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Abstract 

We propose regular expression pattern matching as a core 
feature for programming languages for manipulating XML 
(and similar tree-structured da ta  formats). We extend con- 
ventional pattern-matching facilities with regular expression 
operators such as repetition (*), alternation (I),  etc., that  
can match arbitrarily long sequences of subtrees, allowing a 
compact pat tern to extract da ta  from the middle of a com- 
plex sequence. We show how to check s tandard notions of 
exhaustiveness and redundancy for these patterns. 

Regular expression pat terns are intended to be used in 
languages whose type systems are also based on the regular 
expression types. To avoid excessive type annotations, we 
develop a type inference scheme that  propagates type con- 
straints to pat tern variables from the surrounding context. 
The type inference algorithm translates types and patterns 
into regular tree automata  and then works in terms of stan- 
dard closure operations (union, intersection, and difference) 
on tree automata.  The main technical challenge is dealing 
with the interaction of repetition and alternation pat terns 
with the first-match policy, which gives rise to subtleties 
concerning both the termination and the precision of the 
analysis. We address these issues by introducing a da ta  
structure representing closure operations lazily. 

1 Introduction 

XML [XML] is a simple format for tree-structured data. As 
its populari ty increases, a need is emerging for better  pro- 
gramming language support  for XML processing--in par- 
ticular, for (1) static analyses capable of guaranteeing that  
generated trees conform to an appropriate Document Type 
Definition (DTD) [XML] or to a schema in a richer language 
such as XML-Schema [XS00], DSD [KMS], or l~elax [Rel]; 
and (2) convenient programming constructs for tree manip- 
ulation. 

In previous work [HVP00], we proposed regular expres- 
sion types as a basis for static typechecking in a language 
for processing XML. Regular expression types capture (and 
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generalize) the regular expression notations commonly found 
in schema languages for XML, and support  a natural  "se- 
mantic" notion of subtyping. We argued that  this flexibility 
was necessary to support  smooth evolution of XML-based 
systems and showed that  subtype checking, though expo- 
nential in general (it reduces to checking language inclusion 
between tree automata) ,  can be computed with acceptable 
efficiency for a range of practical examples. 

In the present paper,  we pursue the second quest ion--  
developing convenient programming constructs for tree ma- 
nipulation in a statically typed setting. We propose regular 
expression pattern matching for this purpose. 

Regular expression pat tern matching is similar in spirit 
to the pat tern matching facilities found in languages of the 
ML family [BMS80, MTH90, LVD+96, etc.]. Its extra  ex- 
pressiveness comes from the use of regular expression types 
to dynamically match values. We illustrate this by an ex- 
ample. 

The following declarations introduce a collection of reg- 
ular expression types describing records in a simple address 
database. 

type Person = person[Name,~ail*,Tel?] 
type Name = name[String] 
type Email = email[String] 
type Tel = tel[String] 

Type constructors of the form l a b e l [ . . . ]  classify tree 
nodes with the label l a b e l  (i.e., XML structures of the form 
< l a b e l > . . . < / l a b e l > ) .  Thus, the inhabitants of the types 
Name, F~a i l ,  and Tel  are all strings with an appropriate 
identifying label. Type constructors of the form T* denote 
a sequence of arbitrari ly many Ts, while T? denotes an op- 
tional T. Thus, the inhabitants  of the type Person are nodes 
labeled person whose content is a sequence consisting of a 
name, zero or more email addresses, and an optional tele- 
phone number. 

Using these types, we can write a regular expression pat-  
tern match that,  given a value p of type Person, checks 
whether p contains a z e l  field, and if so, extracts the con- 
tents of name and t e l .  

match p w i t h  
p e r s o n [ n a m e [ n ] ,  Emai l* ,  t e l [ t ] ]  

--~ (* do some s t u f f  i n v o l v i n  E n and t *) 
person[p] 

--~ (* do o t h e r  s t u f f  *) 

The first case of the match expression matches a node la- 
beled person whose content is a sequence of a name, zero or 
more emails,  and a t e l .  In this case, we bind the variable 
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n to the name's content and t to the t e l ' s  content. The 
second case matches a label person  with any content and 
binds p to the content. The second case is invoked only 
when the first case fails, i.e., when there is no Tel  compo- 
nent. Note how the first pa t te rn  uses the regular expression 
type Email* to "jump over" an arbitrary-length sequence 
and extract  the t e l  node following it. This style of match- 
ing (which goes beyond ML's capabilities) is often useful 
in XML processing, since XML da ta  structures often con- 
tain sequences where repetitive, optional, and fixed parts are 
mixed together; regular expression pa t te rn  matching allows 
direct access to the parts  of such sequences. 

We concentrate in this paper on pat tern  matching with a 
"single-match" semantics, which yields just  one binding for a 
given pat tern  match. We also follow ML in adopting a "first- 
match" policy, which allows ambiguous pat terns  and gives 
higher priority to pat terns  appearing earlier. A different 
alternative that  is arguably more natural  in the setting of 
query languages and document processing languages [DFF +, 
AQM+97, CS98, CG00a, NS00, NS98, Mur97] is an "all- 
matches" style, where each pa t te rn  match yields a set of 
bindings. We will compare the two styles at several points 
in what follows. 

To support  regular expression pa t te rn  matching in a stat-  
ically typed programming language, it is important  that  the 
compiler be able to infer the types of most variable bindings 
in pat terns  (otherwise, the type annotations tend to become 
quite heavy). We propose a type inference scheme that  au- 
tomatical ly computes types for pat tern  variables. The type 
inference scheme is "local" in the sense that  it focuses only 
on pat tern  matches; it  takes a pat tern  match and a type for 
the values being matched against, and propagates the type 
constraints through the pat terns  to the pat tern  variables. 
For example, in the pat tern  match above, given the input 
type Person, type inference computes the type S t r i n g  for 
the variables n and t and the type (Name,Eraail*) for the 
variable p. The intuition behind the type for p is that ,  since 
all persons  with t e l  are captured by the first pat tern,  only 
persons  with no t e l  can be matched by the second pattern.  

Our type inference algorithm represents both types and 
pat terns  in the form of regular tree au tomata  and propagates 
type information through pat terns  in a top-down manner 
(i.e., it s tar ts  with a given type and pat tern,  calculates types 
for the immediate substructures of the pat tern,  and repeats  
this recursively). The technical difficulties in the develop- 
ment of the algorithm arise from the interaction between 
the first-match policy and the repetit ion operator.  The first- 
match policy implies that ,  in order to maintain the precision 
of our analysis, we need to be able to reason about the types 
of values that  did not match preceding patterns. To this end, 
we exploit the closure properties of tree au toma ta - - i n  par- 
ticular, the (language-)di~erence operation. However, since 
repeti t ion pat terns  are t ranslated to tree au tomata  whose 
s tate  transit ion functions contain loops, the algorithm re- 
quires some care to ensure terminat ion of the algorithm. A 
naively constructed algorithm might infinitely traverse the 
patterns; more seriously, if the algorithm uses the closure 
operations each t ime it encounters the same state, an un- 
bounded number of types may be propagated to the same 
state (this is discussed further in Section 4.2). We address 
this problem by introducing a da ta  structure representing 
closure operations lazily. As a result, we achieve exact type 
inference: it  predicts a value for a bound variable if and 
only if the variable can actually be bound to this value as 
a result of a successful match of a value from the input  

type. Previous papers on type inference for pat tern match- 
ing have considered either recursion [MS99, PV00, Mur97] 
or the first-matching policy [WC94, PS90], but,  as far as we 
know, no papers have t reated both. 

In summary, the main contributions of this work are: 
(1) the motivation and design of regular expression pat tern  
matching; and (2) the algorithm for propagating types to 
pa t te rn  variables from the surrounding context. 

The rest of the paper  is organized as follows. In the 
following section, we il lustrate regular expression pat tern  
matching by several examples. Section 3 gives basic defi- 
nitions of types and pat terns  and sketches the translat ion 
from the user-level external syntax to the t ree-antomata-  
based internal representation. Section 4 develops the type 
inference algorithm and proves its correctness. Section 5 
discusses the relationship of our work with other work. Sec- 
tion 6 concludes and suggests some possible directions for 
future research. Appendix A gives some technical details 
omit ted from the earlier discussion of the closure opera- 
tions. For brevity, proofs are omit ted in this summary. They 
can be found in an expanded version, available electroni- 
cally [HPOOa]. 

We have used regular expression pa t te rn  matching (and 
regular expression types) in the design of a statically 
typed XML processing language called XDuce ("transduce") 
[HP00b]. Interested readers are invited to visit the XDuce 
home page 

http ://www. cis. upenn, edu/~hahos oya/xduce 

for more information on the language as a whole. 

2 Examples 

We give a series of examples motivating our design of pat-  
tern matching and il lustrating the associated algorithmic 
problems. 

2.1 Regular Expression Types 

Each type in our language denotes a set of sequences. Types 
like S t r i n g  and t e l [ S t r i n g ]  denote singleton sequences; 
the type Tel* denotes sequences formed by repeating the 
singleton sequence Tel  any finite number of times. So each 
element of the type person  [Tel*] is a singleton sequence la- 
beled with person,  containing an arbi trary-length sequence 
of Tels. If S and T are types, then the type S,T denotes all 
the sequences formed by concatenating a sequence from S 
and a sequence from T. The comma operator is associative: 
the types (Name,Tel*) ,Addr and Name, (Tel*,Addr)  have 
exactly the same set of elements. (Comma is not commuta- 
tive, however: we consider only ordered sequences.) As the 
unit  element for the comma operator,  we have the empty 
sequence type, wri t ten () .  Thus, Name, () and () ,Name are 
equivalent to Name. 

The subtype relation between two types is simply inclu- 
sion between the sets of sequences tha t  they denote. (See 
Section 3.3 for a formal presentat ion of this definition.) For 
example, (Name*,Tel*) is a subtype of (Name iTel )*  since 
the first one is more restrictive than  the second. That  is, 
Names must appear  before any Tel  in the first type, while 
Names and Tels  can appear  in any order in the second type. 
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2.2 Regular Expression Pattern Matching 

As in ML, a regular expression pattern match consists of 
one or more clauses, each of which is a pair of a pattern and 
a body. The pattern describes the shape of input values 
that we want to identify, and may contain bound variables 
for extracting subcomponents of the input value. The body 
is an expression in some term language (whose details we 
do not need to be precise about, for purposes of this paper) 
that is executed when a match against the pattern succeeds. 

To introduce the notation, consider the following simple 
pattern match expression, which analyzes a value of type 
Person. 

match p with 
person[name[n], t e l [ i l l  

I person [name [n], rest] 
--~ ..° 

The first case matches a label person whose content is a se- 
quence of a name node and a t e l  node. It binds the variable 
n to the name's content and t to the name's content while 
evaluating the body. The second case is similar except that  
it binds the variable r e s t  to the (possibly empty) sequence 
follows the name node. 

Patterns can contain regular expression types. For exam- 
ple, the following pattern match contains the type Email*. 

match p with 
person[name[n], e as Email*, tel[ill 

I person[name[n], e as Email*] 
--~ ... 

This example is similar to the previous one except that the 
variable e is bound to the intermediate sequence of zero or 
more emails between name and t e l .  (In general, an "as" 
pattern "x as P" performs matching with p as well as bind- 
ing x to the whole sequence that matches P. Notice also that 
we treat types in the same category as patterns.) The use 
of the repetition operator * yields an iterative behavior dur- 
ing pattern matching. That  is, when the pattern matcher 
looks at the pattern (e as F~nail*), no hint is available 
about how many emails there are. Therefore the marcher 
must walk through the input value until it finds the end of 
the chain of emails. This matching of arbitrary length se- 
quences is beyond ML pattern matching, and is often quite 
useful in programming with XML. For example, the pattern 
above is substantially more compact than explicitly writ- 
ing a recursive function that traverses the sequence, as we 
would need to do if only ML-style matching of fixed-length 
sequences were supported. 

The usefulness of matching against regular expression 
types is yet more evident in the following complex pattern, 
which extracts the subcomponents of an HTML table. 

match t with 
table[cap as Caption?, 

col as (Col*IColgroup*), 
hd as Thead, 
f t  as Tfoot?, 
bd as (Tbody+ITr÷)] 

An HTML table consists of several optional fields (Caption? 
and Tfoot?) and repetitive fields (Co1., Colgroup*, Tbody+, 
and Tr+). (We assume the types Caption, Col, etc., to be 

defined elsewhere.) Again, by matching against regular ex- 
pression types, we can directly pick out each subcomponent, 
whose position in the input sequence is statically unknown. 
Imagine equivalent code written only with simpler ML-like 
pattern matching. 

2.3 Ambiguous Patterns 

Regular expression pattern matches can have two kinds of 
ambiguity. 

The first kind of ambiguity occurs when multiple pat- 
terns match the same input value. For example, the pat- 
terns in the first example above are ambiguous, since any 
value that matches the first pattern also matches the sec- 
ond pattern. In such a case, we simply take the first match- 
ing pattern ("first-match policy"). The reason why we take 
this policy rather than simply disallowing ambiguity is the 
same as in ML: it makes it easy to write a "default case" 
at the end of a pattern match, whereas restricting to non- 
ambiguous sets of patterns would force us to write a cum- 
bersome final pattern explicitly matching the "negation" of 
the other cases. 

The second form of ambiguity occurs when a single pat- 
tern can match a given value in different ways, giving rise 
to different bindings for the pat tern variables. This possibil- 
ity is intrinsic to regular expression pattern matching. For 
example, in the pattern 

match e with 
el as Email*, e2 as Email* 

which splits a sequence of emails into two, it is ambiguous 
how many amails the variable e l  should take. We resolve 
this ambiguity by adopting a "longest match" policy where 
patterns appearing earlier have higher priority (as in most 
implementations of regular expression pattern matching on 
strings). In the example, e l  is bound to the whole input 
sequence, e2 to the empty sequence. 

Again, an alternative design choice would be to disal- 
low such ambiguity. However, the longest-match policy can 
make patterns more concise. Consider the contents of an 
HTML d e s c r i p t i o n ,  which is a sequence of type (Dr [Dd)*, 
where Dt (term) and Dd (description) are defined as dt  [ . . .  ] 
and d d [ . . . ] ,  respectively (the content t y p e s . . ,  are not im- 
portant here). Suppose we want to format this sequence in 
such a way that each term is associated with all the follow- 
ing descriptions before the next term (if any). We may write 
an iteration for scanning the sequence where, at each step, 
the following pattern match analyzes cases on the current 
sequence. 

match I with 
d t [ t ] ,  d as Dd*, r e s t  

--~ (* display term t with d, and do rest *) 

I () 
--~ (* finish *) 

Here, the first case matches a sequence beginning with dr, 
where we extract the content of the dt  and take the following 
dds as many as possible, using the longest match. Note that, 
without the longest match, it is ambiguous how many dds 
are taken by each of the consecutive patterns (d as Dd*) 
and r e s t .  If we rewrite this pattern to an unambiguous 
one, the variable r e s t  must be restricted not to match a 
sequence that  begins with dd, resulting in a somewhat more 
cumbersome pattern: 
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d t [ t ] ,  d as  Dd*, r e s t  as  ( ( D t , ( D d l D t ) * )  I O )  

The longest-match and first-match policies turn out to 
fit cleanly together in the same framework, as we shall see 
in Section 3.1. 

2.4 Exhaustiveness and Redundancy Checks 

We support the usual checks for exhaustiveness and redun- 
dancy of pattern matches. For these checks, we assume that  
the "domain" type (i.e., the type of the input values) is 
known from the context. A pattern match is then exhaus- 
tive iff every value from the domain type can be matched 
by at least one of the patterns. Likewise, a clause in a pat- 
tern match is redundant  iff all the input values that  can be 
matched by the pattern are covered by the preceding pat- 
terns. 

Although these definitions themselves are the same as 
usual (cf., for example, [MTHg0, page 30]), checking them is 
somewhat more demanding. Consider the following pattern 
match, which, given a sequence of persons, finds the first 
p e r s o n  node with a t e l  field and extracts the name and t e l  
fields from this person. 

m a t c h  p w i t h  
person[Name, Email*]*, 

person[name[n], E m a i l * ,  t e l [ I ; ] ] ,  rest ;  
o . .  

I person[Name,  Email*]* 

This pattern match is "obviously" exhaustive--the first 
clause captures the sequences containing at least one person 
with t e l  and the second captures the sequences containing 
no such person. But how can a machine figure this out? Sec- 
tion 3 describes our approach, which is based on language 
inclusion between regular tree automata. 

2.5 Type Inference 

Since we intend regular expression pattern matching to be 
used in a typed language, we need a mechanism for infer- 
ring types for variables in patterns, to avoid excessive type 
annotations. 

The type inference algorithm assumes that a domain 
type T for the pattern match is given by the context. It 
then infers an exact type U for each pattern variable x. That  
is, the type U contains all and only the values v such that 
x can be bound to v as a result of successful match of the 
whole pattern against a value from T. 

Since the semantics of pattern matching uses a first- 
match policy, obtaining this degree of precision re- 
quires some care. For example, consider the follow- 
ing pattern match, where the domain type is Person = 
person [Name, FJnail*, Tel?] 

match p with 
p e r s o n  [name [n], tel [t] ] 

I p e r s o n [ n a m e [ n ] ,  r e s t ]  
o.o 

We can easily see that  n and t should be given S t r ing .  
But what type should be given to the variable r e s t ?  At 
first glance, the answer may appear to be (gmai l* , ' re l? ) ,  
because the content type of person is (Name , E m i l *  ,Te l? ) ,  

according to the definition of the type Person. But in fact, 
the precise type for r e s t  is 

(Email+,Tel?) [ O. 

To see why, recall that  the second case matches values that  
are not matched by the first case. This means that, if a 
value falls in the first case, the name in the value is not 
immediately followed by a t e l .  Therefore what follows after 
the name should be either one or more emails or nothing at 
all. 

How do we calculate this type? The trick is to cal- 
culate a set-difference between types. In the above ex- 
ample, the type of the values that  are not matched 
by the first case is computed by the difference between 
person [Name, Email*, Tel?] and person [Name, Tell, which 
is person [Name, ( (Email+, Tel?) J ()) ]. The computation of 
difference is feasible because types are equivalent to tree au- 
tomata and tree automata are closed under difference (Sec- 
tion 3.4). The type person[Name, ( (Email+,Tel?)  I O) ]  is 
then propagated to the r e s t  variable by simply checking 
the matching of the label person of the type and the pat- 
tern, and similarly for the label name. However, we have to 
carefully propagate types through repetition patterns (*) so 
that the algorithm terminates. Further, the combination of 
repetition patterns and choice patterns with the first-match 
policy requires a delicate construction of the inference algo- 
rithm, as we will explain in Section 4. 

So far, we have seen inference for "bare" variable pat- 
terns (which match any values). The type inference can also 
compute a type for an "as-ed" variable of the form (x a s  P). 
The inferred type can be more refined than the type that  can 
be formed from the associated pat tern P. For example, con- 
sider the following pat tern match (where the domain type 
is Person): 

match p with 

person[Name, x as (EmailITel)+] 
--~ ... 

.°. 

Here, the pat tern (Email I Tel) + imposes the restriction that  
x can be bound to sequences of length one or more. However, 
we know from the domain type that  at most one t e l  may 
follow smalls. Thus, type inference computes a more precise 
type: 

(Email+, Tel?) ] Tel 

This refinement is useful since the body of the pattern match 
may actually depend on the fact that  there is at most one 
t e l  and type inference alleviates the burden of writing the 
more verbose annotation. 

Our type inference method works only for variables that 
appear in the tail position in a sequence (we call such vari- 
ables "tall variables."), for a technical reason explained in 
Section 3.2. We require each non-tail pattern variable to 
be supplied with an a s  pattern, so that  we can construct a 
type for the variable from the supplied pattern in a straight- 
forward way. Fortunately, this limitation turns out not to 
be too annoying in practice: in our experience, the most 
common uses of pat tern variables are (1) binding the whole 
contents of a label (as in the examples in Section 2.2), and 
(2) binding the "rest" of a sequence during iteration over a 
repetitive sequence (as in the example in Section 2.4). Both 
of these uses occur in tail positions. 
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3 Syntax and Semantics 

For purposes of formalization (and implementation), it 
is useful to distinguish two forms of types--external and 
internal--and two corresponding forms of patterns. The ex- 
ternal form is the one that the user actually reads and writes; 
all the examples in the previous sections are in this form. 
Internally, however, the type inference algorithm uses a sim- 
pler representation to streamline both the implementation 
and its accompanying correctness proofs. Below, we give the 
syntax of each form and the semantics of the internal form, 
and sketch the translation from external to internal form. 
Then we define inclusion relations and closure operations 
on the internal form, and give simple methods for checking 
exhaustiveness and redundancy of patterns. 

3.1 External Form 

For brevity, we omit base values (like strings) and the cor- 
responding types and patterns from our formalization. 

We assume a countably infinite set of labels, ranged over 
by 1, and a countably infinite set of type names, ranged over 
by X. Type expressions are then defined as follows. 

T ::= () empty sequence 
X type name 
1 IT] label 
T, T concatenation 
T J T union 

The bindings of type names are given by a single, global set 
E of type definitions of the following form. 

type X = T 

The body of each definition may mention any of the defined 
type names (in particular, definitions may be recursive). We 
regard E as a mapping from type names to their bodies. 

We represent the Kleene closure T* of a type T by a type 
X that is recursively defined as follows. 

t y p e  X = T,X I 0 

The other regular expression constructors are defined as fol- 
lows. 

T+ ~ T , T* 
T? .~ T [ () 

As we have defined them so far, types correspond to ar- 
bitrary context-free grammars. Since we instead want types 
to correspond to regular tree languages, we impose a syntac- 
tic restriction, called well-formedness, on types. (The reason 
why we want to restrict attention to regular tree languages 
is that  the inclusion problem for context-free grammars is 
undecidable [HU79].) Intuitively, well-formedness requires 
unguarded (i.e., not enclosed by a label) recursive uses of 
type names to occur only in tail positions. See [HVP00] for 
the formal definition. 

We assume a countably infinite set of pattern names, 
ranged over by Y, and a countably infinite set of variables, 
ranged over by x. Pat tern expressions are then defined as 
follows. 

x bare variable 
x as P as-ed variable 
0 empty sequence 
Y pattern name 
1 [P] label 
P, P concatenation 
P ] P choice 

(Notice that  the syntax of pattern expressions differs from 
that  of type expressions only in variable patterns.) The 
bindings of pat tern names are given by a single, global, mu- 
tually recursive set F of pattern definitions of the following 
f o r m .  

pat Y = P 

For convenience, we assume that  F includes all the type 
definitions in E where the type expressions appearing in E 
are considered as pattern expressions in the evident way. 
Pat tern expressions must obey the same well-formedness re- 
striction as types. In writing pattern expressions, we use 
the same abbreviations for regular expression operators (*, 
+, and 7). We write BV(P) for bound variables appearing in 
P and FN(P) for free pattern names appearing P. 

The longest-match policy mentioned in Section 2.3 ac- 
tually arises from these abbreviations and the first-match 
policy. That  is, Email* is defined as a variable Y that is 
recursively defined as 

pat Y = Email,Y [ () 

and, with the first-match policy, the first branch (Email, Y) 
is taken as often as possible, which accounts for the longest- 
match policy. The same argument is applied to the other 
operator + and ?. Notice that  the order of union clauses in 
the definitions of the abbreviations matters for the semantics 
of pattern matching. 

We impose an additional syntactic restriction lineari~y 
on patterns in order to make sure that  pattern matching 
always yields environments with no missing bindings and 
no multiple bindings for the same variable. For simple ML- 
style patterns, linearity is just  a check that each variable 
appears in a pattern just  once. In the present setting, we 
need to extend this notion to patterns with choices and re- 
cursion. Intuitively, a linear variable must occur exactly 
once in each branch of a choice, and must be unreachable 
from itself. The formal definition is given in the full version 
of the paper [HP00a]. 

Notice that, in the above definition of patterns, nothing 
prevents us from writing a single pattern that traverses a 
tree to an arbitrary depth. For example, consider the fol- 
lowing recursively defined type for binary trees, with two 
forms of leaves, b[]  and c[ ] ,  and internal nodes labeled a, 

type T = a[T],T [ b[] [ c[] 

and the match expression 

match t with 
P -4 ... 

where P is recursively defined as follows: 

pat P = a[P],T [ a[T],P [ x as b[] 

The pattern P matches a tree that has at least one b [], and 
yields exactly one binding of the variable x. Since P has the 
choice of patterns alP] ,T and a[T] ,P in this order, the first- 
match policy ensures that  the variable x is bound to the first 
b [] in depth-first order. Although this "deep" matching is 
somewhat attractive, we are not sure about its usefulness, 
because, after obtaining the first b [] as above, it is not clear 
what to do to get the next one, or more generally to iterate 
through all the b[ ]s  in the input tree. (By contrast, this 
sort of deep matching would be more clearly useful if we 
had chosen the "all-matches" semantics instead.) 
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3.2 Internal Form 

Values, types, and patterns in the external form are labeled 
trees of arbitrary arity (i.e., any node can have an arbitrary 
number of children). In the internal form, we consider only 
binary trees. 

The labels I in the internal form are the same as labels in 
the external form. Internal (binary) tree values are defined 
by the following syntax. 

t ::= e leaf 
l(t , t)  label 

There is an isomorphism between binary trees and sequences 
of arbitrary-arity trees. That  is, e corresponds to the empty 
sequence, while l(t, t') corresponds to a sequence whose head 
is a label 1 where t corresponds to the content of 1 and t' 
corresponds to the remainder of the sequence. For example, 
from the arbitrary-arity tree 

person[name[I, email[]] 

we can read off the binary tree 

person(narae(e, email  (e, e)), e), 

and vice versa. 
For types, we begin as before by assuming a countably 

infinite set of (internal) type states, ranged over by X. A 
binary tree automaton M is a finite mapping from states 
to (internal) type expressions, where type expressions T are 
defined as follows: 

T ::= 0 empty set 
e leaf 
T ] T union 
l ( z , x )  label 

There is an one-to-one correspondence between external and 
internal types, following the same intuition as for values. 
For example, the external type person[narae [] ,  ema±l []*] 
corresponds to the internal type person(X1, X0) where the 
states X1 and Xo are defined by the corresponding automa- 
ton M as follows. 

M(Xo)  = e 
M(X~)  = name(Xo, X2) 
M(X2)  = email(Xo, X2) I e 

The formalization of the translation from external types to 
internal types can be found in [HVP00]. 

We use the metavariable A to range over both type states 
and type expressions--jointly called types---since it is often 
convenient to treat them uniformly. The free states FS(T) 
of a type expression T are the states appearing in T. This is 
extended to the free states of an automaton M by FS(M) = 
U { F S ( M ( X ) )  I X E dom(M)}.  We assume that  every 
automaton M satisfies FS(M)  C_ dora(M). 

The semantics of types is given by the acceptance re- 
lation t E A (relative to some tree automaton M), which 
is read "tree t has type A" or "t is accepted by A." (We 
usually elide M, to lighten the notation.) The rules for the 
acceptance relation are as follows. 

t E M ( X )  
t E X  

(Acc-ST) 

e E e (Aco-EPS) 

t e T ~  
t e Tl l T2 

(Acc-OR1) 

t e T 2  
t ~ Tx l T2 

(Acc-OR2) 

tl  E Xl  t2 E X2 
l(t~, t2) e l(x~, x~) 

(Acc-LAB) 

The definition of patterns is similar to that  of types. We 
assume a countably infinite set of pattern states, ranged over 
by Y. Pat tern variables x are the same as in the external 
form. A pattern automaton is a finite mapping from states to 
(internal) pattern expressions, which are defined as follows. 

P ::= x : P variable 
0 failure 
T wild-card 
e leaf 
P [ P choice 
l(V, Y)  label 

Note that,  in the internal form, we drop bare variable pat- 
terns, but  introduce the wild-card pattern T. A bare ex- 
ternal variable pattern x is encoded as an internal pattern 
x : T. We use the metavariable D to range over both pat- 
tern states and pat tern expressions, jointly called patterns. 
We write B V(P) for the variables occurring in P. 

The semantics of patterns is given by the matching rela- 
tion t E D ~ V (relative to a pattern automaton N, which 
we normally elide), where an environment V is a finite map- 
ping from variables to trees. This relation is read "tree t is 
matched by pattern D, yielding environment V." The rules 
for the matching relation are as follows. 

t E N ( Y )  ~ V 

t E Y = ~ V  
(MAT-ST) 

t E P =t~ V 
t e x : P =~ V U { ( z ~  t)} 

(MAT-BIND) 

t E T ~ 0 (MAT-ANY) 

e E e ~ 0 (MAT-EPs) 

t E P ~ V  
t e P~ I P2 =~ v 

(MAT-OR1) 

t ¢ P ~  t ~ P 2 ~  V 
P 1 1 v 2 ~ v  

(MAT-OR2) 

t ~ E Y~ ~ Vx t2 E Y2 =~ V2 
t(tl, t2) ~ l(Y1, Y2) ~ v~ u v~ 

(MAT-LAB) 

We write t E D to mean t E D =~ V for some V. Also, we 
w r i t e t E D ~ ( x ~ - + u )  w h e n t E D ~ V a n d V ( x ) = u f o r  
some V. 
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Note that  the matching relation is based on a "first- 
match" policy, as in ML: when a tree matches both branches 
of a choice pattern, we take the first one. This follows from 
the fact that  the rule MAT-OR2 is applicable only when 
MAT-OR1 is not. 

The correspondence between external patterns and inter- 
nal patterns is similar to what we have seen for types, except 
for the treatment of variable patterns. External patterns can 
contain variable patterns that  are not in tail positions. For 
example, the following pattern contains a non-tail variable 
pattern labeled with the variable x: 

(X as (name[],email[])),tel[] 

Such a pattern cannot be directly translated to an internal 
pattern because a variable pattern in the internal form can 
only be bound to a whole subtree, which, in the external 
form, corresponds to a sub-sequence from some point to the 
tail. To deal with this discrepancy, we transform each non- 
tail variable pattern labeled with a variable x to a pair  of 
tail variable patterns labeled with new variables Xb and x~. 
The scope of the variable pattern labeled Xb opens at the 
beginning of the original x pattern and closes at the tail; 
the scope of the variable x~ opens at right after the end 
of the original x pattern and closed at the tail. Thus, we 
transform the above pattern to 

(Xb as (name[],email[],(xe as tel[l))). 

Now, since the newly introduced variable patterns both ex- 
tend all the way to the end of the sequence, we can translate 
the whole pattern to the internal pattern 

Xb : name (Xo, Xi) 

where Xo and Xi are defined by the automaton N as follows: 

N ( X o )  = e 
g ( x l )  = email(Xo, X2) 
N(X2)  = xo : t e l ( X o ,  Xo) 

Finally, since the body of the pattern match actually wants 
to use the original variable x instead of the new variables 
Xb and xe, we insert a bit of extra code, at the beginning 
of the body, that  recovers the original behavior. This extra 
code "trims off" the sequence assigned to xe from the se- 
quence assigned to Xb (note that  the former is a suffix of the 
latter), and binds the original variable x to the result. The 
formalization of the translation of patterns can be found 
in [HP00a]. 

As we mentioned in Section 2.5, our type inference 
method cannot compute exact types for non-tail variables. 
To see why, consider the following pattern with the domain 
type (T,T?). 

(x as T), T? 

This pattern is encoded as 

X b as (T, (xe as T?)) 

by the translation described above. From the type inference 
algorithm described later (in Section 4), we will obtain the 
type (T,T?) for Xb and T? for x¢. But it is not immediately 
clear how to obtain the desired type T for x from these two. 
Naively, it seems we want to compute a type such that  each 
inhabitant t is obtained by taking some tree tb from (T,T?) 

and some tree t~ from T? and then cutting off the suffix Ce 
from tb. But the type we get by this calculation is 

(T,T I T I ( ) ) ,  

which is bigger than we want. How to infer exact types for 
non-tail variables is still an open question. 

In what follows, all the definitions are implicitly param- 
eterized on the tree automaton and the pattern automaton 
that  define the types and patterns appearing there. In places 
where we are talking about only a single tree automaton and 
a single pattern automaton, we simply assume a "global" 
tree automaton M and a global pattern automaton N. In 
a few cases, where we are dealing with operations that cre= 
ate new types, we will need to talk explicitly about the tree 
automaton before the creation and the one after. 

Finally, whenever we talk about a type A and a pat- 
tern D at the same time, we assume either that  they are 
both states or that  they are a type expression and a pattern 
expression. 

3.3  Inclusion 

We define subtyping as inclusion between the sets of trees 
in the two given types. Since types are represented as tree 
automata, subtyping can be decided by an algorithm for 
checking inclusion of regular tree languages [Sei90]. (The 
complexity of this decision problem is exponential in the 
worse case, but algorithms are known that  appear to behave 
well on practical examples [HVP00].) For what follows, we 
must also define an inclusion relation between types and 
patterns. 

3.3.1 D e f i n i t i o n  [ S u b t y p i n g  a n d  Inc lus ion] :  A type A 
is a subtype of a type B, written A <: B, if t C A implies 
t 6 B for all t. A type A is included in a pattern D, written 
A <: D, if t 6 A implies t E D for all t. 

Using the inclusion relation between types and patterns, 
exhaustiveness of pattern matches can be defined as follows: 

3.3.2 D e f i n i t i o n  [E xhaus t i venes s ] :  A pattern match 
P1 ---+ el [ . . .  [ Pn ~ e~ is ezhaust ive  with respect to a 
type T if 

T<: P i I . . . I P . .  

3.4 Closure Operations 

The check for redundancy of pattern matches uses an inter- 
section operation that  takes a type and a pattern as inputs 
and returns a type representing their intersection: 

3.4.1 D e f i n i t i o n  [Intersect ion]:  A type B is an intersec- 
tion of a type A and a pattern D, written A N D =~ B, if 
t 6 B i f f t  6 A and t 6 D. 

That  is, an intersection of A and D represents the set of 
trees that  are in the type A and also match the pattern D. 
The redundancy condition can now be expressed as follows: 

3.4 .2  D e f i n i t i o n  [ R e d u n d a n c y ] :  In a pattern match 
Pl "-~ et I " "  I P~ "-~ e~, a pattern Pi is redundant  with 
respect to a type T if, for some U, 

T n P~ ~ U A U <: Pi I . . . I Pi- i . 
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That  is, a pattern is redundant  if it can match only trees 
already matched by the preceding patterns. 

3.4.3 P r o p o s i t i o n :  For all types A defined under a tree 
automaton M and patterns D defined under a pattern au- 
tomaton N, we can effectively calculate a type B defined 
under a tree automaton M'  D M such that  A N D ~ B. 

The actual algorithm for the intersection operation can be 
found in Appendix A. 

Our type inference algorithm needs to calculate not only 
intersections of types and patterns, but  also differences be- 
tween types and patterns. If T is the type of the input trees 
to a pattern P1 I P2, we can infer that the type for the 
trees that  can be matched by P1 is the intersection of T and 
P1, while the type for the trees matched by P2 is the differ- 
ence between T and P1 (i.e., those trees not matched by the 
preceding pattern). 

One might now expect to define a difference operation 
just as we did for the intersection operation and to use these 
operations in building the type inference algorithm. How- 
ever, this approach turns out to be problematic. To see why, 
notice that the above proposition tells that  the types re- 
turned by the intersection operation may in general contain 
freshly generated states that  were not in the input types or 
patterns (and the same holds for the difference operation). 
This becomes an issue in our type inference algorithm. If one 
step of the algorithm uses the results of the operations in cal- 
culating partial results that  become inputs to the next step, 
then it becomes difficult to place a bound on the number 
of "distinct states" encountered by the algorithm, making 
it difficult to guarantee termination. We will come back to 
this point in Section 4.2, where we define a data structure 
for representing intersections and differences of types and 
patterns without actually calculating them. 

4 Type Inference for Pattern Matching 

We now consider the problem of inferring types for the vari- 
ables bound by a pattern, given the domain type of the 
whole pattern. 

4.1 Specification 

We assume that  a domain type T and a pattern P are given. 
We want to know the "range" of each variable ~- - the  set of 
all and only the trees that  x can be bound to as a result of 
a successful match of a tree from T against P.  

4.1.1 D e f i n i t i o n  [Range] :  The range of P with respect 
to T, w r i t t e n  pT,P, is the function mapping each variable 
x that  is reachable from P to the set {u I 3t. t E T ^ t E 
P ~ (x ~ u)}. A type environment P (mapping variables 
to types) represents pT, P if  U E F(x) implies u E pT'P(x), 
and vice versa, for all x. 

Given a type T and a pattern P,  the result of type infer- 
ence should be a type environment P representing the range 
of P with respect to T. 

4.2 Highlights of the Algorithm 

Given a pattern P and its domain type T, the goal of our 
type inference algorithm is to obtain a domain type T'  for 
each subpattern P '  of P,  where T '  represents the set of trees 

that  are matched by P '  as a result of a successful match of 
a tree from T against P.  Having computed domain types 
for all subpatterns, the range of P can be obtained as a 
mapping from each variable x to the union of the domain 
types for all the variable patterns binding x. 

The algorithm proceeds by a top-down propagation of 
type information through subpatterns. We begin with the 
domain type T for the whole pattern P.  For each immediate 
subpattern P '  of P,  we compute its domain type T '  from 
T and P,  and recursively apply the same operation to all 
the subpatterns. For example, consider the labeled type 
T -- l(X1, X2) where the global tree automaton M defines 

M(X1)  = ~ I I (X2,X2)  
M(X2) = 

and the labeled pat tern P = I(Y1,Y2) where the pattern 
automaton N defines 

N(Y1) = yl : T 
N(Y2) = y2 : T.  

We compute a domain type for each subcomponent of P by 
taking the corresponding subcomponent of T. For the first 
subcomponent Y1 of P (which expands to yl : Y), we obtain 
the domain type e ] l(X2, X2) from the first subcomponent 
of T; similarly, for the second subcomponent Y1 of P (which 
expands to y2 : 7"~, we obtain the domain type e from the 
second subcomponent of T. From these domain types, we 
can calculate the type environment {yl : (e I l(X2, X2)), y2 : 
e} as the result of the whole type inference. 

Choice patterns need careful t reatment because their 
first-match policy gives rise to complex control flows. Sup- 
pose T is a domain type for the choice pattern P1 I P2. We 
want to obtain a domain type for each of the subpatterns P1 
and P2. Since the domain type T1 for P1 should denote the 
set of trees from T that  are matched by P1, the type T1 can 
be characterized by the intersection of T and P1. On the 
other hand, since the domain type T2 for P2 should denote 
the set of trees from T that  are not matched by the first 
pattern, the type T2 can be characterized by the difference 
between T and P1. 

Since patterns can be recursive, we need to do some extra 
work to make sure that  the propagation described above will 
always terminate. We apply a standard technique used in 
many type-related analyses, keeping track of all the inputs 
to recursive calls to the algorithm and immediately return- 
ing when the same input  appears for the second time (the 
intuition being that  processing the same input  again will not 
change the final result). The termination of the algorithm 
then follows from the fact that  there are only finitely many 
possible inputs. Typical uses of this technique can be found 
in recursive subtyping algorithms [GLP00, HVP00]. In the 
present setting, since each input  to the algorithm is a pair 
of a type and a pattern, we keep track of such pairs. (It is 
not sufficient to keep to track of only the patterns we have 
already seen. Suppose that  we have already seen a pattern 
P with a domain type T~ but  encounter the same pattern P 
with a different domain type T' ,  in particular, larger than 
T. Since the pat tern P may match more trees than those 
from T, we need to go through P again with the new domain 
type T' .)  

We need one additional trick, however, to ensure termi- 
nation. In the propagation of types for choice patterns, if 
we simply compute the intersection of T and P1 and the 
difference between T and P1, we can create "new" states in 
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the resulting types (cf. Proposition 3.4.3). This means tha t  
we cannot guarantee tha t  there are only finitely many types 
encountered by the algorithm, which makes it difficult to 
ensure termination. Instead, our algorithm delays actually 
calculating intersections and differences by explicitly ma- 
nipulating expressions containing what we call "compound 
states," which are a form composed of intersections, differ- 
ences, and the states appearing in the input  type and pat-  
tern. Because there are only a finite number of such states, 
only finitely many compound states can be generated, en- 
suring termination. 

4.3 Preliminaries 

A compound state X consists of a single type state, a 
set of "intersecting" pa t te rn  states, and a set of "sub- 
tracting" pat tern  states. Intuitively, X denotes the set 
of trees that  are in the type s tate  and also in each in- 
tersecting pa t te rn  state, but  not in any s_ubtracting pat-  
tern state. Formally, a compound state X has the form 
X N {Y1 . . .  Ym}\{Z1 . . .  Zn}, where X is a s tate and all the 
Ys and Zs are pat tern  states. We write X n W  for the com- 
pound state X n {Y1 • .. Ym, W } \ { Z 1 . . .  Z,~} and X \ W  for 
X n { r l . . .  Y,~}\{Z1.. .  Z . ,  W}. 

Further,  we adapt  several definitions on types given in 
Section 3.2 to handle compound states. Compound type ex- 
pressions T are just  like type expressions except that  they 
contain compound states instead of type states: 

7 : : = ¢  

T I T  
l(X,X) 

We use the metavariable A to range over both compound 
states and compound type  expressions, jointly__ known as 
compound types. The acceptance relation t E A is defined 
for compound types just  as it is for types, plus the following 
cases: 

t E x  t E Y  
t ~ x n Y  

(DAcc-IsEcT) 

q 

r E X  t • Y  
m 

t e X \ Y  
(DAcc-DIFF) 

Inclusion A <: D means that  t E A implies t E D for all t. 
Using compound types, we can now define intersection 

and difference operations tha t  do not introduce new states 
(unlike the intersection operation defined previously). These 
operations take a compound type  expression and a pa t te rn  
expression and returns a compound type representing their 
intersection or difference. The "compound" intersection op- 

eration isect is defined as follows. 

T isect 0 = 0 
0 isect P = 0 
' T i s e c t x : P  = 7 i s e c t P  

isect  7-  = 
e isect e = 
e isectl(Y1,Y2) = 
(_~1 I T2) isect  P = (71 isect P )  I (T2 isect  P)  
T isect  (P1 I P2) = (T i sect  P1) ] (T isect P2) 
l (X l ,X2)  isect e = 0 
l( 'Xl, 'X2) isect I'(Y1,Y2) = 0 l # l' 
I(X1,X2) isect I(Y1,Y2) = I(Xlf'IY1,X2OY2) 

Similarly, the following defines the "compound" difference 
operation dif f .  

• d~ff 0 = 

T d i f f  x : P = T d i f f  P 
{~ d i f f  P = 0 
T d i f f T  = 0 
e diff e = 0 
e diff  l(Y1, Y2) = e 

(71 172) d i f f P  = ( T ~ d i f f P )  l ( 7 2 d i f f P )  
7 d i f f  (P~ ]P2) = ( T d i f f P i )  diffP2 
l (X l ,X2)  diff e = I(X1,X2) 
i (X l ,X2)  diff l'(Y1,Y2) = l (X l ,X2)  l # l' 
t ( x l , x ~ )  cliff t(Yl,Y2) = *(Xi\Y1,X~) I z(X1,X~\Y~) 

The last case means tha t  if a tree l ( t l , t2 )  is in I(X1,X2) 
but not in I(Y1,Y2), then either t l  is not in Y1 or t2 is not 
in Y2. Note tha t  the above operations never unfold a state. 
When the type inference algorithm needs to proceed to the 
"unfolding" of a compound state,  we use the following unf 
function: 

unf(X)  = M ( X )  
unf(X-'2"~Y) = unf(X)  isect N(Y)  
u n f ( X \ Y )  = un](X) difff N(Y)  

The type inference algorithm mainly manipulates com- 
pound types, but,  for calculating the final results, it uses a 
"conversion" operation from compound types to their equiv- 
alent non-compound types. Formally, a compound type A 
is convertible to B, writ ten A ~ B, if t E A if[ t E B, for all 
t. The actual algorithm for the conversion operation can be 
found in Section A. 

Finally, we need several definitions on type environ- 
ments. We write {~ : T} for the type environment tha t  
maps x to T and any other variables to the empty-set  type 
0; the empty environment 0 maps all variables to the empty 
set type @. We define r <: r '  as r(x) <: r'(z) for all vari- 
ables x, and define F I F '  as (F I r ' ) ( x )  = r ( x )  I r ' ( x ) .  
We can easily see tha t  u E (F1 I F2)(x) i f f u  E F i ( z )  or 
u e r~ (x ) .  

4.4 Inference Algori thm 

The type inference algorithm is presented as a set of syntax- 
directed rules defining a relation of the form H ~- A t> D => 
Ht; F, where II  ranges over sets of pairs of a compound state 
and a pat tern  state,  wri t ten in the form (XI>Y). The algo- 
r i thm computes, from a (compound) domain type A for a 
pa t te rn  D, a type  environment F tha t  represents the range 
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of D with respect to A. To detect termination, the algo- 
r i thm takes as input  the set H of already-encountered pairs 
of compound states and pat tern  states, and returns as out- 
put  a set H'  containing all the pairs in the input set H plus 
the additional pairs encountered during the processing of A 
and D. This output  set becomes the input  to the next step 
in the algorithm. 

The whole type inference takes as inputs a domain type 
T and a target pa t te rn  P .  We assume tha t  T is included in 
P.  (In general, T may not be included in P .  But because 
only trees matched by P contribute to the ranges, we can 
take the intersection T N P for the the start ing type, which 
is automatical ly included in P.)  We star t  the type inference 
by calling the general inference relation with 0 ~- T ~ P =~ 
II~; F. The output  F is the final result of type  inference. 
(The other output  H ~ is thrown away.) 

We now give the rules for the type inference relation 
H b- A > D =*- H'; F. For a variable pat tern,  we add the 
domain type 7 to the range of x. 

n ~ 7 ~  : P ~ n ' ; ( r  I {~ : T}) 
(INFA-BIND) 

The second premise converts the compound type  T to a non- 
compound type T so tha t  it can be added to the output  type 
environment. 

If the type 7 is less than the empty type (and therefore 
contains no trees), we return the empty type environment 
since no successful matches are possible. If the pat tern  is 
either a leaf or a wild-card, we return the empty type en- 
vironment since matching against the pat tern  will yield no 
bindings. 

T<:  0 

H ~ 7 ~ P = ~ H ; O  
(INFA-EMP) 

H I-" e > e ~ II; 0 (INFA-EPS) 

H I- 7 > T =~ H; 0 (INFA-ANY) 

For a choice pattern,  we compute a domain type for each 
choice by the compound intersection operation isect and the 
compound difference operation diff. 

H I- (T isect P1) t> P1 =-~ H1;F1 
H1 ~ (T diff P1) ~ Pa :=~ Ha; Fa 

H e T ~  P~ I P~ ~ H2;(F1 Ira) 
(INFA-ORI) 

If the type is a union, we simply generate a subgoal for each 
component. 

H I" 71 ~ P :=.~ H1; F1 H1 ~ 72 ~ P => H2;F2 

H I-- T1 I T2 t> P =~ Ha; (F1 I F2) 
(INFA-OR2) 

If the type and the pa t te rn  are both labels, we propagate 
each component of the type to the corresponding component 
of the pattern.  

l ( x , x ' )  ¢. 0 

H F I (X ,X ' )  ~ I(Y,Y') ~ H a ; ( r l  I r a )  
(INFA-LAB) 

The side-condition I (X ,X ' )  ~. 0 is necessary for the preci- 
sion of the type inference. Suppose tha t  I ( X , X ' )  <: 0. Then 
this means that  one of X and X '  is empty, but  the other 
may not necessarily be empty. If such a non-empty type is 
propagated to the corresponding component of the pat tern  
I(Y,Y'),  this may augment the range of the  pattern.  But 
this augmentat ion is unnecessary because the type l(X,  X ' )  
contains no trees and there can therefore be no successful 
matches against the pat tern.  

Finally, we have two rules for type and pat tern  states. 

HI -  X ~  Y =~ H;0 
(INFA-ST) 

(Xt>Y) ¢ H H U { (X>Y)} ~- unf (X) > N(Y)  =-~ I I ' ; F  

H ~ X ~ Y  = ~ H ' ; F  
(INFA-UNF) 

That  is, if we have already seen the pair (Xr, Y), we simply 
return the emp.ty type environment since proceeding to the 
unfoldings of X and Y again will not add anything to the 
final type environment. If we have not seen the pair, we add 
it to H (so tha t  we will be able to tell if we encounter it  
again) and proceed with the unfoldings. 

The worst-case complexity of this algorithm is double- 
exponential. The rule INFA-UNF may be applied at  most 
~_.many times as the number of possibilities for the form 
(X>Y), which is exponential  in the size of the input  types 
and patterns.  In addition, each t ime the rule is applied, we 
may convert compound types to non-compound types the 
same number of times as variable pat terns  appear,  which is 
linear. The conversion takes exponential  t ime in the worst 
case (cf. Appendix A). However, despite these frighten- 
ing possibilities, in our experience using type  inference with 
several small applications in XDuce, the performance of the 
algorithm is quite acceptable. The reason is tha t  the pat-  
terns used in these applications are "almost" non-recursive 
(in the case of completely non-recursive patterns,  the rule 
INFA-UNF is applied only a linear number of times in the size 
of the pat tern) ,  and tha t  the optimization techniques used in 
our implementat ion (cf., Appendix  A) make the conversion 
operation quick for these examples. 

The algorithm is sound, tha t  is, all trees in the predicted 
range of x are also in the actual  range of x. 

4.4.1 T h e o r e m  [Soundness]:  Suppose 0 I- A ~> D => H; P 
and A <: D. Then, u E F(9) implies u E pA'D(9). 

The (routine) proof can be found in the full version [HP00a]. 
Conversely, all trees in the actual range of x are also in 

the predicted range of x. 

4.4 .2  T h e o r e m  [Comple teness ] :  Suppose 0 ~ A ~ D =~ 
I I ;F .  Then, u E pA,D(y) implies u E F(y).  
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The key to the proof of completeness lies in characteriz- 
ing the part ial  results I I  ~ and F in an intermediate state of 
the algorithm expressed by the form II K A v. D :=~ II ' ;  F. 
That  is, when the algorithm is given H, A, and D, what 
will it return in II  ~ and F? To see the intuition, first observe 
tha t  the algorithm will behave as follows. (1) The algorithm 
performs type propagation from the pair of the compound 
type A and pat tern  D. (2) When the algorithm sees a pair 
of a compound state and a pat tern  state that  is not in II, 
it  will proceed to their unfoldings and record the pair in II ' .  
(3) When the algorithm sees a pair that  is already in II, 
then it will skip this pair. From these, we can expect that  F 
contains part ial  results collected by type propagation from 
the pair of A and D and from the unfoldings of each pair in 
II '  \ I I .  

To capture the above intuition precisely, we introduce a 
partial validation relation. Part ial  validation can be seen as 
a "checking" version of the type inference algorithm. That  
is, it performs type propagation similarly to the inference 
algorithm but, rather than computing a type environment, 
it checks whether a given type environment is big enough. 
We check "big enough" because our purpose here is to show 
completeness (i.e., the predicted range F is bigger than the 
actual range). In addition, part ial  validation checks the type 
environment with types and pat terns  only "shallowly," with- 
out unfolding any definitions. This is because we want to 
characterize each individual pair that  the algorithm went 
through (and avoid wrongly including the pairs that  were 
skipped). 

Formally, we first define the relation YI ~- A ~ D 
F, which is read "the type environment F is part ial ly valid 
under II w.r.t A and D." This relation is defined by the 
following set of rules: 

(X~,Y) e II 

II ~- X ~ Y =~ F 
(INF-ST) 

H F - T ~ P ~ F  T a T  { x : T } < :  F 
(INF-BIND) 

7<: 0 
m 

I I F - T ~ P = ~ F  
(INF-EMP) 

II  ~ e ~ e ~ I" (INF-EPS) 

II  ~- T ~ T ~ F (INF-ANY) 

I I b  (T isect P1) ~ P1 :=~ F II  K (T dif[ P1) ~ P2 ~ F 

(INF-OR1) 

H I- 71 ~ P ::::~ F H K 7 2 ~ P = ~ F  

I I b  T i  [ T 2 ~  P ~ F 
(INF-Oa2) 

t(X,X') ¢ 0 
II  F- X D. Y :=~ F H K X '  ~ Y'  =-~ F 

n ~- t ( X , X ' )  ~ s ( Y , r ' )  =~ r 
(INF-LAB) 

Each rule is similar to one of the algorithmic rules, with the 
following differences. First,  the validation rules do not re- 
turn an output  II ' .  Second, the input II  from the conclusion 

is directly passed to each premise. Third, the type environ- 
ment F is passed through all of the rules, and, each t ime we 
reach a variable pat tern,  we check tha t  the passed type en- 
vironment contains sufficient type information for the range 
at  the variable. And fourth, the validation relation has no 
rule corresponding to INF-UNF: validation stops at states. 
We additionally define the relation II  K II '  =:~ F (which is 
read "F is part ial ly valid under II  w.r.t 1Yff") as follows: 

V(X~Y)  E H'. H F- u n f ( X )  ~ N ( Y )  ~ F 
r l  ~ YIt ~ r (INF-CONS) 

That  is, it  checks if, for each (Xv, Y) in H', the type envi- 
ronment F is part ial ly valid under II w.r.t, the unfoldings 
of X and Y. Finally, F is ~ l l y  valid w.r.t A and D, written 

~ D :=~ F, iff both  H K A ~ D ~ F and H ~- H :=~ F hold 
for some lII. 

The completeness of type inference is now proved in two 
steps. First ,  we show tha t  the final result F of the algo- 
r i thm is fully valid w.r.t. A and D (Lemma 4.4.3). Then 
we show tha t  a type environment F that  is fully valid w.r.t. 
A and D is big enough for the actual range of D w.r.t A 
(Lemma 4.4.4). 

4.4.3 L e m m a :  If 0 F- A ~ D ~ H;F,  then A ~ D ~ FF. 

4 .4.4 L e m m a :  Suppose A ~ D ~ F. Then, t E pA,D(y) 
implies u E F(y).  

In the proof of Lemma 4.4.3, we use the above intuition for 
the characterization of part ial  results by part ial  validation. 

Finally, the type inference algorithm constructed as 
above is guaranteed to terminate.  

4.4.5 T h e o r e m  [ T e r m i n a t i o n ] :  For all types A defined 
under a tree automaton M and pat terns  D defined under 
a pat tern  automaton N,  we can effectively calculate a type 
environment F defined under a tree automaton M'  D M 
such tha t  0 K A ~ D =:~ II; F for some II. 

5 Related Work 

Pat tern  matching is found in a wide variety of languages, 
and in a variety of styles. One axis for categorization that  
we have discussed already is how many bindings a pat tern  
match yields. In all-matches style, a pat tern  match yields a 
set of bindings corresponding to all possible matches. This 
style is often used in query languages [DFF +, AQM+97, 
CS98, CG00a, NS00] and document processing languages 
[NS98, Mur97]. In the single-match style, a successful match 
yields just  one binding. This style is usually taken in pro- 
gramming languages [MTH90, LVD+96, JHH+93]. In par- 
ticular, most functional programming languages allow am- 
biguous pat terns  with a first-match policy. Our design fol- 
lows this tradition. 

Another axis is the expressiveness of the underlying "pat- 
tern logic." Some query languages and document process- 
ing languages use pa t te rn  matching mechanisms based on 
tree au tomata  [NS98, Mur97] or monadic second-order logic 
(which is equivalent to tree automata)  [NS00], and therefore 
they have a similar expressiveness to our pat tern matching. 
TQL [CG00a] is based on Ambient Logic [CG00b], which ap- 
pears to be at  least as expressive as tree automata.  On the 
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other hand, pattern matching based on regular path expres- 
sions, popular in query languages for semistructured data 
[DFF +, AQM+97, CS98], is less expressive than tree au- 
tomata. In particular, these patterns usually cannot ex- 
press patterns like "subtrees that contain exactly these la- 
bels." Both tree automata and regular path expressions can 
express extraction of data from an arbitrarily nested tree 
structure (although, with the single-match style, the useful- 
ness of such deep matching is questionable, as we discussed 
in Section 3.1). 

Type inference with tree-automata-based types has been 
studied both in query languages for semistructured data 
[MS99, PV00] and in the setting of a document transfor- 
mation framework [Mur97]. The target languages in these 
studies have both matching of inputs and reconstruction 
of outputs (while we consider only matching here). Their 
pattern matches choose the all-matches s tyle-- in particu- 
lar, an input tree is matched symmetrically against all the 
patterns in a choice pattern. Consequently, these inference 
algorithms do not involve a difference operation. 

Milo, Suciu, and Vianu have studied a typechecking 
problem for the general framework of k-pebble tree trans- 
ducers, which can capture a wide range of query languages 
for XML [MSV00]. They use types based on tree automata 
and build an inverse type inference to compute the type for 
inputs from a given type for outputs (which is the opposite 
direction to ours). 

Another area related to our type inference method is set- 
constraint solving [AW92] (also known as tree set automata 
[GTT96]). This framework takes a system of inclusion con- 
straints among types with free variables and checks the sat- 
isfiability of the constraints [AW92] or finds a least solution 
if it exists [GTT96]. Since they allow intersection and dif- 
ference operations on types, it seems possible to encode our 
problem into their framework and obtain the solutions by 
their algorithm. If we used this encoding, we would need to 
do some work (similar to what we have done here) to prove 
the existence of least solutions for the sets of constraints we 
generate, because least solutions do not exist in general in 
their setting. 

Wright and Cartwright incorporate in their soft type sys- 
tem a type inference technique for pattern matching [WC94]. 
Their type system uses a restricted form of union types and 
their patterns do not involve recursion. (A more precise 
comparison with our scheme is difficult, since the details of 
their handling of pattern matching are not presented in their 
paper.) 

Puel and Sukrez [PSg0] develop a technique for pattern 
match compilation using what they call term decomposition. 
Although their goal is different from ours, the technique it- 
self resembles our type propagation scheme. Their term de- 
composition calculates a precise representation of the set of 
input values that  match each pattern, and their calculation 
of the "values not covered by the preceding patterns" is sim- 
ilar to our Use of difference operations. They do not treat 
recursive patterns. 

6 Future Work 

Some important extensions are left as future work. The 
most important is that we would like to support an Any 
type, denoting all sequences of trees, as well as patterns 
including the Any type. Any is useful for encoding object- 
style "extension subtyping" [HVP00], and also for writing 

patterns that  extract parts of sequences (we can use Any 
to match the parts we do not care about). We have not 
included Any in the present treatment,  because adding it in 
a naive way destroys the property of closure under difference 
(see Appendix A for a related discussion), which makes exact 
type inference impossible. Another extension is the inference 
of types for pattern variables in non-tail positions. We have 
some preliminary ideas for addressing these issues. 
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A Closure Algorithms 

This a2.pendix defines an algorithm for the conversion oper- 
ation A ::~ B introduced in Section 4.3, which computes a 
non-compound type equivalent to a given compound type. 
From this, we can derive, as a special case, an algorithm for 
the intersection operation introduced in Section 3.4. 

The formalization here depends on the definitions given 
in Section 4.3. We use the definitions of compound t~pe ex- 
pressions T, compound states X,  compound types A, their 
acceptance relations, the intersection operation isect and dif- 
ference operation diff for compound types, and the unfolding 
function unf for compound states. 

We first give a characterization of the conversion oper- 
ation A =~ B. We define two relations I I k  A =~ B and 
F- II, where H maps compound~tates to type states, and we 
claim that a~ompound  type A is convertible to a type B 
iff both II I- A ~ B and I- H hold, for some II. Intuitively, 
I I k  A ~ B means that  A is "immediately" (without un- 
folding) convertible to B, assuming that the X is convert- 
ible to Z for each X ~ Z in II. Similarly, k 17 means that 
the assumptions in YI are consis tent-- that  is, that, for each 
X ~ Z in II, the unfolding of X is indeed convertible to the 
unfolding of Z. The following rules define these relations. 

X ~--r Z E II 

H k X ~ Z  
(E-ST) 

YI I- I~ ~ @ (E-EMP) 

I I k  e =~. e (E-EPs) 

II h" T1 IT2 ~ U1 ]U2 
(E-OrO 

II ~- X i  ~ Z1 II ~- X2 ~ Z2 

rI ~- t(X1,X2) ~ t(Zl, z2) 
(E-LAB) 

v X ~  z e l l .  rIF ~nf(X) ~ M(Z) 
t - I I  

(E-CoNs) 

The only essential work is done in the rule E-CoNS, which 
computes the unfolding of X (which involves consecutive ap- 
plications of isect and diff operations), and confirms that the 
result is convertible to the unfolding of Z. The other rules 
simply replace each compound state with the corresponding 
state according to the mapping II. 

A . 1  L e m m a :  II I- A ~ B and I-- II iff A :=~ B. 
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From the above characterization, we can read off an ac- 
tual algorithm for the conversion as follows. We start by 
setting H to the empty mapping and apply the rules to the 
given type and pattern in a goal-directed manner. When we 
reach the rule E-ST, we may not find the compound state 
X in the domain of H. In this case, we generate a fresh 
state Z and add a mapping X ~ Z to H. We then ]2ro- 
ceed to convert the unfolding of the compound state X to 
a non-compound type and "back-patch" the result as the 
unfolding of Z in the tree automaton. This algorithm even- 
tually terminates because only a finite number of compound 
states can be constructed from the states in the given type 
and pattern. Also, notice that newly created states appear 
only in the output type and never in the input type, so there 
is no danger of trying to unfold one of them before it has 
been back-patched with its definition. 

A.2  L e m m a :  For all compound types A defined with re- 
spect to a tree automaton M and pattern automaton N, 
we can effectively calculate a t~pe B defined under a tree 
automaton M'  _D M such that  A =.~ B. 

The algorithm for the conversion operation takes expo- 
nential time in the worst case because an exponential num- 
ber of compound states can be generated from the states 
in the given type and pattern. However, the algorithm has 
several opportunities for optimization. Suppose that  a com- 
pound state has the form X N {Y1. . .  Yrn)\{Z1 . . .  Zn).  We 
can remove Yi from the compound state if X <: Y~. Like- 
wise, when X <: Zi, we can replace the whole compound 
state by a state associated with the empty set type 0. Fur- 
thermore, when X and Zi denote disjoint sets, we can re- 
move Zi from the compound state. (The disjointness can 
be checked by first calculating the intersection of X and Zi 
and then testing the emptiness of the result. Note that if we 
simply use the conversion operation for calculating the inter- 
section, this introduces circularity. But we can avoid it by 
specializing the conversion operation for intersection where 
no subtracting states appear in compound states. See the 
next paragraph.) Although the inclusion tests in these opti- 
mizations are themselves potentially expensive (exponential 
in the worst-case), these checks turn out usually to be rela- 
tively cheap, in our experience [HVP00]. 

The intersection of a (non-compound) type and a pat- 
tern is a special case of the above operation. To compute an 
intersection of T and P,  we can first calculate (T isect P)  
and then convert the resulting compound type to a non- 
compound type. Proposition 3.4.3 can be derived as a corol- 
lary of Lemma A.2. The worst-case complexity of the inter- 
section operation is quadratic. To see why, observe that, 
from the definition of isect, the compound types obtained 
by (A isect D) contain only compound states of the form 
X A {Y}. Moreover, the unfolding of the compound state 
X N {Y} is also a compound type that contains only com- 
pound states of this form. Since only a quadratic number 
of such compound states can be generated from the states 
in the given type and pattern, the intersection operation 
completes in quadratic time. 

Although the operations we have defined are all we need 
in our framework, one may wonder which others can be de- 
fined. Indeed, it is possible to compute an intersection of 
two patterns (since types can be treated as a special case of 
patterns, intersections on other combinations are also pos- 
sible). On the other hand, we cannot compute differences 
between patterns and patterns in general. For example, to 

compute the difference T \ I ( X , X ) ,  we would need to enu- 
merate all the labels except l, an infinite set. For the same 
reason, neither types nor patterns are closed under negation. 
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