XML toolkit tutorial

V2.0 March 22, 2004

Bruno Denuit (bdenuit@cs.washington.edu)

1. What is XML toolkit?

XML toolkit is a framework for light-weight and high performance XML data stream processing. It comprises of two fundamental libraries (tsax.lib - the XML TSAX parser - and xpathDFA.lib - an XPath filtering processor) and a collection of simple XML processing commands. The commands correspond to plain text processing commands like cat, head, tail, sort, grep etc. and are built on the two base libraries.

Section 2 explains the XML toolkit commands and Section 3 shows how to build new tools on top of the base libraries.

2. XML toolkit commands.

2.1 Why the XML toolkit commands?

The XML toolkit commands enable users to do the same kind of data manipulation on xml files as they are used to do on regular text files with the Unix commands (grep, cat, tail, etc.). Using input and output redirection and pipes, you can combine the commands for more powerful operations.

For example,

 cat book.txt article.txt | grep title | sort;

can be replaced as

 xcat book.xml article.xml | xsort -c "/bib" -e "book" -k "title/text()";

Moreover, since the data is written in XML format, one can devise more complex data operations like 'choose every first author in every book or article'.

 xcat book.xml article.xml | xhead -c "/bib/*" -e "author" -n 1 | xrun /bib/*;

For plain text files, we would have to use perl or a combination of sed, awk, etc. to achieve the same result.

How do we compare the XML toolkit commands then with XSLT or XQuery? Although each toolkit command only provides a specific subset function of these languages, we can combine any of the commands in a way described above, but also with existing Unix commands and custom user-implemented commands to realize complex data operations.

2.2 XML toolkit commands details

Note: For all the toolkit commands, the ‘-?’ option shows a small help message, equivalent to the Usage paragraph in what follows.
2.2.1 xcat
a) Usage:
xcat [-r <root>] [-i <indentation>] (<xml file>)+
b) Description:

This command simply concatenates the given XML files and outputs the result to the standard output stdout. The output XML can be a forest, i.e., with several root elements.

-r: Optional wrapper for the resulting XML.

-i: Optional indentation size with which the result should be formatted. If not specified, the input formatting is preserved.

c) Example:

xcat -r bib article.xml book.xml

2.2.2 xrun
a) Usage:
xrun <xpath expression> <xmlfile>

b) Description:

This command takes one XPath expression and one XML file as input and outputs the sub-part of the input XML that satisfies the given XPath expression. The result can be a forest. The restrictions for the XPath expression are described in Section 4.

c) Examples:

xrun "/" xmlfile

xrun /bib/book/title" xmlfile

xrun "//title/text()" xmlfile

xrun "//book/*/@year" xmlfile

2.2.3 xsort

(See also PLANX paper: http://www.cs.washington.edu/homes/suciu/XMLTK/planx.ps)

a) Usage:
xsort [-m <mem size>] [-i <indentation size>] -c <context>

[-e <element to include> [-k "<key comparison>"]]+ [<input file>]

b) Description:

This command sorts target elements under a given context, using the specified key expressions as sorting keys. The context, element and key expressions are specified using XPath (subject to the limitations described in Section 4). Under the context, only the elements satisfying an element expression are returned. The -m option sets the memory size for in-memory sorting (beyond which sorting is conducted externally, i.e. on disk).

c) Examples:

xsort -c "/bib" -e "book" -k "title/text()" xmlfile

xsort -c "/bib" -e "book" -k "title" xmlfile

When you specify the key parameter as an element (not ending with text()), then the key value is the concatenation of all the text under the key element.

xsort -c "/bib" -e "*" -k "@year" xmlfile

The key value is always treated as a string value (not as an integer value).

xsort -c "/bib/book" -e "author" -k "lastname/text()" -e "*" xmlfile

This sorts all ‘author’ elements under the ‘book’ element using ‘lastname/text()’ as key value. In addition, all elements except ‘author’ under the ‘book’ element are also outputted. In this case, there are two -e XPath expressions for one context element. The xsort program checks the first XPath expression, and only if this fails will it check the second XPath expression. So, the order of the -e XPath expressions is relevant.

2.2.4 xgrep
a)
Usage:
xgrep
-c context [-e <element to include> [-k \"<key comparison>\"]]+

[<input file>]

With:

<element to include>
::= <xpath to an element>

<key comparison>
::= <xpath to key> <comp op> <string value>

<comparison operator>
::= '=' | '!=' | '<' | '>' | '<=' | '>='

b)
Description:

xgrep copies to the output everything that is not under a context. For a context, it only copies the items that match an element expression and that satisfy the key comparison for that element expression.

c)
Examples:

xgrep -c bib -e paper -k “year/text() > 1999” xmlfile
Returns only papers, and only those that were published after 1999. If a paper has no year, then it won't be included.
xgrep -c bib -e paper -k “year/text() > 1999” -e * xmlfile
Returns all papers as above, as well as all other elements that are not papers.

xgrep -c /bib/* -e author -e title xmlfile
For every publication, xgrep includes only the author and title.
2.2.5 xnest
a)
Usage:

xnest
[-gt <group-tag-name>] [-kt <key-tag-name>]

-e <element to include> (-k <key> | -n number) [<input file>]
b)
Description:

xnest groups adjacent elements that have the same key under a common group tag (optionally specified with –gt). The first element under the common group element will be the common key (of which the name can be optionally specified with –kt). Note that the result might contain multiple groups with the same key value. This happens if the elements with a common key are not adjacent. To have unique groups, one must sort the results first. Instead of a key grouping, a number of elements per group can also be specified.
c)
Examples:

xnest –e /bib/* -k author xmlfile

xnest –gt books –e /bib/book –n 2 xmlfile

2.2.6 xpair

a)
Usage:

xpair

[-p <pair tag>] -e <element to duplicate> -g <element to pair up>

[<input file>]
b)
Description:

xpair pairs elements up with a context element (as specified with –e) under a pair tag (optionally specified with –p, the default being ‘pair’). All the elements that match the XPath specified with –g will be paired up with the last element that matched the XPath specified with –e.
c)
Example:

xpair –p desc –e /bib/*/author –g /bib/*/title xmlfile

2.2.7 xflatten

a)
Usage:

xflatten [-r] -e <element to remove> [<input file>]
b)
Description:

xflatten removes the top-most element that matches the given XPath expression. It only removes element tags, not content. Use –r to recursively remove all the matching element tags.

c)
Example:

xflatten –e /bib/book/title xmlfile

2.2.8 xhead / xtail

a)
Usage:

(xhead | xtail) -c <context> -e <element to filter> -n <number> [<input file>]
b)
Description:
xhead (xtail) filters the first (last) specified number of target elements matching the XPath expression specified with –e under the context element (specified with –c).

c)
Example:

xtail -c /bib -e //author -n 2 xmlfile
2.2.9 xstat
a)
Usage:

xstat <input file>
b)
Description:
This command reports the number of elements, the maximum depth and the average depth of the input XML file. For example, if the input XML contains only one root element (like ‘<root/>’), xstat will output:

<stat fileName="xmlfile">

<element count="1"/>

<depth max="1" avg="1"/>

</stat>

c)
Example:
xstat xmlfile
2.2.10 file2xml

a)
Usage:

file2xml -s <start directory name>
b)
Description:
This command collects file and directory information (name, path, size, permission, type, user id, group id, last access time, last modified time) under a specified start directory and packs it as XML format. For example, if the "CVS" directory contains one "Root" file, file2xml will output something of the form:

<directory>

<name>CVS</name>

<file>

<name>Root</name>

<filelink xlink:type="simple" xlink:href="file:/…/CVS/Root"/>

<path>/…/CVS/Root</path>

<size>33</size>

<permissions>-rwrr----</permissions>

<type>regular file</type>

<userid>13750</userid>

<groupid>330</groupid>

<lastAccess>Wed Nov 21 11:22:33 2001</lastAccess>

<lastModification>Wed Nov 21 11:22:23 2001</lastModification>

</file>

</directory>

c)
Example:
file2xml -s .

2.2.8
createSIX

a)
Usage:

createSIX [-t <threshold>] <input file>
b)
Description:
createSIX creates a streaming index (SIX) for the input XML file. If the XML file's name is "xmlfile.xml", the index is stored at "xmlfile.six" in the same directory. The –t option specifies the lower limit (in bytes) for the size of elements that are included in the index. Whenever there a SIX file is available for a certain XML file, the XPath processor will automatically use the index to skip parsing certain parts of the input XML.
There are two types of skips.
· Fail skip
When we receive a start element event for an element that is not part of any of the XPath expressions that are registered, we will skip the whole element and go to the next sibling. For example, if we want to find a book element (/bib/book) and receive an article start element event, then we skip the article element (element/attribute based fail skip). Another example of a fail skip might be when we want to find a book that is published in 1999 (/bib/book[@year='1999']) but we receive an event for a book that is published in 2001. This type of skip is called a value-based skip.
· Succeed skip
When we receive an end element event and we don't need to look at the siblings of that element, we can skip them all. For example, if we want to find the second book's first author (/bib/book[2]/author[1]) and we receive an end element event for the author element, then we can skip 2 depths to go to the end of ‘bib’. This is called an element or attribute based succeed skip). Another 1 depth succeed skip example would be if we have a key constraint on the ISBN of books and we found a book whose ISBN matches our condition (/bib/book[isbn='XX123'], value based succeed skip).

Some future work on the SIX is to enable skip parsing using key constraints, a schema specifying a order of sibling elements (e.g. DTD content model like (A, B*, C)), sorted elements, and existential filter condition.

c)
Example:

createSIX –t 100 bib.xml
3. XML toolkit libraries.

3.1 What is the functionality?
There are two base libraries: one is a tokenized XML parser and the other is the XPath filtering processor.

The tokenized XML parser converts every element tag or attribute into a unique integer value (XTOKEN) and calls tokenized SAX events on the registered handler. In version 2.0 of the toolkit, we extended the Expat XML parser (also available on sourceforge) with XTOKENs. The toolkit is currently configured for ASCII characters, but since the Expat parser accepts Unicode as well, it should not be hard to convert the toolkit parser and tools to Unicode.

The XPath filtering processor combined with the above tokenized XML parser calls only such SAX events that satisfy a given collection of registered XPath expressions, filtering out the rest. This is effective when you want to operate on a particular part of the input XML stream.

For example, if you want to create a title list out of a complete bibliography, you need to register two XPath expressions '/bib/book/title' as $x1 and '/bib/article/title' as $x2 (or simply one XPath expression '//title' or '/bib/*/title'). If the input XML data stream is

<bib>

 <book>

 <title>Data on the web</title>

 <author>Serge Abiteboul</title>

 <author>Peter Buneman</title>

 <author>Dan Suciu</title>

 </book>

 <article>

 <title>Processing XML Streams with Deterministic ...</title>

 <author>Todd J Green</title>

 <author>Makoto Onizuka</title>

 <author>Dan Suciu</title>

 </article>

</bib>

then the XPath processor calls only the following call-back events:

 startContext($1) // for '/bib/book/title'

 startElement('title')

 character('Data on the web')

 endElement('title')

 endContext($1)

 startContext($2) // for '/bib/article/title'

 startElement('title')

 character('Processing XML Streams with Deterministic ...')

 endElement('title')

 endContext($2)

The additional ‘non-SAX’ events 'startContext' and ‘endContext' enable the applications to know which XPath expression fired the events.

3.2 How does one develop a new application using XML toolkit library?

If you want to build a new application or command using the XML toolkit library, you will need to understand:

1) Main functions

2) Handler functions (including SAX events)

3) Global token table.
3.2.1 Main functions

Here, I explain the main functionality provided by the XML tookit using the xrun example.

#include "xmltk.h"

int main(int argc, char* argv[])

{

...

InitGlobalTokenTable();

try

{

// Create the xrun handler object that works on a stdout stream.

IXmlWriter * pchOut = CreateXmlWriter();

pchOut->SetOutputFile(stdout);

CXRunHandler handler(pchOut);

// Create a new XPath processor, setting the handler on it.

IDfaFilter * pdfa = CreateDfaFilter(&handler);

// Register the query with the processor.

pdfa->RegisterQuery(NULL, argv[1], true);

// Parse the xml file.

CXmlToolkit xmltk(argv[2], pdfa);

pdfa->SetXmlParser(xmltk.GetXmlParser());

xmltk.Parse();

// Cleanup.

ATOMICRELEASE(pdfa);

ATOMICRELEASE(pchOut);

}

catch (CXmlToolkitException &e)

{

printf("\n\n !! Error: %s !!", e.PszMessage());

}

CleanupGlobalTokenTable();

}

There are four important objects (interfaces) here:

1) IXmlWriter: TSAX interface that writes XML to any stream (IStream) or file (FILE). It has buffering capabilities too, i.e., you can stop it from writing to the output but instead have it buffer everything. Afterwards, you can flush the buffer in one shot to the output (multiple times even if you want to).
2) CXRunHandler: handler interface that implements IFilteredTSAXHandler.

3) IDfaFilter: Filtering XPath processor interface.

4) CXmlToolkit: XML Toolkit parser. This is the global parsing module.
3.2.3 Handler functions

You need to implement your own handler to receive events from the XPath filtering processor (or directly from the XML parser). The handler should at least implement the ITSAXContentHandler interface (usually it implements IFilteredTSAXHandler, an interface that inherits from ITSAXContentHandler). ITSAXContentHandler defines SAX events and IFilteredTSAXHandler defines the additional context events (startContext and endContext) on top of that.
If your particular handler doesn't need to implement all of the IFilteredTSAXHandler interface methods, you can have it inherit from CTSAXContentHandler, a class that implements all the IFilteredTSAXHandler methods to do nothing.

3.2.4 Global token table.
The global g_ptt represents the global token table. You have to set it up and destroy it with calls to InitGlobalTokenTable()and CleanupGlobalTokenTable() respectively. Use the global token table when you want to use the ITSAXContentHandler or IFilteredTSAXHandler yourself.
3.4 Advanced features of the XPath filtering processor.
3.4.1 Echo toggle
When registering XPath expressions, the user needs to specify the echo flag as the third parameter of the RegisterQuery method.

RegisterQuery(Variable * parentVariable, const char * xpath, bool echoToggle);

If the toggle is ON (true), then both the context events and all the SAX events fired during the matching of the XPath expression are forwarded to the handler (as described in Section 3.1). If the toggle is OFF (false), then only the context events are invoked, and none of the SAX events.

3.4.2 Echo overwrite

The echo toggle of an XPath expression can be overwritten by its child XPath expression. For example, if the user wants to output all the elements except the "title" element, he can register the queries as follows:
Variable * v1 = g_pfilter->RegisterQuery(NULL, "/", true);

Variable * v2 = g_pfilter->RegisterQuery(v1, "//title", false);

This fires all the SAX events for the root unless “//title” is satisfied.

3.4.3 Precedence

The XPath processor supports precedence among XPath expressions. The precedence is specified as the fourth parameter to the RegisterQuery method. When several XPath expressions become satisfied, the XPath processor only invokes start context events for expressions with the highest precedence.

4. Restrictions
4.1 Supported predicate expressions
· The predicate needs to be written with an attribute or value. If the predicate operator is binary, the order has to be [attribute operator value].
Examples: //book[@year]/title, //book[@year=1999]/title

· The position predicate can be used at any location step, except for the tail step.
Example: /bib/book[2]/author[1]

· Predicates can be concatenated.

Example: //book[2][@year=1999]/title[contains(text(),'XML')]/text()

4.2 Unsupported predicate expressions
· The tail location step cannot have a predicate, because the lazy DFA does not support output XML buffering.

Unsupported: //book[@year]

· Descendant-or-self with position predicate is not supported.

Unsupported: /bib/book//name[2]

· Position predicate following another predicate is not supported.

Unsupported: //book[@year=1998][2]

· Element or "." is not supported in a predicate.

Unsupported: //book[contains(.,'XML')]/title

· XPath expressions that use both "//" and any predicate do not work correctly. The lazy DFA does not output an error message in this case. More precisely, the XPath expressions which do not work correctly contain some predicate that matches with more than one XML fragment simultaneously. For example, //a/a[1] matches two XML fragments in the following XML.

<a>

<-- 1st context starts here

<a>
<-- 1st context completed here, but at the same time 2nd context starts here

<c>123</c>

<a>

<c>123</c>

…
5. Current issues:

· The Expat XML parser supports Unicode. We should move to Unicode as well, and add all the callback functions to the parser.

· Too much buffering and copying is still going on at the interfaces between the Expat parser and our wrapper around it. Need to clean this up.
