
Regular Expression Pattern Matching for XML

H a r u o H o s o y a B e n j a m i n P i e r c e

D e p a r t m e n t o f C o m p u t e r a n d I n f o r m a t i o n S c i e n c e

U n i v e r s i t y o f P e n n s y l v a n i a
{haho soya, bcpierce }@c i s. upenn, edu

Abstract

We propose regular expression pattern matching as a core
feature for programming languages for manipulating XML
(and similar tree-structured da ta formats). We extend con-
ventional pattern-matching facilities with regular expression
operators such as repetition (*), alternation (I), etc., that
can match arbitrarily long sequences of subtrees, allowing a
compact pat tern to extract da ta from the middle of a com-
plex sequence. We show how to check s tandard notions of
exhaustiveness and redundancy for these patterns.

Regular expression pat terns are intended to be used in
languages whose type systems are also based on the regular
expression types. To avoid excessive type annotations, we
develop a type inference scheme that propagates type con-
straints to pat tern variables from the surrounding context.
The type inference algorithm translates types and patterns
into regular tree automata and then works in terms of stan-
dard closure operations (union, intersection, and difference)
on tree automata. The main technical challenge is dealing
with the interaction of repetition and alternation pat terns
with the first-match policy, which gives rise to subtleties
concerning both the termination and the precision of the
analysis. We address these issues by introducing a da ta
structure representing closure operations lazily.

1 Introduction

XML [XML] is a simple format for tree-structured data. As
its populari ty increases, a need is emerging for better pro-
gramming language support for XML processing--in par-
ticular, for (1) static analyses capable of guaranteeing that
generated trees conform to an appropriate Document Type
Definition (DTD) [XML] or to a schema in a richer language
such as XML-Schema [XS00], DSD [KMS], or l~elax [Rel];
and (2) convenient programming constructs for tree manip-
ulation.

In previous work [HVP00], we proposed regular expres-
sion types as a basis for static typechecking in a language
for processing XML. Regular expression types capture (and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, 10 republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
POPL '01 1/O1 London, UK
© 2001 ACM ISBN 1-58113-336-7/0110001 .-$5.00

generalize) the regular expression notations commonly found
in schema languages for XML, and support a natural "se-
mantic" notion of subtyping. We argued that this flexibility
was necessary to support smooth evolution of XML-based
systems and showed that subtype checking, though expo-
nential in general (it reduces to checking language inclusion
between tree automata) , can be computed with acceptable
efficiency for a range of practical examples.

In the present paper, we pursue the second quest ion--
developing convenient programming constructs for tree ma-
nipulation in a statically typed setting. We propose regular
expression pattern matching for this purpose.

Regular expression pat tern matching is similar in spirit
to the pat tern matching facilities found in languages of the
ML family [BMS80, MTH90, LVD+96, etc.]. Its extra ex-
pressiveness comes from the use of regular expression types
to dynamically match values. We illustrate this by an ex-
ample.

The following declarations introduce a collection of reg-
ular expression types describing records in a simple address
database.

type Person = person[Name,~ail*,Tel?]
type Name = name[String]
type Email = email[String]
type Tel = tel[String]

Type constructors of the form l a b e l [. . .] classify tree
nodes with the label l a b e l (i.e., XML structures of the form
< l a b e l > . . . < / l a b e l >) . Thus, the inhabitants of the types
Name, F~a i l , and Tel are all strings with an appropriate
identifying label. Type constructors of the form T* denote
a sequence of arbitrari ly many Ts, while T? denotes an op-
tional T. Thus, the inhabitants of the type Person are nodes
labeled person whose content is a sequence consisting of a
name, zero or more email addresses, and an optional tele-
phone number.

Using these types, we can write a regular expression pat-
tern match that, given a value p of type Person, checks
whether p contains a z e l field, and if so, extracts the con-
tents of name and t e l .

match p w i t h
p e r s o n [n a m e [n] , Emai l* , t e l [t]]

--~ (* do some s t u f f i n v o l v i n E n and t *)
person[p]

--~ (* do o t h e r s t u f f *)

The first case of the match expression matches a node la-
beled person whose content is a sequence of a name, zero or
more emails, and a t e l . In this case, we bind the variable

67

n to the name's content and t to the t e l ' s content. The
second case matches a label person with any content and
binds p to the content. The second case is invoked only
when the first case fails, i.e., when there is no Tel compo-
nent. Note how the first pa t te rn uses the regular expression
type Email* to "jump over" an arbitrary-length sequence
and extract the t e l node following it. This style of match-
ing (which goes beyond ML's capabilities) is often useful
in XML processing, since XML da ta structures often con-
tain sequences where repetitive, optional, and fixed parts are
mixed together; regular expression pa t te rn matching allows
direct access to the parts of such sequences.

We concentrate in this paper on pat tern matching with a
"single-match" semantics, which yields just one binding for a
given pat tern match. We also follow ML in adopting a "first-
match" policy, which allows ambiguous pat terns and gives
higher priority to pat terns appearing earlier. A different
alternative that is arguably more natural in the setting of
query languages and document processing languages [DFF +,
AQM+97, CS98, CG00a, NS00, NS98, Mur97] is an "all-
matches" style, where each pa t te rn match yields a set of
bindings. We will compare the two styles at several points
in what follows.

To support regular expression pa t te rn matching in a stat-
ically typed programming language, it is important that the
compiler be able to infer the types of most variable bindings
in pat terns (otherwise, the type annotations tend to become
quite heavy). We propose a type inference scheme that au-
tomatical ly computes types for pat tern variables. The type
inference scheme is "local" in the sense that it focuses only
on pat tern matches; it takes a pat tern match and a type for
the values being matched against, and propagates the type
constraints through the pat terns to the pat tern variables.
For example, in the pat tern match above, given the input
type Person, type inference computes the type S t r i n g for
the variables n and t and the type (Name,Eraail*) for the
variable p. The intuition behind the type for p is that , since
all persons with t e l are captured by the first pat tern, only
persons with no t e l can be matched by the second pattern.

Our type inference algorithm represents both types and
pat terns in the form of regular tree au tomata and propagates
type information through pat terns in a top-down manner
(i.e., it s tar ts with a given type and pat tern, calculates types
for the immediate substructures of the pat tern, and repeats
this recursively). The technical difficulties in the develop-
ment of the algorithm arise from the interaction between
the first-match policy and the repetit ion operator. The first-
match policy implies that , in order to maintain the precision
of our analysis, we need to be able to reason about the types
of values that did not match preceding patterns. To this end,
we exploit the closure properties of tree au toma ta - - i n par-
ticular, the (language-)di~erence operation. However, since
repeti t ion pat terns are t ranslated to tree au tomata whose
s tate transit ion functions contain loops, the algorithm re-
quires some care to ensure terminat ion of the algorithm. A
naively constructed algorithm might infinitely traverse the
patterns; more seriously, if the algorithm uses the closure
operations each t ime it encounters the same state, an un-
bounded number of types may be propagated to the same
state (this is discussed further in Section 4.2). We address
this problem by introducing a da ta structure representing
closure operations lazily. As a result, we achieve exact type
inference: it predicts a value for a bound variable if and
only if the variable can actually be bound to this value as
a result of a successful match of a value from the input

type. Previous papers on type inference for pat tern match-
ing have considered either recursion [MS99, PV00, Mur97]
or the first-matching policy [WC94, PS90], but, as far as we
know, no papers have t reated both.

In summary, the main contributions of this work are:
(1) the motivation and design of regular expression pat tern
matching; and (2) the algorithm for propagating types to
pa t te rn variables from the surrounding context.

The rest of the paper is organized as follows. In the
following section, we il lustrate regular expression pat tern
matching by several examples. Section 3 gives basic defi-
nitions of types and pat terns and sketches the translat ion
from the user-level external syntax to the t ree-antomata-
based internal representation. Section 4 develops the type
inference algorithm and proves its correctness. Section 5
discusses the relationship of our work with other work. Sec-
tion 6 concludes and suggests some possible directions for
future research. Appendix A gives some technical details
omit ted from the earlier discussion of the closure opera-
tions. For brevity, proofs are omit ted in this summary. They
can be found in an expanded version, available electroni-
cally [HPOOa].

We have used regular expression pa t te rn matching (and
regular expression types) in the design of a statically
typed XML processing language called XDuce ("transduce")
[HP00b]. Interested readers are invited to visit the XDuce
home page

http ://www. cis. upenn, edu/~hahos oya/xduce

for more information on the language as a whole.

2 Examples

We give a series of examples motivating our design of pat-
tern matching and il lustrating the associated algorithmic
problems.

2.1 Regular Expression Types

Each type in our language denotes a set of sequences. Types
like S t r i n g and t e l [S t r i n g] denote singleton sequences;
the type Tel* denotes sequences formed by repeating the
singleton sequence Tel any finite number of times. So each
element of the type person [Tel*] is a singleton sequence la-
beled with person, containing an arbi trary-length sequence
of Tels. If S and T are types, then the type S,T denotes all
the sequences formed by concatenating a sequence from S
and a sequence from T. The comma operator is associative:
the types (Name,Tel*) ,Addr and Name, (Tel*,Addr) have
exactly the same set of elements. (Comma is not commuta-
tive, however: we consider only ordered sequences.) As the
unit element for the comma operator, we have the empty
sequence type, wri t ten () . Thus, Name, () and () ,Name are
equivalent to Name.

The subtype relation between two types is simply inclu-
sion between the sets of sequences tha t they denote. (See
Section 3.3 for a formal presentat ion of this definition.) For
example, (Name*,Tel*) is a subtype of (Name iTel)* since
the first one is more restrictive than the second. That is,
Names must appear before any Tel in the first type, while
Names and Tels can appear in any order in the second type.

58

2.2 Regular Expression Pattern Matching

As in ML, a regular expression pattern match consists of
one or more clauses, each of which is a pair of a pattern and
a body. The pattern describes the shape of input values
that we want to identify, and may contain bound variables
for extracting subcomponents of the input value. The body
is an expression in some term language (whose details we
do not need to be precise about, for purposes of this paper)
that is executed when a match against the pattern succeeds.

To introduce the notation, consider the following simple
pattern match expression, which analyzes a value of type
Person.

match p with
person[name[n], t e l [i l l

I person [name [n], rest]
--~ ..°

The first case matches a label person whose content is a se-
quence of a name node and a t e l node. It binds the variable
n to the name's content and t to the name's content while
evaluating the body. The second case is similar except that
it binds the variable r e s t to the (possibly empty) sequence
follows the name node.

Patterns can contain regular expression types. For exam-
ple, the following pattern match contains the type Email*.

match p with
person[name[n], e as Email*, tel[ill

I person[name[n], e as Email*]
--~ ...

This example is similar to the previous one except that the
variable e is bound to the intermediate sequence of zero or
more emails between name and t e l . (In general, an "as"
pattern "x as P" performs matching with p as well as bind-
ing x to the whole sequence that matches P. Notice also that
we treat types in the same category as patterns.) The use
of the repetition operator * yields an iterative behavior dur-
ing pattern matching. That is, when the pattern matcher
looks at the pattern (e as F~nail*), no hint is available
about how many emails there are. Therefore the marcher
must walk through the input value until it finds the end of
the chain of emails. This matching of arbitrary length se-
quences is beyond ML pattern matching, and is often quite
useful in programming with XML. For example, the pattern
above is substantially more compact than explicitly writ-
ing a recursive function that traverses the sequence, as we
would need to do if only ML-style matching of fixed-length
sequences were supported.

The usefulness of matching against regular expression
types is yet more evident in the following complex pattern,
which extracts the subcomponents of an HTML table.

match t with
table[cap as Caption?,

col as (Col*IColgroup*),
hd as Thead,
f t as Tfoot?,
bd as (Tbody+ITr÷)]

An HTML table consists of several optional fields (Caption?
and Tfoot?) and repetitive fields (Co1., Colgroup*, Tbody+,
and Tr+). (We assume the types Caption, Col, etc., to be

defined elsewhere.) Again, by matching against regular ex-
pression types, we can directly pick out each subcomponent,
whose position in the input sequence is statically unknown.
Imagine equivalent code written only with simpler ML-like
pattern matching.

2.3 Ambiguous Patterns

Regular expression pattern matches can have two kinds of
ambiguity.

The first kind of ambiguity occurs when multiple pat-
terns match the same input value. For example, the pat-
terns in the first example above are ambiguous, since any
value that matches the first pattern also matches the sec-
ond pattern. In such a case, we simply take the first match-
ing pattern ("first-match policy"). The reason why we take
this policy rather than simply disallowing ambiguity is the
same as in ML: it makes it easy to write a "default case"
at the end of a pattern match, whereas restricting to non-
ambiguous sets of patterns would force us to write a cum-
bersome final pattern explicitly matching the "negation" of
the other cases.

The second form of ambiguity occurs when a single pat-
tern can match a given value in different ways, giving rise
to different bindings for the pat tern variables. This possibil-
ity is intrinsic to regular expression pattern matching. For
example, in the pattern

match e with
el as Email*, e2 as Email*

which splits a sequence of emails into two, it is ambiguous
how many amails the variable e l should take. We resolve
this ambiguity by adopting a "longest match" policy where
patterns appearing earlier have higher priority (as in most
implementations of regular expression pattern matching on
strings). In the example, e l is bound to the whole input
sequence, e2 to the empty sequence.

Again, an alternative design choice would be to disal-
low such ambiguity. However, the longest-match policy can
make patterns more concise. Consider the contents of an
HTML d e s c r i p t i o n , which is a sequence of type (Dr [Dd)*,
where Dt (term) and Dd (description) are defined as dt [. . .]
and d d [. . .] , respectively (the content t y p e s . . , are not im-
portant here). Suppose we want to format this sequence in
such a way that each term is associated with all the follow-
ing descriptions before the next term (if any). We may write
an iteration for scanning the sequence where, at each step,
the following pattern match analyzes cases on the current
sequence.

match I with
d t [t] , d as Dd*, r e s t

--~ (* display term t with d, and do rest *)

I ()
--~ (* finish *)

Here, the first case matches a sequence beginning with dr,
where we extract the content of the dt and take the following
dds as many as possible, using the longest match. Note that,
without the longest match, it is ambiguous how many dds
are taken by each of the consecutive patterns (d as Dd*)
and r e s t . If we rewrite this pattern to an unambiguous
one, the variable r e s t must be restricted not to match a
sequence that begins with dd, resulting in a somewhat more
cumbersome pattern:

69

d t [t] , d as Dd*, r e s t as ((D t , (D d l D t) *) I O)

The longest-match and first-match policies turn out to
fit cleanly together in the same framework, as we shall see
in Section 3.1.

2.4 Exhaustiveness and Redundancy Checks

We support the usual checks for exhaustiveness and redun-
dancy of pattern matches. For these checks, we assume that
the "domain" type (i.e., the type of the input values) is
known from the context. A pattern match is then exhaus-
tive iff every value from the domain type can be matched
by at least one of the patterns. Likewise, a clause in a pat-
tern match is redundant iff all the input values that can be
matched by the pattern are covered by the preceding pat-
terns.

Although these definitions themselves are the same as
usual (cf., for example, [MTHg0, page 30]), checking them is
somewhat more demanding. Consider the following pattern
match, which, given a sequence of persons, finds the first
p e r s o n node with a t e l field and extracts the name and t e l
fields from this person.

m a t c h p w i t h
person[Name, Email*]*,

person[name[n], E m a i l * , t e l [I ;]] , rest ;
o . .

I person[Name, Email*]*

This pattern match is "obviously" exhaustive--the first
clause captures the sequences containing at least one person
with t e l and the second captures the sequences containing
no such person. But how can a machine figure this out? Sec-
tion 3 describes our approach, which is based on language
inclusion between regular tree automata.

2.5 Type Inference

Since we intend regular expression pattern matching to be
used in a typed language, we need a mechanism for infer-
ring types for variables in patterns, to avoid excessive type
annotations.

The type inference algorithm assumes that a domain
type T for the pattern match is given by the context. It
then infers an exact type U for each pattern variable x. That
is, the type U contains all and only the values v such that
x can be bound to v as a result of successful match of the
whole pattern against a value from T.

Since the semantics of pattern matching uses a first-
match policy, obtaining this degree of precision re-
quires some care. For example, consider the follow-
ing pattern match, where the domain type is Person =
person [Name, FJnail*, Tel?]

match p with
p e r s o n [name [n], tel [t]]

I p e r s o n [n a m e [n] , r e s t]
o.o

We can easily see that n and t should be given S t r ing .
But what type should be given to the variable r e s t ? At
first glance, the answer may appear to be (gmai l* , ' re l?) ,
because the content type of person is (Name , E m i l * ,Te l?) ,

according to the definition of the type Person. But in fact,
the precise type for r e s t is

(Email+,Tel?) [O.

To see why, recall that the second case matches values that
are not matched by the first case. This means that, if a
value falls in the first case, the name in the value is not
immediately followed by a t e l . Therefore what follows after
the name should be either one or more emails or nothing at
all.

How do we calculate this type? The trick is to cal-
culate a set-difference between types. In the above ex-
ample, the type of the values that are not matched
by the first case is computed by the difference between
person [Name, Email*, Tel?] and person [Name, Tell, which
is person [Name, ((Email+, Tel?) J ())]. The computation of
difference is feasible because types are equivalent to tree au-
tomata and tree automata are closed under difference (Sec-
tion 3.4). The type person[Name, ((Email+,Tel?) I O)] is
then propagated to the r e s t variable by simply checking
the matching of the label person of the type and the pat-
tern, and similarly for the label name. However, we have to
carefully propagate types through repetition patterns (*) so
that the algorithm terminates. Further, the combination of
repetition patterns and choice patterns with the first-match
policy requires a delicate construction of the inference algo-
rithm, as we will explain in Section 4.

So far, we have seen inference for "bare" variable pat-
terns (which match any values). The type inference can also
compute a type for an "as-ed" variable of the form (x a s P).
The inferred type can be more refined than the type that can
be formed from the associated pat tern P. For example, con-
sider the following pat tern match (where the domain type
is Person):

match p with

person[Name, x as (EmailITel)+]
--~ ...

.°.

Here, the pat tern (Email I Tel) + imposes the restriction that
x can be bound to sequences of length one or more. However,
we know from the domain type that at most one t e l may
follow smalls. Thus, type inference computes a more precise
type:

(Email+, Tel?)] Tel

This refinement is useful since the body of the pattern match
may actually depend on the fact that there is at most one
t e l and type inference alleviates the burden of writing the
more verbose annotation.

Our type inference method works only for variables that
appear in the tail position in a sequence (we call such vari-
ables "tall variables."), for a technical reason explained in
Section 3.2. We require each non-tail pattern variable to
be supplied with an a s pattern, so that we can construct a
type for the variable from the supplied pattern in a straight-
forward way. Fortunately, this limitation turns out not to
be too annoying in practice: in our experience, the most
common uses of pat tern variables are (1) binding the whole
contents of a label (as in the examples in Section 2.2), and
(2) binding the "rest" of a sequence during iteration over a
repetitive sequence (as in the example in Section 2.4). Both
of these uses occur in tail positions.

70

3 Syntax and Semantics

For purposes of formalization (and implementation), it
is useful to distinguish two forms of types--external and
internal--and two corresponding forms of patterns. The ex-
ternal form is the one that the user actually reads and writes;
all the examples in the previous sections are in this form.
Internally, however, the type inference algorithm uses a sim-
pler representation to streamline both the implementation
and its accompanying correctness proofs. Below, we give the
syntax of each form and the semantics of the internal form,
and sketch the translation from external to internal form.
Then we define inclusion relations and closure operations
on the internal form, and give simple methods for checking
exhaustiveness and redundancy of patterns.

3.1 External Form

For brevity, we omit base values (like strings) and the cor-
responding types and patterns from our formalization.

We assume a countably infinite set of labels, ranged over
by 1, and a countably infinite set of type names, ranged over
by X. Type expressions are then defined as follows.

T ::= () empty sequence
X type name
1 IT] label
T, T concatenation
T J T union

The bindings of type names are given by a single, global set
E of type definitions of the following form.

type X = T

The body of each definition may mention any of the defined
type names (in particular, definitions may be recursive). We
regard E as a mapping from type names to their bodies.

We represent the Kleene closure T* of a type T by a type
X that is recursively defined as follows.

t y p e X = T,X I 0

The other regular expression constructors are defined as fol-
lows.

T+ ~ T , T*
T? .~ T [()

As we have defined them so far, types correspond to ar-
bitrary context-free grammars. Since we instead want types
to correspond to regular tree languages, we impose a syntac-
tic restriction, called well-formedness, on types. (The reason
why we want to restrict attention to regular tree languages
is that the inclusion problem for context-free grammars is
undecidable [HU79].) Intuitively, well-formedness requires
unguarded (i.e., not enclosed by a label) recursive uses of
type names to occur only in tail positions. See [HVP00] for
the formal definition.

We assume a countably infinite set of pattern names,
ranged over by Y, and a countably infinite set of variables,
ranged over by x. Pat tern expressions are then defined as
follows.

x bare variable
x as P as-ed variable
0 empty sequence
Y pattern name
1 [P] label
P, P concatenation
P] P choice

(Notice that the syntax of pattern expressions differs from
that of type expressions only in variable patterns.) The
bindings of pat tern names are given by a single, global, mu-
tually recursive set F of pattern definitions of the following
f o r m .

pat Y = P

For convenience, we assume that F includes all the type
definitions in E where the type expressions appearing in E
are considered as pattern expressions in the evident way.
Pat tern expressions must obey the same well-formedness re-
striction as types. In writing pattern expressions, we use
the same abbreviations for regular expression operators (*,
+, and 7). We write BV(P) for bound variables appearing in
P and FN(P) for free pattern names appearing P.

The longest-match policy mentioned in Section 2.3 ac-
tually arises from these abbreviations and the first-match
policy. That is, Email* is defined as a variable Y that is
recursively defined as

pat Y = Email,Y [()

and, with the first-match policy, the first branch (Email, Y)
is taken as often as possible, which accounts for the longest-
match policy. The same argument is applied to the other
operator + and ?. Notice that the order of union clauses in
the definitions of the abbreviations matters for the semantics
of pattern matching.

We impose an additional syntactic restriction lineari~y
on patterns in order to make sure that pattern matching
always yields environments with no missing bindings and
no multiple bindings for the same variable. For simple ML-
style patterns, linearity is just a check that each variable
appears in a pattern just once. In the present setting, we
need to extend this notion to patterns with choices and re-
cursion. Intuitively, a linear variable must occur exactly
once in each branch of a choice, and must be unreachable
from itself. The formal definition is given in the full version
of the paper [HP00a].

Notice that, in the above definition of patterns, nothing
prevents us from writing a single pattern that traverses a
tree to an arbitrary depth. For example, consider the fol-
lowing recursively defined type for binary trees, with two
forms of leaves, b[] and c[] , and internal nodes labeled a,

type T = a[T],T [b[] [c[]

and the match expression

match t with
P -4 ...

where P is recursively defined as follows:

pat P = a[P],T [a[T],P [x as b[]

The pattern P matches a tree that has at least one b [], and
yields exactly one binding of the variable x. Since P has the
choice of patterns alP] ,T and a[T] ,P in this order, the first-
match policy ensures that the variable x is bound to the first
b [] in depth-first order. Although this "deep" matching is
somewhat attractive, we are not sure about its usefulness,
because, after obtaining the first b [] as above, it is not clear
what to do to get the next one, or more generally to iterate
through all the b[]s in the input tree. (By contrast, this
sort of deep matching would be more clearly useful if we
had chosen the "all-matches" semantics instead.)

71

3.2 Internal Form

Values, types, and patterns in the external form are labeled
trees of arbitrary arity (i.e., any node can have an arbitrary
number of children). In the internal form, we consider only
binary trees.

The labels I in the internal form are the same as labels in
the external form. Internal (binary) tree values are defined
by the following syntax.

t ::= e leaf
l(t , t) label

There is an isomorphism between binary trees and sequences
of arbitrary-arity trees. That is, e corresponds to the empty
sequence, while l(t, t') corresponds to a sequence whose head
is a label 1 where t corresponds to the content of 1 and t'
corresponds to the remainder of the sequence. For example,
from the arbitrary-arity tree

person[name[I, email[]]

we can read off the binary tree

person(narae(e, email (e, e)), e),

and vice versa.
For types, we begin as before by assuming a countably

infinite set of (internal) type states, ranged over by X. A
binary tree automaton M is a finite mapping from states
to (internal) type expressions, where type expressions T are
defined as follows:

T ::= 0 empty set
e leaf
T] T union
l (z , x) label

There is an one-to-one correspondence between external and
internal types, following the same intuition as for values.
For example, the external type person[narae [] , ema±l []*]
corresponds to the internal type person(X1, X0) where the
states X1 and Xo are defined by the corresponding automa-
ton M as follows.

M(Xo) = e
M(X~) = name(Xo, X2)
M(X2) = email(Xo, X2) I e

The formalization of the translation from external types to
internal types can be found in [HVP00].

We use the metavariable A to range over both type states
and type expressions--jointly called types---since it is often
convenient to treat them uniformly. The free states FS(T)
of a type expression T are the states appearing in T. This is
extended to the free states of an automaton M by FS(M) =
U { F S (M (X)) I X E dom(M)}. We assume that every
automaton M satisfies FS(M) C_ dora(M).

The semantics of types is given by the acceptance re-
lation t E A (relative to some tree automaton M), which
is read "tree t has type A" or "t is accepted by A." (We
usually elide M, to lighten the notation.) The rules for the
acceptance relation are as follows.

t E M (X)
t E X

(Acc-ST)

e E e (Aco-EPS)

t e T ~
t e Tl l T2

(Acc-OR1)

t e T 2
t ~ Tx l T2

(Acc-OR2)

tl E Xl t2 E X2
l(t~, t2) e l(x~, x~)

(Acc-LAB)

The definition of patterns is similar to that of types. We
assume a countably infinite set of pattern states, ranged over
by Y. Pat tern variables x are the same as in the external
form. A pattern automaton is a finite mapping from states to
(internal) pattern expressions, which are defined as follows.

P ::= x : P variable
0 failure
T wild-card
e leaf
P [P choice
l(V, Y) label

Note that, in the internal form, we drop bare variable pat-
terns, but introduce the wild-card pattern T. A bare ex-
ternal variable pattern x is encoded as an internal pattern
x : T. We use the metavariable D to range over both pat-
tern states and pat tern expressions, jointly called patterns.
We write B V(P) for the variables occurring in P.

The semantics of patterns is given by the matching rela-
tion t E D ~ V (relative to a pattern automaton N, which
we normally elide), where an environment V is a finite map-
ping from variables to trees. This relation is read "tree t is
matched by pattern D, yielding environment V." The rules
for the matching relation are as follows.

t E N (Y) ~ V

t E Y = ~ V
(MAT-ST)

t E P =t~ V
t e x : P =~ V U { (z ~ t)}

(MAT-BIND)

t E T ~ 0 (MAT-ANY)

e E e ~ 0 (MAT-EPs)

t E P ~ V
t e P~ I P2 =~ v

(MAT-OR1)

t ¢ P ~ t ~ P 2 ~ V
P 1 1 v 2 ~ v

(MAT-OR2)

t ~ E Y~ ~ Vx t2 E Y2 =~ V2
t(tl, t2) ~ l(Y1, Y2) ~ v~ u v~

(MAT-LAB)

We write t E D to mean t E D =~ V for some V. Also, we
w r i t e t E D ~ (x ~ - + u) w h e n t E D ~ V a n d V (x) = u f o r
some V.

72

Note that the matching relation is based on a "first-
match" policy, as in ML: when a tree matches both branches
of a choice pattern, we take the first one. This follows from
the fact that the rule MAT-OR2 is applicable only when
MAT-OR1 is not.

The correspondence between external patterns and inter-
nal patterns is similar to what we have seen for types, except
for the treatment of variable patterns. External patterns can
contain variable patterns that are not in tail positions. For
example, the following pattern contains a non-tail variable
pattern labeled with the variable x:

(X as (name[],email[])),tel[]

Such a pattern cannot be directly translated to an internal
pattern because a variable pattern in the internal form can
only be bound to a whole subtree, which, in the external
form, corresponds to a sub-sequence from some point to the
tail. To deal with this discrepancy, we transform each non-
tail variable pattern labeled with a variable x to a pair of
tail variable patterns labeled with new variables Xb and x~.
The scope of the variable pattern labeled Xb opens at the
beginning of the original x pattern and closes at the tail;
the scope of the variable x~ opens at right after the end
of the original x pattern and closed at the tail. Thus, we
transform the above pattern to

(Xb as (name[],email[],(xe as tel[l))).

Now, since the newly introduced variable patterns both ex-
tend all the way to the end of the sequence, we can translate
the whole pattern to the internal pattern

Xb : name (Xo, Xi)

where Xo and Xi are defined by the automaton N as follows:

N (X o) = e
g (x l) = email(Xo, X2)
N(X2) = xo : t e l (X o , Xo)

Finally, since the body of the pattern match actually wants
to use the original variable x instead of the new variables
Xb and xe, we insert a bit of extra code, at the beginning
of the body, that recovers the original behavior. This extra
code "trims off" the sequence assigned to xe from the se-
quence assigned to Xb (note that the former is a suffix of the
latter), and binds the original variable x to the result. The
formalization of the translation of patterns can be found
in [HP00a].

As we mentioned in Section 2.5, our type inference
method cannot compute exact types for non-tail variables.
To see why, consider the following pattern with the domain
type (T,T?).

(x as T), T?

This pattern is encoded as

X b as (T, (xe as T?))

by the translation described above. From the type inference
algorithm described later (in Section 4), we will obtain the
type (T,T?) for Xb and T? for x¢. But it is not immediately
clear how to obtain the desired type T for x from these two.
Naively, it seems we want to compute a type such that each
inhabitant t is obtained by taking some tree tb from (T,T?)

and some tree t~ from T? and then cutting off the suffix Ce
from tb. But the type we get by this calculation is

(T,T I T I ()) ,

which is bigger than we want. How to infer exact types for
non-tail variables is still an open question.

In what follows, all the definitions are implicitly param-
eterized on the tree automaton and the pattern automaton
that define the types and patterns appearing there. In places
where we are talking about only a single tree automaton and
a single pattern automaton, we simply assume a "global"
tree automaton M and a global pattern automaton N. In
a few cases, where we are dealing with operations that cre=
ate new types, we will need to talk explicitly about the tree
automaton before the creation and the one after.

Finally, whenever we talk about a type A and a pat-
tern D at the same time, we assume either that they are
both states or that they are a type expression and a pattern
expression.

3.3 Inclusion

We define subtyping as inclusion between the sets of trees
in the two given types. Since types are represented as tree
automata, subtyping can be decided by an algorithm for
checking inclusion of regular tree languages [Sei90]. (The
complexity of this decision problem is exponential in the
worse case, but algorithms are known that appear to behave
well on practical examples [HVP00].) For what follows, we
must also define an inclusion relation between types and
patterns.

3.3.1 D e f i n i t i o n [S u b t y p i n g a n d Inc lus ion] : A type A
is a subtype of a type B, written A <: B, if t C A implies
t 6 B for all t. A type A is included in a pattern D, written
A <: D, if t 6 A implies t E D for all t.

Using the inclusion relation between types and patterns,
exhaustiveness of pattern matches can be defined as follows:

3.3.2 D e f i n i t i o n [E xhaus t i venes s] : A pattern match
P1 ---+ el [. . . [Pn ~ e~ is ezhaust ive with respect to a
type T if

T<: P i I . . . I P . .

3.4 Closure Operations

The check for redundancy of pattern matches uses an inter-
section operation that takes a type and a pattern as inputs
and returns a type representing their intersection:

3.4.1 D e f i n i t i o n [Intersect ion]: A type B is an intersec-
tion of a type A and a pattern D, written A N D =~ B, if
t 6 B i f f t 6 A and t 6 D.

That is, an intersection of A and D represents the set of
trees that are in the type A and also match the pattern D.
The redundancy condition can now be expressed as follows:

3.4 .2 D e f i n i t i o n [R e d u n d a n c y] : In a pattern match
Pl "-~ et I " " I P~ "-~ e~, a pattern Pi is redundant with
respect to a type T if, for some U,

T n P~ ~ U A U <: Pi I . . . I Pi- i .

73

That is, a pattern is redundant if it can match only trees
already matched by the preceding patterns.

3.4.3 P r o p o s i t i o n : For all types A defined under a tree
automaton M and patterns D defined under a pattern au-
tomaton N, we can effectively calculate a type B defined
under a tree automaton M' D M such that A N D ~ B.

The actual algorithm for the intersection operation can be
found in Appendix A.

Our type inference algorithm needs to calculate not only
intersections of types and patterns, but also differences be-
tween types and patterns. If T is the type of the input trees
to a pattern P1 I P2, we can infer that the type for the
trees that can be matched by P1 is the intersection of T and
P1, while the type for the trees matched by P2 is the differ-
ence between T and P1 (i.e., those trees not matched by the
preceding pattern).

One might now expect to define a difference operation
just as we did for the intersection operation and to use these
operations in building the type inference algorithm. How-
ever, this approach turns out to be problematic. To see why,
notice that the above proposition tells that the types re-
turned by the intersection operation may in general contain
freshly generated states that were not in the input types or
patterns (and the same holds for the difference operation).
This becomes an issue in our type inference algorithm. If one
step of the algorithm uses the results of the operations in cal-
culating partial results that become inputs to the next step,
then it becomes difficult to place a bound on the number
of "distinct states" encountered by the algorithm, making
it difficult to guarantee termination. We will come back to
this point in Section 4.2, where we define a data structure
for representing intersections and differences of types and
patterns without actually calculating them.

4 Type Inference for Pattern Matching

We now consider the problem of inferring types for the vari-
ables bound by a pattern, given the domain type of the
whole pattern.

4.1 Specification

We assume that a domain type T and a pattern P are given.
We want to know the "range" of each variable ~- - the set of
all and only the trees that x can be bound to as a result of
a successful match of a tree from T against P.

4.1.1 D e f i n i t i o n [Range] : The range of P with respect
to T, w r i t t e n pT,P, is the function mapping each variable
x that is reachable from P to the set {u I 3t. t E T ^ t E
P ~ (x ~ u)}. A type environment P (mapping variables
to types) represents pT, P if U E F(x) implies u E pT'P(x),
and vice versa, for all x.

Given a type T and a pattern P, the result of type infer-
ence should be a type environment P representing the range
of P with respect to T.

4.2 Highlights of the Algorithm

Given a pattern P and its domain type T, the goal of our
type inference algorithm is to obtain a domain type T' for
each subpattern P ' of P, where T ' represents the set of trees

that are matched by P ' as a result of a successful match of
a tree from T against P. Having computed domain types
for all subpatterns, the range of P can be obtained as a
mapping from each variable x to the union of the domain
types for all the variable patterns binding x.

The algorithm proceeds by a top-down propagation of
type information through subpatterns. We begin with the
domain type T for the whole pattern P. For each immediate
subpattern P ' of P, we compute its domain type T ' from
T and P, and recursively apply the same operation to all
the subpatterns. For example, consider the labeled type
T -- l(X1, X2) where the global tree automaton M defines

M(X1) = ~ I I (X2,X2)
M(X2) =

and the labeled pat tern P = I(Y1,Y2) where the pattern
automaton N defines

N(Y1) = yl : T
N(Y2) = y2 : T.

We compute a domain type for each subcomponent of P by
taking the corresponding subcomponent of T. For the first
subcomponent Y1 of P (which expands to yl : Y), we obtain
the domain type e] l(X2, X2) from the first subcomponent
of T; similarly, for the second subcomponent Y1 of P (which
expands to y2 : 7"~, we obtain the domain type e from the
second subcomponent of T. From these domain types, we
can calculate the type environment {yl : (e I l(X2, X2)), y2 :
e} as the result of the whole type inference.

Choice patterns need careful t reatment because their
first-match policy gives rise to complex control flows. Sup-
pose T is a domain type for the choice pattern P1 I P2. We
want to obtain a domain type for each of the subpatterns P1
and P2. Since the domain type T1 for P1 should denote the
set of trees from T that are matched by P1, the type T1 can
be characterized by the intersection of T and P1. On the
other hand, since the domain type T2 for P2 should denote
the set of trees from T that are not matched by the first
pattern, the type T2 can be characterized by the difference
between T and P1.

Since patterns can be recursive, we need to do some extra
work to make sure that the propagation described above will
always terminate. We apply a standard technique used in
many type-related analyses, keeping track of all the inputs
to recursive calls to the algorithm and immediately return-
ing when the same input appears for the second time (the
intuition being that processing the same input again will not
change the final result). The termination of the algorithm
then follows from the fact that there are only finitely many
possible inputs. Typical uses of this technique can be found
in recursive subtyping algorithms [GLP00, HVP00]. In the
present setting, since each input to the algorithm is a pair
of a type and a pattern, we keep track of such pairs. (It is
not sufficient to keep to track of only the patterns we have
already seen. Suppose that we have already seen a pattern
P with a domain type T~ but encounter the same pattern P
with a different domain type T' , in particular, larger than
T. Since the pat tern P may match more trees than those
from T, we need to go through P again with the new domain
type T' .)

We need one additional trick, however, to ensure termi-
nation. In the propagation of types for choice patterns, if
we simply compute the intersection of T and P1 and the
difference between T and P1, we can create "new" states in

74

the resulting types (cf. Proposition 3.4.3). This means tha t
we cannot guarantee tha t there are only finitely many types
encountered by the algorithm, which makes it difficult to
ensure termination. Instead, our algorithm delays actually
calculating intersections and differences by explicitly ma-
nipulating expressions containing what we call "compound
states," which are a form composed of intersections, differ-
ences, and the states appearing in the input type and pat-
tern. Because there are only a finite number of such states,
only finitely many compound states can be generated, en-
suring termination.

4.3 Preliminaries

A compound state X consists of a single type state, a
set of "intersecting" pa t te rn states, and a set of "sub-
tracting" pat tern states. Intuitively, X denotes the set
of trees that are in the type s tate and also in each in-
tersecting pa t te rn state, but not in any s_ubtracting pat-
tern state. Formally, a compound state X has the form
X N {Y1 . . . Ym}\{Z1 . . . Zn}, where X is a s tate and all the
Ys and Zs are pat tern states. We write X n W for the com-
pound state X n {Y1 • .. Ym, W } \ { Z 1 . . . Z,~} and X \ W for
X n { r l . . . Y,~}\{Z1.. . Z . , W}.

Further, we adapt several definitions on types given in
Section 3.2 to handle compound states. Compound type ex-
pressions T are just like type expressions except that they
contain compound states instead of type states:

7 : : = ¢

T I T
l(X,X)

We use the metavariable A to range over both compound
states and compound type expressions, jointly__ known as
compound types. The acceptance relation t E A is defined
for compound types just as it is for types, plus the following
cases:

t E x t E Y
t ~ x n Y

(DAcc-IsEcT)

q

r E X t • Y
m

t e X \ Y
(DAcc-DIFF)

Inclusion A <: D means that t E A implies t E D for all t.
Using compound types, we can now define intersection

and difference operations tha t do not introduce new states
(unlike the intersection operation defined previously). These
operations take a compound type expression and a pa t te rn
expression and returns a compound type representing their
intersection or difference. The "compound" intersection op-

eration isect is defined as follows.

T isect 0 = 0
0 isect P = 0
' T i s e c t x : P = 7 i s e c t P

isect 7- =
e isect e =
e isectl(Y1,Y2) =
(_~1 I T2) isect P = (71 isect P) I (T2 isect P)
T isect (P1 I P2) = (T i sect P1)] (T isect P2)
l (X l ,X2) isect e = 0
l('Xl, 'X2) isect I'(Y1,Y2) = 0 l # l'
I(X1,X2) isect I(Y1,Y2) = I(Xlf'IY1,X2OY2)

Similarly, the following defines the "compound" difference
operation dif f .

• d~ff 0 =

T d i f f x : P = T d i f f P
{~ d i f f P = 0
T d i f f T = 0
e diff e = 0
e diff l(Y1, Y2) = e

(71 172) d i f f P = (T ~ d i f f P) l (7 2 d i f f P)
7 d i f f (P~]P2) = (T d i f f P i) diffP2
l (X l ,X2) diff e = I(X1,X2)
i (X l ,X2) diff l'(Y1,Y2) = l (X l ,X2) l # l'
t (x l , x ~) cliff t(Yl,Y2) = *(Xi\Y1,X~) I z(X1,X~\Y~)

The last case means tha t if a tree l (t l , t2) is in I(X1,X2)
but not in I(Y1,Y2), then either t l is not in Y1 or t2 is not
in Y2. Note tha t the above operations never unfold a state.
When the type inference algorithm needs to proceed to the
"unfolding" of a compound state, we use the following unf
function:

unf(X) = M (X)
unf(X-'2"~Y) = unf(X) isect N(Y)
u n f (X \ Y) = un](X) difff N(Y)

The type inference algorithm mainly manipulates com-
pound types, but, for calculating the final results, it uses a
"conversion" operation from compound types to their equiv-
alent non-compound types. Formally, a compound type A
is convertible to B, writ ten A ~ B, if t E A if[t E B, for all
t. The actual algorithm for the conversion operation can be
found in Section A.

Finally, we need several definitions on type environ-
ments. We write {~ : T} for the type environment tha t
maps x to T and any other variables to the empty-set type
0; the empty environment 0 maps all variables to the empty
set type @. We define r <: r ' as r(x) <: r'(z) for all vari-
ables x, and define F I F ' as (F I r ') (x) = r (x) I r ' (x) .
We can easily see tha t u E (F1 I F2)(x) i f f u E F i (z) or
u e r~ (x) .

4.4 Inference Algori thm

The type inference algorithm is presented as a set of syntax-
directed rules defining a relation of the form H ~- A t> D =>
Ht; F, where II ranges over sets of pairs of a compound state
and a pat tern state, wri t ten in the form (XI>Y). The algo-
r i thm computes, from a (compound) domain type A for a
pa t te rn D, a type environment F tha t represents the range

75

of D with respect to A. To detect termination, the algo-
r i thm takes as input the set H of already-encountered pairs
of compound states and pat tern states, and returns as out-
put a set H' containing all the pairs in the input set H plus
the additional pairs encountered during the processing of A
and D. This output set becomes the input to the next step
in the algorithm.

The whole type inference takes as inputs a domain type
T and a target pa t te rn P . We assume tha t T is included in
P. (In general, T may not be included in P . But because
only trees matched by P contribute to the ranges, we can
take the intersection T N P for the the start ing type, which
is automatical ly included in P.) We star t the type inference
by calling the general inference relation with 0 ~- T ~ P =~
II~; F. The output F is the final result of type inference.
(The other output H ~ is thrown away.)

We now give the rules for the type inference relation
H b- A > D =*- H'; F. For a variable pat tern, we add the
domain type 7 to the range of x.

n ~ 7 ~ : P ~ n ' ; (r I {~ : T})
(INFA-BIND)

The second premise converts the compound type T to a non-
compound type T so tha t it can be added to the output type
environment.

If the type 7 is less than the empty type (and therefore
contains no trees), we return the empty type environment
since no successful matches are possible. If the pat tern is
either a leaf or a wild-card, we return the empty type en-
vironment since matching against the pat tern will yield no
bindings.

T<: 0

H ~ 7 ~ P = ~ H ; O
(INFA-EMP)

H I-" e > e ~ II; 0 (INFA-EPS)

H I- 7 > T =~ H; 0 (INFA-ANY)

For a choice pattern, we compute a domain type for each
choice by the compound intersection operation isect and the
compound difference operation diff.

H I- (T isect P1) t> P1 =-~ H1;F1
H1 ~ (T diff P1) ~ Pa :=~ Ha; Fa

H e T ~ P~ I P~ ~ H2;(F1 Ira)
(INFA-ORI)

If the type is a union, we simply generate a subgoal for each
component.

H I" 71 ~ P :=.~ H1; F1 H1 ~ 72 ~ P => H2;F2

H I-- T1 I T2 t> P =~ Ha; (F1 I F2)
(INFA-OR2)

If the type and the pa t te rn are both labels, we propagate
each component of the type to the corresponding component
of the pattern.

l (x , x ') ¢. 0

H F I (X ,X ') ~ I(Y,Y') ~ H a ; (r l I r a)
(INFA-LAB)

The side-condition I (X ,X ') ~. 0 is necessary for the preci-
sion of the type inference. Suppose tha t I (X , X ') <: 0. Then
this means that one of X and X ' is empty, but the other
may not necessarily be empty. If such a non-empty type is
propagated to the corresponding component of the pat tern
I(Y,Y'), this may augment the range of the pattern. But
this augmentat ion is unnecessary because the type l(X, X ')
contains no trees and there can therefore be no successful
matches against the pat tern.

Finally, we have two rules for type and pat tern states.

HI - X ~ Y =~ H;0
(INFA-ST)

(Xt>Y) ¢ H H U { (X>Y)} ~- unf (X) > N(Y) =-~ I I ' ; F

H ~ X ~ Y = ~ H ' ; F
(INFA-UNF)

That is, if we have already seen the pair (Xr, Y), we simply
return the emp.ty type environment since proceeding to the
unfoldings of X and Y again will not add anything to the
final type environment. If we have not seen the pair, we add
it to H (so tha t we will be able to tell if we encounter it
again) and proceed with the unfoldings.

The worst-case complexity of this algorithm is double-
exponential. The rule INFA-UNF may be applied at most
~_.many times as the number of possibilities for the form
(X>Y), which is exponential in the size of the input types
and patterns. In addition, each t ime the rule is applied, we
may convert compound types to non-compound types the
same number of times as variable pat terns appear, which is
linear. The conversion takes exponential t ime in the worst
case (cf. Appendix A). However, despite these frighten-
ing possibilities, in our experience using type inference with
several small applications in XDuce, the performance of the
algorithm is quite acceptable. The reason is tha t the pat-
terns used in these applications are "almost" non-recursive
(in the case of completely non-recursive patterns, the rule
INFA-UNF is applied only a linear number of times in the size
of the pat tern) , and tha t the optimization techniques used in
our implementat ion (cf., Appendix A) make the conversion
operation quick for these examples.

The algorithm is sound, tha t is, all trees in the predicted
range of x are also in the actual range of x.

4.4.1 T h e o r e m [Soundness]: Suppose 0 I- A ~> D => H; P
and A <: D. Then, u E F(9) implies u E pA'D(9).

The (routine) proof can be found in the full version [HP00a].
Conversely, all trees in the actual range of x are also in

the predicted range of x.

4.4 .2 T h e o r e m [Comple teness] : Suppose 0 ~ A ~ D =~
I I ;F . Then, u E pA,D(y) implies u E F(y).

76

The key to the proof of completeness lies in characteriz-
ing the part ial results I I ~ and F in an intermediate state of
the algorithm expressed by the form II K A v. D :=~ II ' ; F.
That is, when the algorithm is given H, A, and D, what
will it return in II ~ and F? To see the intuition, first observe
tha t the algorithm will behave as follows. (1) The algorithm
performs type propagation from the pair of the compound
type A and pat tern D. (2) When the algorithm sees a pair
of a compound state and a pat tern state that is not in II,
it will proceed to their unfoldings and record the pair in II ' .
(3) When the algorithm sees a pair that is already in II,
then it will skip this pair. From these, we can expect that F
contains part ial results collected by type propagation from
the pair of A and D and from the unfoldings of each pair in
II ' \ I I .

To capture the above intuition precisely, we introduce a
partial validation relation. Part ial validation can be seen as
a "checking" version of the type inference algorithm. That
is, it performs type propagation similarly to the inference
algorithm but, rather than computing a type environment,
it checks whether a given type environment is big enough.
We check "big enough" because our purpose here is to show
completeness (i.e., the predicted range F is bigger than the
actual range). In addition, part ial validation checks the type
environment with types and pat terns only "shallowly," with-
out unfolding any definitions. This is because we want to
characterize each individual pair that the algorithm went
through (and avoid wrongly including the pairs that were
skipped).

Formally, we first define the relation YI ~- A ~ D
F, which is read "the type environment F is part ial ly valid
under II w.r.t A and D." This relation is defined by the
following set of rules:

(X~,Y) e II

II ~- X ~ Y =~ F
(INF-ST)

H F - T ~ P ~ F T a T { x : T } < : F
(INF-BIND)

7<: 0
m

I I F - T ~ P = ~ F
(INF-EMP)

II ~ e ~ e ~ I" (INF-EPS)

II ~- T ~ T ~ F (INF-ANY)

I I b (T isect P1) ~ P1 :=~ F II K (T dif[P1) ~ P2 ~ F

(INF-OR1)

H I- 71 ~ P ::::~ F H K 7 2 ~ P = ~ F

I I b T i [T 2 ~ P ~ F
(INF-Oa2)

t(X,X') ¢ 0
II F- X D. Y :=~ F H K X ' ~ Y' =-~ F

n ~- t (X , X ') ~ s (Y , r ') =~ r
(INF-LAB)

Each rule is similar to one of the algorithmic rules, with the
following differences. First, the validation rules do not re-
turn an output II ' . Second, the input II from the conclusion

is directly passed to each premise. Third, the type environ-
ment F is passed through all of the rules, and, each t ime we
reach a variable pat tern, we check tha t the passed type en-
vironment contains sufficient type information for the range
at the variable. And fourth, the validation relation has no
rule corresponding to INF-UNF: validation stops at states.
We additionally define the relation II K II ' =:~ F (which is
read "F is part ial ly valid under II w.r.t 1Yff") as follows:

V(X~Y) E H'. H F- u n f (X) ~ N (Y) ~ F
r l ~ YIt ~ r (INF-CONS)

That is, it checks if, for each (Xv, Y) in H', the type envi-
ronment F is part ial ly valid under II w.r.t, the unfoldings
of X and Y. Finally, F is ~ l l y valid w.r.t A and D, written

~ D :=~ F, iff both H K A ~ D ~ F and H ~- H :=~ F hold
for some lII.

The completeness of type inference is now proved in two
steps. First , we show tha t the final result F of the algo-
r i thm is fully valid w.r.t. A and D (Lemma 4.4.3). Then
we show tha t a type environment F that is fully valid w.r.t.
A and D is big enough for the actual range of D w.r.t A
(Lemma 4.4.4).

4.4.3 L e m m a : If 0 F- A ~ D ~ H;F, then A ~ D ~ FF.

4 .4.4 L e m m a : Suppose A ~ D ~ F. Then, t E pA,D(y)
implies u E F(y).

In the proof of Lemma 4.4.3, we use the above intuition for
the characterization of part ial results by part ial validation.

Finally, the type inference algorithm constructed as
above is guaranteed to terminate.

4.4.5 T h e o r e m [T e r m i n a t i o n] : For all types A defined
under a tree automaton M and pat terns D defined under
a pat tern automaton N, we can effectively calculate a type
environment F defined under a tree automaton M' D M
such tha t 0 K A ~ D =:~ II; F for some II.

5 Related Work

Pat tern matching is found in a wide variety of languages,
and in a variety of styles. One axis for categorization that
we have discussed already is how many bindings a pat tern
match yields. In all-matches style, a pat tern match yields a
set of bindings corresponding to all possible matches. This
style is often used in query languages [DFF +, AQM+97,
CS98, CG00a, NS00] and document processing languages
[NS98, Mur97]. In the single-match style, a successful match
yields just one binding. This style is usually taken in pro-
gramming languages [MTH90, LVD+96, JHH+93]. In par-
ticular, most functional programming languages allow am-
biguous pat terns with a first-match policy. Our design fol-
lows this tradition.

Another axis is the expressiveness of the underlying "pat-
tern logic." Some query languages and document process-
ing languages use pa t te rn matching mechanisms based on
tree au tomata [NS98, Mur97] or monadic second-order logic
(which is equivalent to tree automata) [NS00], and therefore
they have a similar expressiveness to our pat tern matching.
TQL [CG00a] is based on Ambient Logic [CG00b], which ap-
pears to be at least as expressive as tree automata. On the

77

other hand, pattern matching based on regular path expres-
sions, popular in query languages for semistructured data
[DFF +, AQM+97, CS98], is less expressive than tree au-
tomata. In particular, these patterns usually cannot ex-
press patterns like "subtrees that contain exactly these la-
bels." Both tree automata and regular path expressions can
express extraction of data from an arbitrarily nested tree
structure (although, with the single-match style, the useful-
ness of such deep matching is questionable, as we discussed
in Section 3.1).

Type inference with tree-automata-based types has been
studied both in query languages for semistructured data
[MS99, PV00] and in the setting of a document transfor-
mation framework [Mur97]. The target languages in these
studies have both matching of inputs and reconstruction
of outputs (while we consider only matching here). Their
pattern matches choose the all-matches s tyle-- in particu-
lar, an input tree is matched symmetrically against all the
patterns in a choice pattern. Consequently, these inference
algorithms do not involve a difference operation.

Milo, Suciu, and Vianu have studied a typechecking
problem for the general framework of k-pebble tree trans-
ducers, which can capture a wide range of query languages
for XML [MSV00]. They use types based on tree automata
and build an inverse type inference to compute the type for
inputs from a given type for outputs (which is the opposite
direction to ours).

Another area related to our type inference method is set-
constraint solving [AW92] (also known as tree set automata
[GTT96]). This framework takes a system of inclusion con-
straints among types with free variables and checks the sat-
isfiability of the constraints [AW92] or finds a least solution
if it exists [GTT96]. Since they allow intersection and dif-
ference operations on types, it seems possible to encode our
problem into their framework and obtain the solutions by
their algorithm. If we used this encoding, we would need to
do some work (similar to what we have done here) to prove
the existence of least solutions for the sets of constraints we
generate, because least solutions do not exist in general in
their setting.

Wright and Cartwright incorporate in their soft type sys-
tem a type inference technique for pattern matching [WC94].
Their type system uses a restricted form of union types and
their patterns do not involve recursion. (A more precise
comparison with our scheme is difficult, since the details of
their handling of pattern matching are not presented in their
paper.)

Puel and Sukrez [PSg0] develop a technique for pattern
match compilation using what they call term decomposition.
Although their goal is different from ours, the technique it-
self resembles our type propagation scheme. Their term de-
composition calculates a precise representation of the set of
input values that match each pattern, and their calculation
of the "values not covered by the preceding patterns" is sim-
ilar to our Use of difference operations. They do not treat
recursive patterns.

6 Future Work

Some important extensions are left as future work. The
most important is that we would like to support an Any
type, denoting all sequences of trees, as well as patterns
including the Any type. Any is useful for encoding object-
style "extension subtyping" [HVP00], and also for writing

patterns that extract parts of sequences (we can use Any
to match the parts we do not care about). We have not
included Any in the present treatment, because adding it in
a naive way destroys the property of closure under difference
(see Appendix A for a related discussion), which makes exact
type inference impossible. Another extension is the inference
of types for pattern variables in non-tail positions. We have
some preliminary ideas for addressing these issues.

Acknowledgments

Our main collaborator in the XDuce project, J~r6me Vouil-
Ion, contributed a number of ideas, both in the techniques
presented here artd in their implementation. We are also
grateful to the other XDuce team members (Peter Bune-
man and Phil Wadler) and to Sanjeev Khanna for pro-
ductive discussions, to Xavier Leroy and David MacQueen
for help with references to related work, to the anonymous
POPL'01 referees for comments and suggestions that sub-
stantially improved the paper, and to the database group
and the programming language club at Penn and the mem-
bers of Prof. Yonezawa's group at Tokyo for a great working
environment.

This work was supported by the Japan Society for the
Promotion of Science and the National Science Foundation
under NSF Career grant CCR-9701826 and IIS-9977408.

References

[AQM+97] Serge Abiteboul, Dallan Quass, Jason McHugh, Jen-
nifer Widom, and Janet L. Wiener. The Lorel
query language for semistructured data. Interna-
tional Journal on Digital Libraries, 1(1):68-88, 1997.

lAW92] Alexander Aiken and Edward L. Wimmers. Solv-
ing systems of set constraints (extended abstract).
In Proceedings, Seventh Annual IEEE Symposium
on Logic in Computer Science, pages 329-340, June
1992.

[BMS80] R. Burstall, David MacQueen, and Donald Sannella.
HOPE: an experimental applicative language. In Pro-
ceedings of the 1980 LISP Conference, pages 136-
143, Stanford, California, 1980. Stanford University.

[CG00a] Luca Cardelli and Giorgio Ghelli. A query language
for semistructured data based on the ambient logic.
Manuscript, April 2000.

[CG00b] Luca Cardelli and Andrew D. Gordon. Anytime, any-
where. Modal logics for mobile ambients. In Proceed-
ings of the 27th ACM Symposium on Principles of
Programming Languages, pages 365-377, 2000.

[CS98] Sophie Cluet and J~rSme Simeon. Using YAT to build
a web server. In Intl. Workshop on the Web and
Databases (WebDB), 1998.

[DFF +] Alin Deutsch, Mary Fernandez, Daniela
Florescu, Alon Levy, and Dan Suciu.
XML-QL: A Query Language for XML.
http : llwww, w3. orglTRINOTE-xml-ql.

[GLP00] Vladimir Gapeyev, Michael Levin, and Benjamin
Pierce. Recursive subtyping revealed. In Proceed-
ings of the International Conference on l~unctional
Programming (ICFP), pages 221-232, 2000.

[GTT96] R. Gilleron, S. Tison, and M. Tommasi. Set con-
straints and automata. Technical Report it-292, Lab-
oratoire d'Informatique fondamentale de Lille, Uni-
versitLille 1, 1996.

78

[HP00a]

[HP00b]

[HU79]

[HVP00]

[JHH+93]

[KMS]

[LVD+96]

[MS99]

[MSV00]

[MTHg0]

[Mur97]

[NS98]

[NS00]

[PS90]

[PVOO]

[Rel]

Haruo Hosoya and Benjamin Pierce. Regular
expression pattern matching for XML. Available
through ht'ep://w~tw, cis. upemx, edu/'hahos oya/
papers/tapat-full.ps, November 2000.

Haruo Hosoya and Benjamin C. Pierce. XDuce:
A typed XML processing language. In Proceedings
of Third International Workshop on the Web and
Databases (WebDB2000), May 2000.

John E. Hopcroft and Jeffrey D. Ullman. Introduction
to Automata Theory, Languages, and Computation.
Addison-Wesley, 1979.

Haruo Hosoya, Jarfme Vouillon, and Benjamin C.
Pierce. Regular expression types for XML. In Pro-
ceedings of the International Conference on Func-
tional Programming (ICFP), pages 11-22, September
2000.

Simon L. Peyton Jones, Cordelia V. Hall, Kevin
Hammond, Will Partain, and Philip Wadler. The
Glasgow Haskell compiler: a technical overview. In
Prec. UK Joint Framework for Information Technol-
ogy (JFIT) Technical Conference, July 93.

Nils Klarlund, Anders M¢ller, and Michael I.
Schwartzbach. DSD: A schema language for XML.
htCp :/lw~,n~. brics, dk/DSD/.

Xavier Leroy, J~r6me Vouillon, Damien Doligez,
et al. The Objective Carol system. Software
and documentation available on the Web, h t t p : / /
pauillac, inria, fr/ocaml/, 1996.

Tova Milo and Dan Suciu. Type inference for queries
on semistructured data. In Proceedings of Symposium
on Principles of Database Systems, pages 215-226,
Philadelphia, May 1999.

Tova Milo, Dan Suciu, and Victor Vianu. Type-
checking for XML transformers. In Proceedings of the
Nineteenth A CM SIGMOD-SIGA CT-SIGART Sym-
posium on Principles of Database Systems, pages 11-
22. ACM, May 2000.

Robin Milner, Mads Tofte, and Robert Harper. The
Definition of Standard ML. The MIT Press, 1990.

Makoto Murata. Transformation of documents and
schemas by patterns and contextual conditions. In
Principles of Document Processing '96, volume 1293
of Lecture Notes in Computer Science, pages 153-
169. Springer-Verlag, 1997.

Andreas Neumann and Helmut Seidl. Locating
matches of tree patterns in forests. In 18th FSTTCS,
volume 1530 of LNCS, pages 134-145, 1998.

Frank Neven and Thomas Schwentick. Expressive
and efficient pattern languages for tree-structured
data. In Proceedings of the Nineteenth ACM
SIGMOD-SIGACT-SIGART Symposium on Prin-
ciples of Database Systems, pages 145-156. ACM,
2000.

Laurence Puel and Asc£nder Suhrez. Compiling pat-
tern matching by term decomposition. In 1990 ACM
Conference on Lisp and Functional Programming,
pages 272-281, June 1990.

Yannis Papakonstantinou and Victor Vianu. DTD
Inference for Views of XML Data. In Proceedings
of the Nineteenth A CM SIGMOD-SIGA CT-SIGART
Symposium on Principles of Database Systems, pages
35-46, Dallas, Texas, May 2000.

RELAX (REgular LAnguage description for XML).
ht~p ://www. xml. gr. jp/relax/.

[Sei90]

[wc94]

[XML]

[XS00]

Hermut Seidl. Deciding equivalence of finite tree au-
tomata. SIAM Journal of Computing, 19(3):424-437,
June 1990.

Andrew K. Wright and Robert Cartwright. A practi-
cal soft type system for scheme. In In Proceedings of
A CM Conference on Lisp and Functional Program-
ming, pages 250-262, 1994.

Extensible markup language (XMLTM). h t t p : / /
~n~. w3. org/XML/.

XML Schema Part O: Primer, W3C Working Draft.
h~l;p : / /~w. w3. org/TR/xmlschema-0/, 2000.

A Closure Algorithms

This a2.pendix defines an algorithm for the conversion oper-
ation A ::~ B introduced in Section 4.3, which computes a
non-compound type equivalent to a given compound type.
From this, we can derive, as a special case, an algorithm for
the intersection operation introduced in Section 3.4.

The formalization here depends on the definitions given
in Section 4.3. We use the definitions of compound t~pe ex-
pressions T, compound states X, compound types A, their
acceptance relations, the intersection operation isect and dif-
ference operation diff for compound types, and the unfolding
function unf for compound states.

We first give a characterization of the conversion oper-
ation A =~ B. We define two relations I I k A =~ B and
F- II, where H maps compound~tates to type states, and we
claim that a~ompound type A is convertible to a type B
iff both II I- A ~ B and I- H hold, for some II. Intuitively,
I I k A ~ B means that A is "immediately" (without un-
folding) convertible to B, assuming that the X is convert-
ible to Z for each X ~ Z in II. Similarly, k 17 means that
the assumptions in YI are consis tent-- that is, that, for each
X ~ Z in II, the unfolding of X is indeed convertible to the
unfolding of Z. The following rules define these relations.

X ~--r Z E II

H k X ~ Z
(E-ST)

YI I- I~ ~ @ (E-EMP)

I I k e =~. e (E-EPs)

II h" T1 IT2 ~ U1]U2
(E-OrO

II ~- X i ~ Z1 II ~- X2 ~ Z2

rI ~- t(X1,X2) ~ t(Zl, z2)
(E-LAB)

v X ~ z e l l . rIF ~nf(X) ~ M(Z)
t - I I

(E-CoNs)

The only essential work is done in the rule E-CoNS, which
computes the unfolding of X (which involves consecutive ap-
plications of isect and diff operations), and confirms that the
result is convertible to the unfolding of Z. The other rules
simply replace each compound state with the corresponding
state according to the mapping II.

A . 1 L e m m a : II I- A ~ B and I-- II iff A :=~ B.

79

From the above characterization, we can read off an ac-
tual algorithm for the conversion as follows. We start by
setting H to the empty mapping and apply the rules to the
given type and pattern in a goal-directed manner. When we
reach the rule E-ST, we may not find the compound state
X in the domain of H. In this case, we generate a fresh
state Z and add a mapping X ~ Z to H. We then]2ro-
ceed to convert the unfolding of the compound state X to
a non-compound type and "back-patch" the result as the
unfolding of Z in the tree automaton. This algorithm even-
tually terminates because only a finite number of compound
states can be constructed from the states in the given type
and pattern. Also, notice that newly created states appear
only in the output type and never in the input type, so there
is no danger of trying to unfold one of them before it has
been back-patched with its definition.

A.2 L e m m a : For all compound types A defined with re-
spect to a tree automaton M and pattern automaton N,
we can effectively calculate a t~pe B defined under a tree
automaton M' _D M such that A =.~ B.

The algorithm for the conversion operation takes expo-
nential time in the worst case because an exponential num-
ber of compound states can be generated from the states
in the given type and pattern. However, the algorithm has
several opportunities for optimization. Suppose that a com-
pound state has the form X N {Y1. . . Yrn)\{Z1 . . . Zn). We
can remove Yi from the compound state if X <: Y~. Like-
wise, when X <: Zi, we can replace the whole compound
state by a state associated with the empty set type 0. Fur-
thermore, when X and Zi denote disjoint sets, we can re-
move Zi from the compound state. (The disjointness can
be checked by first calculating the intersection of X and Zi
and then testing the emptiness of the result. Note that if we
simply use the conversion operation for calculating the inter-
section, this introduces circularity. But we can avoid it by
specializing the conversion operation for intersection where
no subtracting states appear in compound states. See the
next paragraph.) Although the inclusion tests in these opti-
mizations are themselves potentially expensive (exponential
in the worst-case), these checks turn out usually to be rela-
tively cheap, in our experience [HVP00].

The intersection of a (non-compound) type and a pat-
tern is a special case of the above operation. To compute an
intersection of T and P, we can first calculate (T isect P)
and then convert the resulting compound type to a non-
compound type. Proposition 3.4.3 can be derived as a corol-
lary of Lemma A.2. The worst-case complexity of the inter-
section operation is quadratic. To see why, observe that,
from the definition of isect, the compound types obtained
by (A isect D) contain only compound states of the form
X A {Y}. Moreover, the unfolding of the compound state
X N {Y} is also a compound type that contains only com-
pound states of this form. Since only a quadratic number
of such compound states can be generated from the states
in the given type and pattern, the intersection operation
completes in quadratic time.

Although the operations we have defined are all we need
in our framework, one may wonder which others can be de-
fined. Indeed, it is possible to compute an intersection of
two patterns (since types can be treated as a special case of
patterns, intersections on other combinations are also pos-
sible). On the other hand, we cannot compute differences
between patterns and patterns in general. For example, to

compute the difference T \ I (X , X) , we would need to enu-
merate all the labels except l, an infinite set. For the same
reason, neither types nor patterns are closed under negation.

80

