XML-TK Binary Format

The XML-TK is a collection of simple light-weight tools which will let the user
combine these tools in a flexible manner to accomplish powerful data
processing transformations. The manner in which the tools are combined
bears great similarity to the manner in which the various unix tools are
combined using the pipe operator (which is represented by '|'). Since the
toolkit is expected to deal with huge amounts of data, it is quite possible that
the cost of carrying out a set of operations in a pipeline could be dominated
by the cost of data flowing from one stage of the pipeline to the other. The
idea behind XML-TK binary format is to come up with a smart encoding for
XML data which will reduce the size of data flowing between the successive
stages in the pipeline and hence the transmission time. This encoding also
preserves the structure of the original XML document.

XML-TK Binary Content Structure

The following data types are used in the specification of the XML-TK Binary
format.

Data Type Description

byte 8 bytes of opaque data

u_int8 8 byte unsigned integer

mb_u_int unsigned integer encoded in multi-byte integer format

Multi-byte Integers

This encoding uses a multi-byte representation for integer values. Multi-byte
integer consists of a series of octets, where the most significant bit is the
continuation flag and the remaining seven bits are a scalar value. The
continuation flag indicates that an octet is not the end of the multi-byte
sequence. A single integer value is encoded into a sequence of N octets. The
first N-1 octets have the continuation flag set to a zero (0). The final octet in
the series has a continuation flag set to one (1).

The remaining seven bits in each octet are arranged with the most significant
bit first. The octets are transmitted starting with the most significant seven
bits. All unused bits in the first octet are set to zero (0).

For example, the integer value 160 (which is same as 0xAQ) will be encoded
as follows :
e 160 represented in binary is 1010 0000
« Breaking this down into sequence of 7 bits, we get 0000001 and
0100000

« Thus the two octets transmitted are 0000 0001 and 1010 0000.

BNF for the Document Structure

The following is the BNF like description of the tokenized structure. We will
use the character '|' to designate the alternatives and capitalized words
indicate single-byte tokens, which are defined later. Optional elements are
enclosed in '[' and ']'. Elements may be followed by * specify zero or more
repetitions of the preceding element.

document = header body

header = version
body = p* XGT_END

p = [table] pair

table = XGT_TABLE (mapping)* XGT_END
mapping = t er nst r, token, syntactic_entity, type_token
pair = tag content

termstr = charset - dependent string with termination
token = nb_u_i nt

syntactic_entity = XST_ELEMENT | XST_ATTRIBUTE

type = COMPLEX_CONTENT | INTEGER | STRING |

tag = [type_override] token
content = body | string | type

type_override = XGT_TO_TOKEN type_token

version = u_int8

Document

Document consists of a header followed by a body. The header at present
consists of a version number. The body consists of encoded xml| document
interleaved with rows from the table which stores the mapping of the tags to
their encoding. The character data, when identified as a known data type like
integer or date is encoded. If nothing can be inferred about its type, then it is
transmitted as an inline string.

Header

All the binary XML documents contain a version number in their first byte.
This specifies the version number of the XML-TK binary format that is being

used. The version byte contains the major version minus one in the upper
four bits and the minor version in the lower four bits.

Table

The table which stores the mapping of tags to their encodings interleaves
with the encoded XML data in this binary format. The reason for doing this is
that in the absence of a schema or a DTD, the mapping table is not fully
determined before the entire document has been seen, which would mean
that any stage in the pipeline can not start till the stage before it has seen
the entire document.

A better strategy is to output the encoding of a tag as soon as it gets
encoded. This ensures two things. One, a particular stage in a pipeline
doesn’t have to wait to process the entire document before it provides any
data for the following stage. Two, it ensures that the encoding of a tag is
output before the actual document containing that encoded element is
transmitted. As a result, the tool downstream always knows how to interpret
the incoming binary stream.

However, every time a table row is transmitted, it has to be demarcated by
tokens which mark the begin and the end of the table. To avoid the overhead
of 2 tokens for each transmitted table entry, our encoding also allows a group
of table entries to be transmitted at a given time.

A table entry consists of four items :

e ternstr : the actual tag name or the attribute name transmitted as a
string

« token : the encoding of the tag

e syntactic_entity : whether the tag is an element name or an attribute
name

« type : the default type associated with the tag. (Note that, this can be
overridden)

The default type is the type inferred from the schema or the information
provided by the user on the command line.

The syntactic_entity gets encoded as follows :

Token Name Token Description
XST_ELEMENT 00 Indicates that the table entry encodes element
tag
XST_ATTRIBUTE |01 Indicates that the table entry encodes an
attribute name

Type Override

If the type of the content does not conform to the type specified for that it in
the table entry, then that type can be overridden by using a XGT_TO_TOKEN
token followed by the new type. If no known type can be inferred, then the
data is transmitted as inline string. If however a new type is inferred, then
this new type replaces the old type in the table entry.

Algorithm for Producing XML-TK Binary Format

All the stages in the pipeline start doing the encoding process in parallel.
Each stage first encodes the tags that it sees on the command line. Then it
starts encoding the input xml file (if any). Since all the stages of the pipeline
do encoding in parallel, it is quite possible that

« same tag may get encoded as two different tokens in two successive
stages of the pipeline.

« two different tags may have been mapped to the same token in two
successive stages of the pipeline.

Let us first consider (a). Suppose the tag <abc> gets encoded as 01 in the
first stage and as 03 in the second stage. The binary output produced by the
stage 2 will have the tag <abc> mapped to 03.

If however, the second stage has some other tag, say <def> mapped to 01.

Then, we will find the smallest number to which no tag has been mapped in
the second stage and map <def> to that number.

Token Structure

Global Tokens

Token Name Token Description
XGT_END 0 Indicates the end of the body or the table
XGT_TABLE 1 Indicates the start of the table
XGT_TO_TOKEN |2 Indicates type override. It is followed by the
token which encodes the new type.

Example

<bi b>
<book year="2000">
<t itle> Data on the web </title>
<author> Abiteboul </author>
<author> Buneman </author>
<author> Suciu </author>
</ book>
</ bi b>

The following is an annotated version of the binary stream for the above XML
document.

Token Stream Description
00 version number : XML-TK Binary Format version 1.0
01 XGT_TABLE
‘b” " *b’ 00 string
80 encoding for bib
00 XST_ELEMENT
00 type COMPLEX_CONTENT
00 XGT_END
80 bi b
01 XGT_TABLE
‘b’ ‘o’ ‘o’ 'k’ 00 string
81 encoding for book
00 XST_ELEMENT
00 type COMPLEX_CONTENT
‘v e’ 'a’ 'r’ 00 string
82 encoding for year
01 XST_ATTRIBUTE
02 type INTEGER
00 XGT_END
81 book
82 year
OF DO 2000 transmitted as an multi byte integer
01 XGT_TABLE
Y e’ 00 String
83 encoding for title
01 XST_ELEMENT
01 type STRING
00 XGT_END
83 title

\DI \al \tl \al ANEAY \OI \nl
AUEA \tl \hl \el AN Y \WI \el
‘b’ 00

Data on the Web transmitted as string

00

XGT_END (marks the end of ti t| e element)

01

XGT_TABLE

\al \ul \tl \hl \OI \rl 00

string

01

XST_ELEMENT

84 encoding for author
01 type STRING

00 XGT_END

84 aut hor

\AI \bl \il \tl \el \bl \OI
‘'u”'l’ 00

Abi t eboul transmitted as string

00

XGT_END (marks the end of aut hor element)

84

aut hor

\BI \ul \nl \el \ml \al \nl
00

Buneman transmitted as string

00 XGT_END (marks the end of aut hor element)
84 aut hor

‘S"'u' e tifu’ 00 Suci u transmitted as string

00 XGT_END (marks the end of aut hor element)
00 XGT_END (marks the end of book element)
00 XGT_END (marks the end of bi b element)
Notes

 All comments are removed in WBXML.

« The encoding scheme doesn’t incorporate entities and PI. However, it

can be extended very easily to accomplish this.

« The encoding scheme doesn’t talk about the data types that it is going

to support.

« The tag renaming that takes place across two adjacent stages in the

pipelining may, in worst case lead to renaming of every tag.

