the demands of the CTA. For example, shared 
memory is not excluded by the CTA. Any language designer can choose to 
provide shared memory as a language abstraction simply by defining it in 
terms of the CTA-that is, by defining how a compiler should allocate data 
structures to the processor's local memories, etc. (Architects might help, too, 
by including automatic routing hardware to support nonlocal references.) This - 
has many benefits, not the least of which is that the language designer, having 
to explain in the definition of the model how shared memory maps onto a 
graph structure, will recognize how expensive it can be and thus add language 
facilities that permit the direct use of the CTA. For example, rather than allow 
the programmer's encoding of the maximum-finding algorithm to have 0(log2 
n) performance, because of the direct implementation of shared memory, the 
language designer might add an operator like the APL reduction operation, 
[IV, which could be implemented by the compiler using the percolate algo- 
rithm to achieve O(1og n) performance. Typing three characters to compute 
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the maximum would not overburden the programmer. The conclusion is that 
accommodating the programmer's desire for convenience in a CTA-type 
language depends on the effective use of known facilities and the develop- 
ment of new, more powerful programming abstractions. 

Notice that in one sense even a transparent CTA-type language with few 
abstractions serves the programmers well because they can write efficient 
programs. After all, it was the distance from the physical machine that earlier 
prevented the programmer from writing an efficient maximum finding algo- 
rithm. In this way the CTA directly serves the need for efficient parallel 
programming mandated by the Corollary of Modest Potential. 

Exploiting Explicit Graph Structure 
Return now to the matter of the CTA's unspecified graph structure and 
recognize that one consequence of the CTA is that every parallel program 
written in a CTA-type language will be described by a graph. This may be the 
graph used to define the language model and thus be the same for all 
programs. On the other hand, if the language is like Poker (Snyder 1984a), 
each program can use a specific graph. Either way this may be the single 
greatest benefit of the CTA, because the graph is an explicit statement of the 
communication structure utilized by the program, and it must be known to 
implement many (all?) important program optimizations. 

The program is not a single graph but rather a family of graphs, where the 
size of the appropriate graph is determined by the program's input. For 
example, the SOR runs on a family of square meshes. The program graph, 
which we call G for guest, will have to be mapped by the compiler onto the 
parallel computer which is also defined in terms of a graph, called H for host. 
The best case is for the graph families to have the same number of vertices, 
and to be identical (or G contained in H)-that is, the program and the 
computer are the same graph. Things rarely work out so well. 

Assuming the general case where the graph families are different and the 
size of G (amount of parallelism) greatly exceeds the size of H, there are two 
problems: contraction and mapping (Berman & Snyder 1984; Bokhari 1981). 
Contraction is the task of mapping a member of a graph family down to a 
smaller member of the family; mapping is the task of embedding a graph G 
into a graph H so that the vertices map one-to-one and the edges of G map to 
paths of H. 

Since there are good contractions for many popular graph families (Berman 
& Snyder 1984) that can be incorporated into compilers, since there are 
automatic methods of contraction (Berman et a1 1985), and since it is 
straightforward for programmers to incorporate contractions into their pro- 
grams (Nelson & Snyder 1986), it seems justified to treat contraction as a 
solvable problem. (Notice that these contraction methods accomplish the 
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"downward translation" permitting the program to deliver its rated perform- 
ance subject to the availability of processors.) 

As a result, as long as the program and architecture graphs are selected 
from the same family, the advertised benefits of the CTA-accurate costs and 
visible structure-are realized. 

When the G family differs from the H graph, the situation is more com- 
plicated. Specifically, when G is embedded in H, edges of G map to paths in 
H, which represents data being relayed through several processors in H to 
implement what was a direct transfer in G. If the maximum length or dilation 
(Rosenberg & Snyder 1978) of any path is small, than the cost of running G 
family programs on H family architectures will be but a constant amount 
worse than running on the proper architecture. An example would be an 
eight-degree mesh program run on a four-degree mesh computer. The more 
typical case is that the worst-case dilation will be larger, on the order of the 
diameter of the host computer. Thus the shuffle graph might extend the 
constant transmission time of G to O(1og n) time while a mesh architecture 
would extend it to 0 ( 6 )  time. This is a serious departure from what the 
programmer expects, as serious a deception as when the paracomputer was 
the type architecture. Moreover, it is a direct consequence of not selecting a 
specific graph in the CTA, since agreement on one graph would return us to 
the conjectured-to-be-solvable contraction case above. 

So why not simply select a graph and settle the issue? The first answer, as 
mentioned before, is that no graph has emerged as an optimum choice. To that 
reason can be added the observation that not all graph structures are equally 
simple to implement as architectures (Snyder 1984b), and simplicity often 
translates into a favorable cost-benefit. For example, mesh architectures are 
very easy in VLSI, but shuffle-based architectures are not. More importantly, 
no choice has to be made if we learn more about the mapping problem, or 
learn of ways to cope with it. For example, one might exploit the apparent 
tendency of graph families to cluster into groups-mesh-based in- 
terconnections, cube-based interconnections, etc-and expect problems to be 
solved for a representative of each group; then the (usually efficient) in- 
tratranslatability can be exploited to give an efficient mapping for any mem- 
ber of the group from the base program. Even more attractive would be t h ~  
development of new, high-level abstractions that have good (but probably 
different) mappings onto each group. The problem will ultimately be solved, 
we can be certain; it is simply too early to guess the best solution strategy. 

Summary 
This critique began with the claim that the medium is the message, that the 
form of the programming language influences the choice of the algorithms 
and the details of their encoding into a program. The point was illustrated later 
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by the poor choice of the maximum-finding algorithm for the paracomputer- 
based programming language. 

Next, various language types were scrutinized: Serial languages were found 
to be inadequate chiefly because the only available way to specify parallelism 
is for the compiler to recognize when the given serial order is unimportant. 
Extended sequential languages were criticized for being unnecessarily con- 
strained by the need to preserve a sequential language model. Parallel lan- 
guages were seen to pose an almost insurmountable challenge to provide 
convenient high-level facilities while providing a means to exploit machine- 
specific features that provide efficiency. This challenge was then placed in 
perspective; not only is it solvable, but it also promises to be a rich area for 
further research. 

The key to solving the problem was first to appreciate the role of a type 
architecture and then to choose an effective one. A type architecture is an 
idealized machine that serves as a region of consensus between programming 
languages and architectures. The von Neumann architecture is a type architec- 
ture, the paracomputer is used as a type architecture, and I here offered a new 
type architecture called the CTA. 

The paracomputer was scrutinized in terms of its role as a type architecture 
and was shown to be wanting. It failed to meet two critical requirements of a 
type architecture: to describe costs accurately and to expose important structu- 
ral information. By misrepresenting costs, the paracomputer leads one to 
select suboptimal algorithms; and one cannot tell the compiler how to gener- 
ate optimal code without seeing the cost critical features of the architecture 
from the language: Finally, dance hall architectures do nothing to reduce the 
inadequacies of the paracomputer. 

In the interest of offering a constructive alternative to the paracomputer, I 
introduced a candidate type architecture, dubbed the CTA. This non-shared- 
memory machine avoided the shortcomings of the paracomputer but seemed 
to introduce its own problems because the graph describing its interconnection 
structure was left open. It was argued that it is premature to select a graph 
because none has emerged as a clear choice. Furthermore, programming 
languages in which the graph is specified not only finesse the issue but also 
make explicit the actual communication requirements of the program. Finally, - 
shared memory, as an abstraction, can and probably should be defined on top 
of the CTA; it is a useful programming facility, and there is no reason why the 
CTA should prevent the programmer's use of it. 

The opening observation was the Corollary of Modest Potential, an obvious 
but not widely appreciated interpretation of the Fundamental Law, stating that 
the greater a problem's sequential time complexity, the less improvement in 
terms of increased problem size will be realized by parallelism. This observa- 
tion motivated an intense interest in avoiding inefficiency. But in most of our 
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discussions the gap between efficient and inefficient was generally O(1og n), 
an amount sufficiently small that we might be inclined to ignore it. But that 
conclusion misses the import of the Corollary. 

Most of the arguments were intended to establish a gap between efficiency 
and standard practice; O(1og n) was the easiest gap to establish. It is generally 
not known how inefficient most of the cases discussed can become, many 
complexity-contributing aspects of parallel computation are routinely 
ignored, and the critical constants of proportionality are all but unknown. The 
existence of the gap has generally been the important point; its magnitude 
could well be larger. Even so, a logarithm is not as small as our common 
usage tends to imply. When the 100,000,000 processors of the original 
example, which improved the problem size by only a factor of 100, are 
handicapped by a logarithm's worth of overhead, more than half of this 
modest improvement is lost! 
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discussion on the topics of this paper; his thoughtful comments on earlier 
drafts of the manuscript have improved the work immeasurably. It is a 
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of successive overrelaxation. Faith E. Fich has been extremely helpful in 
clarifying these ideas and suggesting the interpretation of Valiant's algorithm. 
Burton J. Smith offered helpful insight into the impact of practical constraints 
on parallel type- architectures. Kenneth Kennedy, Jean-Loup Baer, Janice 
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