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What are we going to talk about?

● The language modeling problem
● How do we learn a language model?

○ A quick primer on learning a model via gradient descent
○ The role of training data

● ✨✨ The Transformer ✨✨
○ The two things that make it such an improvement over our previous techniques for language 

modeling
○ More detail about both of those two things



The language modeling problem

A language model answers the question: What is p(text)?

Tokenizing text using its predefined vocabulary (which includes a [STOP] token), a 
language model breaks that probability down as follows:

p(text) =      p(token t of text | tokens 1 through t - 1 of text)

Just the chain rule of probability– no 
simplifying assumptions!

[the rest of the LM’s vocabulary]



Applying a language model

𝒱 = {permit, reject}        Our event space is 𝒱* with <eos> at end       Our r.v. is X

What is p(X = reject permit <eos>)?
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𝒱 = {permit, reject}        Our event space is 𝒱* with <eos> at end       Our r.v. is X

What is p(X = reject permit <eos>)?

Applying a language model
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𝒱 = {permit, reject}        Our event space is 𝒱* with <eos> at end       Our r.v. is X

What is p(X = reject permit <eos>)? Use chain rule of probability.

Applying a language model
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𝒱 = {permit, reject}        Our event space is 𝒱* with <eos> at end       Our r.v. is X
p(X = reject permit <eos>) = p(reject | [start]) * p(permit | [start] reject) *
                                                                                p(<eos> | [start] reject permit)

Applying a language model
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Applying a language model

𝒱 = {permit, reject}        Our event space is 𝒱* with <eos> at end       Our r.v. is X

Note: as long as p(child of node) > 0 for each node and        p(child of node) 
= 1   for each (non-eos) node, then             p(path) = 1
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Language models of this form can generate text

The ____

The students ____

The students opened ____

The students opened their ____

[the rest of the LM’s vocabulary]

At each timestep, sample a token from the language model’s new probability 
distribution over next tokens. (Might be naive sampling, top-k, nucleus sampling…)

https://arxiv.org/pdf/1904.09751.pdf


How we learn a language model



How do we learn a language model?

Given a large corpus of text, split that text into all of its different language 
modeling subproblems and then:

Maximize: p(observed token in text | all observed tokens before that token)

                          (summed over all tokens in text)



How do we maximize that quantity?

The dominant strategy from the past decade:

1. Compose a differentiable function of the input and some 
blocks of to-be-learned parameters

2. Have that function output a real-valued vector the length of 
the vocabulary

3. Softmax that vector to turn it into a probability distribution:
a. Exponentiate it
b. Normalize the exponentiated values

4. Treat the negative log probability of the correct token as 
your loss function

5. Differentiate with respect to the parameters, and perform 
gradient descent



Intuition of gradient descent

How do I get to the bottom of this river canyon?

Look around me 360∘

Find the direction of steepest slope up

Go the opposite direction
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Gradient descent: a throwback to calculus

Q: Given current parameter w, should we make w bigger or smaller to minimize 
our loss? 
A: Move w in the reverse direction from the slope of the function
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Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller? 
A: Move w in the reverse direction from the slope of the function
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Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller? 
A: Move w in the reverse direction from the slope of the function
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Now let’s imagine 2 dimensions, w and b

Visualizing the (negative) gradient vector
at the red point 

It has two dimensions shown 
in the x-y plane
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Key difference from our motivating scenario: in practice, calculating the exact 
gradient is really time-consuming. 

So… we estimate the gradient using samples of data.

Gradient Descent → Stochastic Gradient Descent
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A brief aside: let’s talk about data

What does each instance of data is contribute?

Some of the nudges to a model’s parameters over the course of training.

Which data is used to train modern large language models?

Web text

… it’s kind of tough to give a more specific description than that.

See Dodge et al. EMNLP ‘21, “Documenting Large Webtext Corpora: A Case 
Study on the Colossal Clean Crawled Corpus”

Also see Gururangan et al. EMNLP ‘22, “Whose Language Counts as High 
Quality? Measuring Language Ideologies in Text Data Selection”

https://aclanthology.org/2021.emnlp-main.98/
https://aclanthology.org/2021.emnlp-main.98/
https://aclanthology.org/2022.emnlp-main.165/
https://aclanthology.org/2022.emnlp-main.165/


✨✨ The Transformer ✨✨



Why did the transformer make such a big difference for 
language modeling?

1. It allowed for faster learning of more model parameters on more data

2. It built in a method for contextualizing tokens with respect to other tokens in 
the sequence



A brief aside about some visual shorthand I’ll be using



A 3-layer LSTM’s calculations for an input of 10 tokens

(For more on computing 
gradients via 
backpropagation, see 
colah’s blog post on this 
topic)

http://colah.github.io/posts/2015-08-Backprop/
http://colah.github.io/posts/2015-08-Backprop/


One layer of the transformer architecture (Vaswani et al. 
2017)



One layer of the transformer architecture (Vaswani et al. 
2017)

ok but how does this 
mess help anything sofia



Comparing training times: how many functions do we need to backpropagate through?



Comparing training times: how many functions do we need to backpropagate through?

**Transformers parallelize a lot of the computations that LSTMs make us do in sequence**



Comparing training times: how many functions do we need to backpropagate through?

**Transformers parallelize a lot of the computations that LSTMs make us do in sequence**
And (a very specific, but nonempty, subset of) you can therefore train a transformer on a 

ridiculously large amount of data in a way that you cannot for an LSTM.



What kind of function can take in a variable number 
of inputs like that without recursively applying an 

operation a bunch of times?



Attention mechanisms



Building up to the attention mechanism

What about an average?

But we probably don’t want to weight all input 
vectors equally…

How about a weighted average?

Great idea! How can we automatically 
decide the weights for a weighted average 
of the input vectors?

What kind of function can take in a 
variable number of inputs like that 

without recursively applying an operation 
a bunch of times?



A simple form of attention (adapted from Bahdanau et al. 
2014)

Parameter vector

(Variable number 
of) input vectors

Computed how?
1. Dot product between param vector 
and each input vector
2. Softmax the set of resulting scalars.

M
ultiply

M
ultiply

M
ultiply

M
ultiply

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473


Pros and cons

Pros:

● We have a function that can compute a weighted 
average (largely) in parallel of an arbitrary number 
of vectors!

● The parameters determining what makes it into our 
output representation are learned

Cons:

● We’re also hoping to produce n different output 
token representations… and this just produces 
one…



Enter “self attention”

“What if instead of comparing each vector of the 
sequence to a single learned vector, we compared 

the sequence to itself?”



Queries Keys Values
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Our function is still made up almost entirely of matrix multiplications! Which are very 
parallelizable ( → efficient!)

We still learn fixed-size blocks of parameters that can be used for a sequence with 
an arbitrary length

Our function is still made up almost entirely of matrix multiplications! Which are very 
parallelizable ( → efficient!)

We still learn fixed-size blocks of parameters that can be used for a sequence with 
an arbitrary length

We’re now capable of producing n different new token representations!

Hooray for self attention!

Our function is still made up almost entirely of matrix multiplications! Which are very 
parallelizable ( → efficient!)



Self attention is the key component of the transformer



That’s all I’ve got! Questions?


