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ABSTRACT
The query containment problem is a fundamental algorithmic prob-

lem in data management. While this problem is well understood

under set semantics, it is by far less understood under bag semantics.

In particular, it is a long-standing open question whether or not

the conjunctive query containment problem under bag semantics is

decidable. We unveil tight connections between information theory

and the conjunctive query containment under bag semantics. These

connections are established using information inequalities, which

are considered to be the laws of information theory. Our first main

result asserts that deciding the validity of a generalization of infor-

mation inequalities is many-one equivalent to the restricted case

of conjunctive query containment in which the containing query is

acyclic; thus, either both these problems are decidable or both are

undecidable. Our second main result identifies a new decidable case

of the conjunctive query containment problem under bag semantics.

Specifically, we give an exponential time algorithm for conjunctive

query containment under bag semantics, provided the containing

query is chordal and admits a simple junction tree.
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1 INTRODUCTION
Since the early days of relational databases, the query containment

problem has been recognized as a fundamental algorithmic problem

in data management. This problem asks: given two queries Q1 and

Q2, is it true that Q1 (D) ⊆ Q2 (D), for every database D? Here,

Qi (D) is the result of evaluating the query Qi on the database D.

Thus, the query containment problem has several different vari-

ants, depending on whether the evaluation uses set semantics or

bag semantics, and whether D is a set database or a bag database.

Query containment under set semantics on set databases is the
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most extensively studied and well understood such variant. In par-

ticular, Chandra and Merlin [8] showed that, for this variant, the

containment problem for conjunctive queries is NP-complete.

Chaudhuri and Vardi [9] were the first to raise the importance

of studying the query containment problem under bag semantics.

In particular, they raised the question of the decidability of the

containment problem for conjunctive queries under bag semantics.

There are two variants of this problem: in the bag-bag variant, the

evaluation uses bag semantics and the input database is a bag, while

in the bag-set variant, the evaluation uses bag semantics and the

input database is a set. It is known that for conjunctive queries,

the bag-bag variant and the bag-set variant are polynomial-time

reducible to each other (see, e.g., [17]); in particular, either both

variants are decidable or both are undecidable. Which of the two is

the case, however, remains an outstanding open question to date.

During the past twenty five years, the research on the query

containment problem under bag semantics has produced a number

of results about extensions of conjunctive queries and also about

restricted classes of conjunctive queries. Specifically, using differ-

ent reductions from Hilbert’s 10th Problem, it has been shown that

the containment problem under bag semantics is undecidable for

both the class of unions of conjunctive queries [16] and the class

of conjunctive queries with inequalities[17]. It should be noted

that, under set semantics, the containment problem for these two

classes of queries is decidable; in fact, it is NP-complete for unions

of conjunctive queries [27], and it is ΠP

2
-complete for conjunctive

queries with inequalities [20, 28]. As regards to restricted classes of

conjunctive queries, several decidable cases of the bag-bag variant

were identified in [2], including the case where both Q1 and Q2 are

projection-free conjunctive queries, i.e., no variable is existentially

quantified. Quite recently, this decidability result was extended to

the case where Q1 is a projection-free conjunctive query and Q2 is

an arbitrary conjunctive query [21]; the proof is via a reduction to

a decidable class of Diophantine inequalities. In a different direc-

tion, information-theoretic methods were used in [22] to study the

homomorphism domination exponent problem, which generalizes

the conjunctive query containment problem under bag semantics

on graphs. In particular, it was shown in [22] that the conjunctive

query containment problem under bag semantics is decidable when

Q1 is a series-parallel graph and Q2 is a chordal graph. This was

the first time that notions and techniques from information theory

were applied to the study of the containment problem under bag

semantics.

Notions and techniques from information theory have found

a number of uses in other areas of database theory. For example,

entropy and mutual information have been used to characterize

database dependencies [23, 24] and normal forms in relational and

XML databases [3]. More recently, information inequalities were
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used with much success to obtain tight bounds on the size of the

output of a query on a given database [4, 14, 15, 18, 19], and to

devise query plans for worst-case optimal join algorithms [18, 19].

This paper unveils deeper connections between information the-

ory and the query containment problem under bag semantics. These

connections are established through the systematic use of informa-

tion inequalities, which have been called the “laws of information

theory" [26] as they express constraints on the entropy and thus

“govern the impossibilities in information theory" [31].

An information inequality is an inequality of the form

0 ≤
∑
X ⊆V

cXh(X ), (1)

where V is a set of n random variables over finite domains, each

coefficient cX is a real number, i.e. c = (cX )X ⊆V is a 2
n
-dimensional

real vector, h is the entropy function of a joint distribution over V
(V -distribution henceforth). In particular,h(X ) denotes the marginal

entropy of the variables in the set X ⊆ V .

An information inequality may hold for the entropy function

of some V -distribution, but may not hold for all V -distributions.
Following [5], we say that an information inequality is valid if it

holds for the entropy function of every V -distribution. This notion

gives rise to the following natural decision problem, which we

denote as IIP: given integer coefficients cX ∈ Z for all X ⊆ V , is
the information inequality (1) valid?

1

In this paper, we will also study a generalization of this problem

that involves taking maxima of linear combinations of entropies. A

max-information inequality is an expression of the form

0 ≤ max

ℓ∈[k]

∑
X ⊆V

cℓ,Xh(X ), (2)

whereV ,X ,h(X ) are as before, and for each ℓ ∈ [k], cℓ := (cℓ,X )X ⊆V
is a 2

n
-dimensional real vector. We say that a max information

inequality is valid if it holds for the entropy function of every V -
distribution. We write Max-IIP to denote the following decision

problem: given k integer vectors cℓ of dimension 2
n
, is the max

information inequality (2) valid? Clearly, IIP is the special case of

Max-IIP in which k = 1.

Our first main result asserts that Max-IIP ismany-one equivalent
to the restricted case of the conjunctive query containment prob-

lem under bag semantics in which Q1 is an arbitrary conjunctive

query and Q2 is an acyclic conjunctive query. In fact, we show that

these two problems are reducible to each other via exponential-

time many-one reductions. This result establishes a new and tight
connection between information theory and database theory, show-

ing that Max-IIP and the conjunctive query containment problem

under bag semantics with acyclic Q2 are equally hard.

To the best of our knowledge, it is not known whether Max-IIP
is decidable. In fact, even IIP is not known to be decidable; in

other words, it is not known if there is an algorithm for telling

whether a given information inequality with integer coefficients is

valid. Even though the decidability question about IIP and about

Max-IIP does not seem to have been raised explicitly by researchers

in information theory, we note that there is a growing body of

research aiming to “characterize" all valid information inequalities;

moreover, finding such a “characterization" is regarded as a central

1
Equivalently, one can allow the input coefficients to be rational numbers.

problem in modern information theory (see, e.g., the survey [5]).

It is reasonable to expect that a “good characterization" of valid

information inequalities will also give an algorithmic criterion for

the validity of information inequalities. Thus, showing that IIP is
undecidable would imply that no “good characterization" of valid

information inequalities exists.

Our second main result identifies a new decidable case of the con-

junctive query containment problem under bag semantics. Specif-

ically, we show that there is an exponential-time algorithm for

testing whether Q1 is contained in Q2 under bag semantics, where

Q1 is an arbitrary conjunctive query and Q2 is a conjunctive query

that is chordal and admits a junction tree that is simple. Here, a query
is chordal if its Gaifman graph G is chordal, i.e., G admits a tree

decomposition whose bags induce (maximal) cliques of G; such a

tree decomposition is called a junction tree. A tree decomposition is

simple if every pair of adjacent bags in the tree decomposition share

at most one common variable. The result follows from a new class of

decidable Max-IIP problems. Note that this result is incomparable

to the aforementioned decidability result about series-parallel and

chordal graphs in [22], in two ways. First, the result in [22] applies

only to graphs (i.e., databases with a single binary relation symbol),

while our result applies to arbitrary relational schemas. Second, our

result imposes more restrictions on Q2, but no restrictions on Q1.

The work reported here reveals that the conjunctive query con-

tainment problem under bag semantics is tightly intertwined with

the validity problem for information inequalities. Thus, our work

sheds new light on both these problems and, in particular, implies

that any progress made in one of these problems will translate to

similar progress in the other.

2 DEFINITIONS
We describe here the two problems whose connection forms the

main result of this paper.

2.1 Query Containment Under Bag Semantics
Homomorphisms between relational structures. We fix a relational

vocabulary, which is a tuple R = (R1, . . . ,Rm ), where each sym-

bol Ri has an associated arity ai . A relational structure is A =
(A,RA

1
, . . . ,RAm ), where A is a finite set (called domain) and each

RAi is a relation of arity ai over the domain A. Given two relational

structures A and B with domains A and B respectively, a homo-

morphism from B to A is a function f : B → A such that for

all i , we have f (RBi ) ⊆ RAi . We write hom(B,A) for the set of

all homomorphisms from B to A, and denote by |hom(B,A) | its
cardinality.

Bag-Set Semantics. A conjunctive queryQ with variables vars(Q )
and atom set atoms(Q ) = {A1, . . . ,Ak } is a conjunction:

Q (x) = A1 ∧A2 ∧ · · · ∧Ak . (3)

For each j ∈ [k], the atomAj is of the formRi j (xj ), where rel(Aj )
def

=

Ri j is a relation name, and vars(Aj )
def

= xj is a function,

vars(Aj ) : [arity(rel(Aj ))]→ vars(Q ) (4)
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associating a variable to each attribute position of rel(Aj ). We al-

low repeated variables in an atom. The variables x are called head
variables, and must occur in the body.

A database instance is a structure D with domain D. The an-

swer of a query (3) with head variables x is a set of x-tuples with

multiplicities. Formally, for each d ∈ Dx
, denote Q (D)[d]

def

=

{ f ∈ hom(Q,D) | f (x) = d}. The answer to Q on D under the bag-
set semantics is the mapping d 7→ |Q (D)[d]|. The bag-set semantics

corresponds to a count(*)-groupby query in SQL.

Given two queries Q1,Q2 with the same number of head vari-

ables, we say that Q1 is contained in Q2 under bag-set semantics,
and denote with Q1 ⪯ Q2, if for every D, we have Q1 (D) ≤
Q2 (D), where ≤ compares functions point-wise, ∀d, |Q1 (D)[d]| ≤

|Q2 (D)[d]|.

Problem 2.1 (Query containment problem under bag-set seman-

tics). Given Q1,Q2, check whether Q1 ⪯ Q2.

A query Q is called a Boolean query if it has no head variables,

|x| = 0. It is known that the query containment problem under

bag semantics can be reduced to that of Boolean queries under bag

semantics. For completeness, we provide the proof in Appendix A,

and only mention here that the reduction preserves all special prop-

erties discussed later in this paper: acyclicity, chordality, simplicity.

For that reason, in this paper we only consider Boolean queries,

and denote Problem 2.1 by BagCQC.

Bag-bag Semantics. In our setting the input database D is a

set, only the query’s output is a bag. This semantics is known

under the term bag-set semantics. Query containment has also

been studied under the bag-bag semantics, where the database may

also have duplicates. This problem is known to be reducible to the

containment problem under bag-set semantics [17], by adding a new

attribute to each relation, and for that reason we do not consider it

further in this paper. One aspect of the bag-bag semantics is that

repeated atoms change the meaning of the query, while repeated

atoms can be eliminated under bag-set semantics. For example

R (x ) ∧ R (x ) ∧ S (x ,y) and R (x ) ∧ S (x ,y) are different queries under
bag-bag semantics, but represent the same query under bag-set

semantics. Since we restrict to bag-set semantics we assume no

repeated atoms in the query.

The Domination Problem. We briefly review two related problems

that are equivalent to BagCQC. Given two relational structures A

and B, we say that B dominates A, and write A ⪯ B, if ∀D,

|hom(A,D) | ≤ |hom(B,D) |.

Problem 2.2 (The domination problem, DOM). Given a vocabulary

R, and two structures A,B, check if B dominates A: A ⪯ B.

DOM and BagCQC are essentially the same problem. Kopparty and

Rossman [22] considered the following generalization:

Problem 2.3 (The exponent-domination problem). Given a ra-

tional number c ≥ 0 and two structures A,B, check whether

|hom(A,D) |c ≤ |hom(B,D) | for all structures D.

This problem is equivalent to DOM, because it can be reduced to

DOM by observing that |hom(n · A,D) | = |hom(A,D) |n , where
n ·A represents n disjoint copies ofA [22, Lemma 2.2]. Conversely,

DOM is the special case c = 1.

2.2 Information Inequality Problems
In this paper all logarithms are in base 2. For a random variable

X with values that are in a finite domain D, its (binary) entropy is

defined by

H (X ) := −
∑
x ∈D

Pr[X = x] · log Pr[X = x] (5)

Note that in the above definition, X can be a tuple of random

variables, in which case H (X ) is their joint entropy. The entropy
H (X ) is a non-negative real number.

Let V = {X1, . . . ,Xn } be a set of n random variables jointly

distributed over finite domains. For each α ⊆ [n], the joint distri-

bution induces a marginal distribution for the tuple of variables

Xα = (Xi : i ∈ α ). One can also equivalently think of Xα as a

vector-valued random variable. Either way, the marginal entropy

on Xα is defined by (5) too, where we replace X by Xα . Define the

function h : 2
[n] → R+ as h(α )

def

= H (Xα ), for all α ⊆ [n]. We call

h an entropic function (associated with the joint distribution on V )

and identify it with a vector h ∈ R2
n

+ .

The set of all entropic functions is denoted
2
by Γ∗n ⊆ R

2
n

+ . With

some abuse, we blur the distinction between the set [n] and the set

of variables V = {X1, . . . ,Xn }, and write h(Xα ) instead of h(α ).
An information inequality, or II, defined by a vector c = (cX )X ⊆V

∈ R2
V
, is an inequality of the form

0 ≤
∑
X ⊆V

cXh(X ) (6)

The information inequality is valid if it holds for all h ∈ Γ∗n [5].

Problem 2.4 (II-Problem). Given a set V and a collection of inte-

gers cX , for X ⊆ V , check whether the information inequality (6)

is valid.

Amax-information inequality, or Max-II, is defined by k vectors

cℓ := (cℓ,X )X ⊆V ∈ R
2
V
, ℓ ∈ [k], and is written as:

0 ≤ max

ℓ∈[k]

∑
X ⊆V

cℓ,Xh(X ) (7)

The Max-II is valid if it holds for all entropic functions h ∈ Γ∗n .

Problem 2.5 (Max-II Problem). Given a set V and integers cℓ,X ,
for ℓ ∈ [k] and X ⊆ V , check whether the Max-II (7) is valid.

We denote the II- and Max-II problems by IIP and Max-IIP
respectively. Both are co-recursively enumerable and it is open if

any of them is decidable.

3 MAIN RESULTS
3.1 Connecting BagCQC to Information Theory
We state our first main result, and defer its proofs to Sec. 4 and 5.

Recall that amany-one reduction of a decision problemA to another

decision problem B, denoted by A ≤m B, is a computable function

f such that for every input X , the yes/no answer to problem A on

X is the same as the yes/no answer to the problem B on f (X ). This
is a special case of a Turing reduction, A ≤T B, which means an

algorithm that solvesA given access to an oracle that solves B. Two

2
Most texts drop the component h (∅), which is always 0, and define Γ∗n ⊆ R

2
n−1

+ . We

prefer to keep the ∅-coordinate to simplify notations.
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problems are many-one equivalent, denoted by A ≡m B, if A ≤m B
and B ≤m A.

Our main result is that the Max-IIP is many-one equivalent to

the query containment problem under bag semantics, when the

containing query is restricted to be acyclic.We briefly review acyclic

queries here (we only consider α-acyclicity in this paper [11]):

Definition 3.1. A tree decomposition of a query Q is a pair (T , χ )

whereT is an undirected forest
3
and χ : nodes(T ) → 2

vars(Q )
satis-

fies (a) the running intersection property: ∀x ∈ vars(Q ),
{t ∈ nodes(T ) | x ∈ χ (t )} is connected in T , and (b) the cover-

age property: for every A ∈ atoms(Q ), there exists t ∈ nodes(T )
s.t. vars(A) ⊆ χ (t ). The sets χ (t ) are called the bags4 of the tree
decomposition. A query Q is acyclic if there exists a tree decom-

position (T , χ ) such that, for all t ∈ nodes(T ), χ (t ) = vars(A) for
some A ∈ atoms(Q ).

Theorem 3.2. Let BagCQC-A denote the BagCQC problem Q1 ⪯

Q2, where Q2 is restricted to acyclic queries. Then Max-IIP ≡m
BagCQC-A.

The proof of the theorem consists of three steps. First, we de-

scribe in Sec. 4.1 a Max-IIP inequality that is sufficient for con-

tainment, which is quite similar to, and inspired by an inequal-

ity by Kopparty and Rossman [22]. Second, we prove in Sec. 4.2

that, when Q2 is acyclic, then this inequality is also necessary,

thus solving the conjecture in [22, Sec.3]; our proof is based on

Chan-Yeung’s group-characterizable entropic functions [6, 7]. In

particular, BagCQC-A ≤m Max-IIP. We do not know if this can be

strengthened to BagCQC and/or IIP respectively. Finally, we give
the many-one reduction Max-IIP ≤m BagCQC-A in Sec. 5.

3.2 Novel Decidable Class of BagCQC
Our next two results consist of a novel decidable class of query

containment under bag semantics, and, correspondingly, a novel

decidable class of max-information inequalities. We state here the

results, and defer their proofs to Appendix D.

We show that containment is decidable when Q2 is chordal and
admits a simple junction tree (decomposition); to formally state the

result, we define chordality, simplicity, and junction tree next.

A queryQ is said to be chordal if its Gaifman graphG is chordal,

i.e., there is a tree decomposition of G in which every bag induces

a clique of G. A tree decomposition of G (and thus of Q) where all
bags induce maximal cliques of G is called a junction tree in the

graphical models literature (see Def. 2.1 in [29]).

Fix a tree decomposition of a query Q , and let t ∈ nodes(T ). A
tree decomposition is called simple if ∀(t1, t2) ∈ edges(T ), |χ (t1) ∩
χ (t2) | ≤ 1, and is called totally disconnected if5 ∀(t1, t2) ∈ edges(T ),
χ (t1) ∩ χ (t2) = ∅.

Note that every acyclic query is chordal, but not necessarily

simple; for example, the query Q () ← R (a,b, c ), S (b, c, e ) is a non-
simple acyclic query. Conversely a chordal query is not necessarily

acyclic; for example, any k-clique query with k ≥ 3 is chordal.

3
We allow Q to be disconnected, in which case T can be a forest, but we continue to

call it a tree decomposition.

4
Not to be confused with the bag semantics.

5
Equivalently, edges(T ) = ∅, because any edge s.t. χ (t1 )∩ χ (t2 ) = ∅ can be removed.

Theorem 3.3. Checking Q1 ⪯ Q2 is decidable in exponential time
when Q2 is chordal and admits a simple junction tree.

Next, we complement Theorem 3.3 by showing that, if Q1 ⪯̸ Q2

then there exists a “witness” with a simple structure. This result

is similar in spirit to other results where a decision problem can

be restricted to special databases: for example, query containment

under set semantics holds iff it holds on the canonical database of

Q1 [8], and implication between functional dependencies holds iff

it holds on all relations with two tuples.

LetQ1 be a query andV = vars(Q1). A relation P ⊆ DV
is called

a V -relation. A V -relation P and Q1 induce a database instance

ΠQ1
(P )

def

= (D,RD
1
, . . . ,RDm ) where,

∀ℓ ∈ [m] : RDℓ
def

=
⋃

A∈atoms(Q1 ):rel(A)=Rℓ

Πvars(A) (P ) (8)

In other words, we project P on each atom, and define RD
ℓ
as the

union of projections on atoms with relation name Rℓ .
The notation Πvars(A) (P ) requires some explanation, because

the atom A may have repeated variables, thus vars(A) is a function
(described in (4)). Given a set of integer indices Y and a function φ :

Y → V , the generalized projection is Πφ (P )
def

= { f ◦ φ | f ∈ DV }. A

tuple f ∈ DV
is a functionV → D, hence f ◦φ just denotes function

composition. For example, if Q1 = R (x ,x ,y) and P = {(a,b)}, then
RD = Π(x,x,y ) (P ) = {(a,a,b)}. Obviously P ⊆ hom(Q1,ΠQ1

(P )),
which means |P | ⊆ |hom(Q1,ΠQ1

(P )) |, and this implies:

Fact 3.4 (Witness). If there exists a vars(Q1)-relation P such that

|P | > |hom(Q2,ΠQ1
(P )) |, then Q1 ⪯̸ Q2, in which case P is said to

be a witness (for the fact that Q1 ⪯̸ Q2).

We next define two special types of relations (and witnesses).

LetW be a set of integer indices. Fix ψ : W → 2
V

and a tuple

f ∈ DV
. For any index y ∈W , we view f (ψ (y)) as an atomic value

in the domain Dψ (y )
. Define theW -tupleψ · f

def

= ( f (ψ (y)))y∈W ;

its components may belong to different domains.

Definition 3.5 (Product and normal relations). A V -relation P
is a product relation if P =

∏
x ∈V Sx , where each Sx is a unary

relation. AW -relation is called a normal relation if it is of the form

{ψ · f | f ∈ P }where P is some productV -relation andψ : W → 2
V

is some function.

One can verify that every product relation is a normal relation.

For a simple illustration, consider the case when V = {X1,X2}.

A product relation on V is {(u,v ) | u,v ∈ [N ]} = [N ] × [N ]. A

normal relation with four attributes is {(uv,u,v,v ) | u,v ∈ [N ]},

where uv denotes the concatenation of u and v . This normal rela-

tion corresponds to the mapψ : [4]→ 2
V
whereψ (1) = {X1,X2},

ψ (2) = {X1}, and ψ (3) = ψ (4) = {X2}. In a product relation all

attributes are independent, while a normal relation may have de-

pendencies: in our example the first attribute uv is a key, and the

last two attributes are equal.

Theorem 3.6. Let Q2 be chordal,
(i) IfQ2 admits a totally disconnected junction tree, thenQ1 ⪯̸ Q2

if and only if there is a product witness.
(ii) If Q2 admits a simple junction tree, then Q1 ⪯̸ Q2 if and only

if there exists a normal witness.
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We prove both theorems in Appendix D, using the novel results

on information-theoretic inequalities described next, in Sec. 3.3.

Example 3.7. We illustrate with the following queries:

Q1 =A(x1, x2) ∧ B (x1, x2) ∧C (x1, x2) ∧ A(x ′1, x
′
2
) ∧ B (x ′

1
, x ′

2
) ∧C (x ′

1
, x ′

2
)

Q2 =A(y1, y2) ∧ B (y1, y3) ∧C (y4, y2)

Q2 is acyclic with a simple junction tree: {y1,y3}−{y1,y2}−{y2,y4}.

We prove that Q1 ⪯̸ Q2 has a normal witness:

P
def

= {(u,u,v,v ) | u ∈ [n],v ∈ [n]} ⊆ D {x1,x2,x ′
1
,x ′

2
}

P induces the database ΠQ1
(P ) = ([n],AD ,BD ,CD ), where AD =

BD = CD = {(u,u) | u ∈ [n]}, and |P | = n2 > |hom(Q2,ΠQ1
(P )) | =

n when n > 1, proving Q1 ⪯̸ Q2.

On the other hand, there is no product relation P that can wit-

ness Q1 ⪯̸ Q2. Indeed, if P = S1 × S2 × S3 × S4 where S1, . . . , S4

are unary relations, then the associated database ΠQ1
(P ) has re-

lations AD = BD = CD def

= (S1 × S2) ∪ (S3 × S4), and therefore

|hom(Q2,ΠQ1
(P )) | ≥ max( |S1 × S2 |

2, |S3 × S4 |
2) ≥ |S1 × S2 × S3 ×

S4 | = |P |.

3.3 Novel Class of Shannon-Inequalities
Our decidability results are based on a new result on information-

theoretic inequalities, proving that certain max-linear inequalities

are essentially Shannon inequalities. To present it, we need to re-

view some known facts about entropic functions. We refer to Ap-

pendix B and to [30] for additional information. Recall that the set

of entropic functions over n variables is denoted Γ∗n ⊆ R
2
n
, and

that we blur the distinction between a set V of n variables and [n].

We begin by discussing closure properties of entropic functions

and then introduce certain special classes of entropic functions. For

the benefit of the readers familiar with database theory, we give

in Table 1 the mapping between some of the database concepts

used in this paper and their information-theoretic counterparts. For

our discussion, it is useful to define the notion of the entropy of a
relation. Given aV -relation P , its entropy is the entropy of the joint

distribution on V , uniform on the support of P (i.e., tuples in P ).
First, the sum of two entropic functions is also an entropic func-

tion, that is, if h1,h2 ∈ Γ
∗
n , then h1 + h2 ∈ Γ

∗
n . It follows that if k is

a positive integer and h is an entropic function, then the function

h′ = kh is also entropic. However, if c > 0 is a positive real number

and h is an entropic function, then the function h′ = ch need not

be entropic, in general. In contrast, the function h′ = ch is entropic,

if c > 0 is a positive real number and h is a step function, defined as

follows. LetW ⊊ V be a proper subset ofV . The step function atW ,

denoted by hW , is the function

hW (X ) =



0 if X ⊆W

1 otherwise.

Every step function hW is entropic. To see this, consider the re-

lation PW = { f1, f2} ⊆ {1, 2}
V
, where f1 = (1, 1, . . . , 1) and

f2 = (2, . . . , 2︸  ︷︷  ︸
V−W

, 1, . . . , 1︸  ︷︷  ︸
W

), that is, f2 has 1’s on the positionsW and

2’s on all other positions. It is not hard to verify that hW is the

entropy of the relation PW , and thus the step function hW is indeed

entropic.

As mentioned above, if c > 0 is a positive real number and hW
is a step function, then the function h′ = chW is entropic; the proof

of this fact is given in Appendix B. A normal entropic function, or
simply normal function, is a non-negative linear combination of step

functions, i.e.,

∑
W ⊊V cW hW , for cW ≥ 0. We write Nn to denote

the set of all normal functions. Since, as mentioned earlier, the sum

of two entropic functions is entropic, it follows that every normal

function is entropic; thus, we have thatNn ⊆ Γ∗n . In Appendix B, we
show that the normal functions are precisely the entropic functions

with a non-negative I-measure (defined by Yeung [30]). The term

“normal” was introduced in [18]. One can check that the entropy of

every normal relation (Def. 3.5) is a normal function.

Example 3.8. The parity function is the entropy of the following re-
lationwith 3 variables: P = {(X ,Y ,Z ) | X ,Y ,Z ∈ {0, 1},X ⊕ Y ⊕ Z = 0}.

More precisely, the entropy is h(X ) = h(Y ) = h(Z ) = 1, h(XY ) =
h(XZ ) = h(YZ ) = h(XYZ ) = 2. We show in Sec. 6 that h is not

normal.

A function h : 2
V → R+ is called modular if it satisfies h(X ∪

Y ) + h(X ∩ Y ) = h(X ) + h(Y ) for all X ,Y ⊆ V , and h(∅) = 0. It

is easy to show that h is modular iff h(Xα ) =
∑
i ∈α h(Xi ) for all

α ⊆ V . It is immediate to check that the entropy of any product

relation (Def. 3.5) is modular. We writeMn to denote the set of all

modular functions. Every modular function is normal, hence it is

also entropic. To see this, given a modular function h, for each i ≤ n,
defineWi = V \ {Xi } and let hWi be the associated step function at

Wi . It is now easy to verify that h =
∑n
i=1

h(Xi ) · hWi , thus h is a

normal function. In summary, we haveMn ⊆ Nn ⊆ Γ∗n .
All entropic functions satisfy Shannon’s basic inequalities, called

monotonicity and submodularity,

h(X ) ≤ h(X ∪ Y ) h(X ∪ Y ) + h(X ∩ Y ) ≤ h(X ) + h(Y ) (9)

for all X ,Y ⊆ V . (Since h(∅) = 0, monotonicity implies non-
negativity too.) A function h : 2

V → R+, h(∅) = 0, that satisfies

Eq.(9) is called a polymatroid, and the set of all polymatroids is

denoted by Γn . Thus, Γ
∗
n ⊆ Γn . Zhang and Yeung [32] showed that

Γ∗n is properly contained in Γn , for every n ≥ 4. Any inequality

derived by taking a non-negative linear combination of inequalities

(9) is called a Shannon inequality. In a follow-up paper [33], Zhang

and Yeung gave the first example of a 4-variable valid information

inequality which is non-Shannon.

In summary, we have considered the chain of the following four

sets:Mn ⊊ Nn ⊊ Γ∗n ⊊ Γn . Except for Γ
∗
n , each of these sets is a

polyhedral cone. Using basic linear programming, one can show

that it is decidable whether a max-linear inequality holds on a

polyhedral set. In contrast, (even) the topological closure of Γ∗n is

not polyhedral [25]; in fact, it is conjectured to not even be semi-

algebraic [13], and it is an open question whether linear inequalities

or max-linear inequalities on Γ
∗

n are decidable.

For a given vector (cX )X ⊆V ⊆ R
2
n
where c∅ = 0, we asso-

ciate a linear expression E which is the linear function E (h)
def

=∑
X ⊆V cXh(X ). As stated earlier, a linear inequality E (h) ≥ 0 that is

valid for all h ∈ Γ∗n is called an information inequality; furthermore,

a max information inequality is one of the form maxℓ Eℓ (h) ≥ 0,

where ∀ℓ,Eℓ is a linear expression.
In this paper, for any variable sets X ,Y ⊆ V , we write h(XY )

as a shorthand for h(X ∪ Y ), and define the conditional entropy
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Database Theory Information Theory

P ⊆ DV

A relation P over a set of n variables V , each of which has

domain D

h ∈ Γ∗n
An entropic function h : 2

V → R+ over a set of n variables V .

h is defined by a uniform probability distribution p over P .

P = S1 × · · · × Sn ⊆ DV

A product relation P (Definition 3.5)

h(X ) =
∑
i ∈X h(i ), forall X ⊆ V

A modular function h ∈ Mn
The set of product relations The set of modular functionsMn

P = P1 ⊗ P2, where P1 ⊆ DV
1
, P2 ⊆ DV

2
, P ⊆ (D1 × D2)

V

A domain product P of two relations P1, P2, all of which are

over the same variable set V (Definition B.1)

h = h1 + h2, where h,h1,h2 ∈ Γ
∗
n

A sum h of two entropic functions h1,h2, all of which are over

n variables

PW
def

= { f1, f2} ⊆ DV , for someW ⊆ V , where

f1
def

= (1, 1, . . . , 1),

f2
def

= (2, . . . , 2︸  ︷︷  ︸
V−W

, 1, . . . , 1︸  ︷︷  ︸
W

),

GivenW ⊆ V , the relation PW has two tuples f1, f2 differing

only in positions V −W . (See Section 3.3)

hW (X )
def

=



0 if X ⊆W

1 otherwise

GivenW ⊆ V , a step function hW .

P = PW1
⊗ PW2

⊗ · · · ⊗ PWm

A normal relation P over variable set V is a domain product of

m (not necessarily distinct) relations PWi forWi ⊆ V
(Another way to phrase Definition 3.5)

h =
∑

W ⊆V
cW hW , where cW ≥ 0

A normal entropy h ∈ Nn is a non-negative weighted sum of

step functions hW

The set of normal relations The set of normal functions Nn ≡

the cone closure of step functions

PW , when |V −W | = 1, becomes a product relation hW , when |V −W | = 1, becomes a modular function

Product relations are a proper subclass of normal relations Modular functions are a proper subclass of normal functions

Mn ⊊ Nn
A group-characterizable relation [6]

P
def

= {(aG1, . . . ,aGn ) | a ∈ G}, where G is a group and

G1, . . . ,Gn are subgroups

An entropic function h ∈ Γ∗n

The set of group-characterizable relations Γ∗n
– Γn − Γ∗n

Polymatroids that are not entropic have no analog in databases

Table 1: Translation between the database world and the information theory world.

to be h(Y |X )
def

= h(XY ) − h(X ). Despite its name, the mapping

Y 7→ h(Y |X ) is not always an entropic function (Appendix B), but

it is always a limit of entropic functions. The submodularity law (9)

can be written using conditional entropies as

h(XY |X ) ≤ h(Y |X ∩ Y ) (10)

We call the term h(Y |X ) simple if |X | ≤ 1. A simple term h(Y |X )
is unconditioned if X = ∅. A conditional linear expression is a linear

expression E of the form E (h) =
∑
X ⊆Y ⊆V dY |X · h(Y |X ), where

dY |X are non-negative coefficients. A conditional linear expression

is said to be simple (respectively, unconditioned) ifdY |X > 0 implies

h(Y |X ) is simple (respectively, unconditioned).

Let I be a class of max-linear inequalities. We say that I is

essentially Shannon if, for every inequality I in I, I holds for every
h ∈ Γ∗n if and only if I holds for every h ∈ Γn . Any essentially

Shannon class is decidable, because Γn is polyhedral.

Theorem 3.9. Consider a max-linear inequality of the following
form, where q > 0, and Eℓ are conditional linear expressions:

q · h(V ) ≤ max

ℓ∈[k]

Eℓ (h) (11)

(i) Suppose that Eℓ is unconditioned, ∀ℓ ∈ [k]; then inequal-
ity (11) holds ∀h ∈ Mn if and only if it holds ∀h ∈ Γn .

(ii) Suppose that Eℓ is simple, ∀ℓ ∈ [k]; then, inequality (11) holds
∀h ∈ Nn if and only if it holds ∀h ∈ Γn .

In particular, the class of inequalities (11), where each Eℓ is simple, is
essentially Shannon and decidable.

The proof of the theorem follows from a technical lemma, which

is of independent interest:

Lemma 3.10. Let h : 2
[n] → R+ be any polymatroid. Then there

exists a normal polymatroid h′ ∈ Nn with the following properties:

(1) h′(X ) ≤ h(X ), forall X ⊆ [n],
(2) h′([n]) = h([n]),
(3) h′({i}) = h({i}), forall i ∈ [n].
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In addition, there exists a modular function h′′ ∈ Mn that satisfies
conditions (1) and (2).

This lemma says that every polymatroid h can be decreased

to become a normal polymatroid h′, while preserving the values

at [n] (all variables) and at all singletons {i}. If we drop the last

condition, then the existence of a modular function h′′ follows
from the modularization lemma [19], which is based on Lovasz’s

monotonization of submodular functions:

h′′(X )
def

=
∑
i ∈X

h({i}|[i − 1])

The proof that one can also satisfy condition (3), by relaxing from a

modular function to a normal one, is non-trivial and given in Sec. 6.

Proof of Theorem 3.9. We prove the second item. Let E (h)
def

=

maxℓ Eℓ (h) − q · h(V ), where each Eℓ has the form

∑
i h(Yi |Xi )

with |Xi | ≤ 1. Let h ∈ Γn , and let h′ ∈ Nn be the normal polyma-

troid in Lemma 3.10. For every ℓ, we have Eℓ (h
′) =
∑
i h
′(XiYi ) −∑

i h
′(Xi ) ≤

∑
i h(XiYi ) −

∑
i h(Xi ) = Eℓ (h), because |Xi | ≤ 1 and

therefore h′(Xi ) = h(Xi ). Since E (h
′) ≥ 0, we obtain q · h(V ) =

q · h′(V ) ≤ maxℓ Eℓ (h
′) ≤ maxℓ Eℓ (h) completing the proof. The

first item of the theorem is proven similarly, and omitted. □

Example 3.11. We illustrate here with an inequality needed later

in Ex. 4.3. Consider h(X1X2X3) ≤ max(E1,E2,E3), where:

E1 = h(X1X2) + h(X2 |X1)

E2 = h(X2X3) + h(X3 |X2)

E3 = h(X1X3) + h(X1 |X3)

(Notice that all three expressions are simple, hence the theorem

applies.) Using Shannon’s submodularity law (10), we infer E1 =

h(X1X2) + h(X2 |X1) ≥ h(X1X2) + h(X2 |X1X3) and, similarly for

E2,E3; therefore,

max(E1,E2,E3) ≥
1

3

[E1 + E2 + E3] ≥
1

3

[
h(X1X2) +h(X2 |X1X3)

+h(X2X3)+h(X3 |X1X2)+h(X1X3)+h(X1 |X2X3)
]
= h(X1X2X3)

4 REDUCING BagCQC-A TO Max-IIP
This section proves that BagCQC-A ≤m Max-IIP, showing half of

the equivalence claimed in Theorem 3.2. We start by associating

to each query containment problem a max-information inequality.

We then prove, two results: the inequality is always a sufficient

condition for containment, and it is also necessary when the con-

taining query is acyclic. From now on, we will use only upper case

to denote variables, both random variables and query variables.

Before we begin, we need to introduce some notations. Fix a

relation P ⊆ DV
and a probability distribution with mass function

p : P → [0, 1]. If X ⊆ V is a set of variables, and φ : Y → V is a

function, then recall that ΠX (P ) and Πφ (P ) denote the standard,
and the generalized projections respectively.WewriteΠX (p) for the
standard X -marginal of p, and write Πφ (p) for the φ-pullback6. The
latter is a probability distribution on Πφ (P ) defined as follows. Start
from the standard marginal Πφ (Y ) (p) on Πφ (Y ) (P ), then apply the

isomorphism Πφ (P ) → Πφ (Y ) (P ) defined as Πφ ( f ) 7→ Πφ (Y ) ( f ),
∀f ∈ P . Finally, if E =

∑
i cih(Yi ) is a linear expression of entropic

6
This is a generalization of the pullback in [22, Sec.4].

terms, where eachYi ⊆ Y , then we denote by E◦φ
def

=
∑
i cih(φ (Yi ))

the result of applying the substitution φ to each term in E.

Example 4.1. Let V = {X1,X2,X3}, P ⊆ DV
, φ (Y1) = X1,φ (Y2) =

φ (Y3) = X2. The generalized projection is Πφ (P ) = {(a,b,b) |

(a,b, c ) ∈ P } ⊆ D {Y1,Y2,Y3 }
. Its tuples are in 1-1 correspondence

with the standard projection Πφ (Y ) (P ) = ΠX1X2
(P ) = {(a,b) |

(a,b, c ) ∈ P }. If p is a distribution on P , then the φ-pullback is

Πφ (p) (Y1Y2Y3 = abb)
def

= p (X1X2 = ab) =
∑
c p (X1X2X3 = abc ).

Notice that we do not need to define the pullback for (a,b, c )
where b , c , because (a,b, c ) < Πφ (P ). Consider now the lin-

ear expression E = 3h(Y1) + 4h(Y2Y3) − 6h(Y3). Then E ◦ φ =
3h(X1) + 4h(X2) − 6h(X2) = 3h(X1) − 2h(X2).

We will introduce now a fundamental expression, ET , that con-
nects query containment to information inequalities; we discuss its

history in Sec. 7. Fix a tree decomposition (T , χ ) of some query Q ,
and recall that T may be a forest. Choose a root node in each con-

nected component, thus giving an orientation of T ’s edges, where
each node t has a unique parent(t ). We associate toT the following

linear expression of entropic terms:

E(T , χ ) (h)
def

=
∑

t ∈nodes(T )

h(χ (t ) |χ (t ) ∩ χ (parent(t ))) (12)

where χ (parent(t )) = ∅ when t is a root node. We abbreviate

E(T , χ ) with ET when χ is clear from the context. Expression (12) is

independent of the choice of the root nodes, because one can check

that ET =
∑
t ∈nodes(T ) h(χ (t )) −

∑
(t1,t2 )∈edges(T ) h(χ (t1) ∩ χ (t2)).

4.1 A Sufficient Condition
Henceforth, let TD(Q ) denote the set of all tree decompositions of

a given query Q .

Theorem 4.2. LetQ1,Q2 be two conjunctive queries,n = |vars(Q1) |.
If the following Max-II inequality holds ∀h ∈ Γ∗n :

h(vars(Q1)) ≤ max

(T , χ )∈TD(Q2 )
max

φ ∈hom(Q2,Q1 )
(ET ◦ φ) (h) (13)

then Q1 ⪯ Q2.

The theorem is inspired by, and is similar to Theorem 3.1 by

Kopparty and Rossman [22], with three differences. First, the result

in [22] applies only to graphs (i.e., databases with a single binary

relation symbol), while our result applies to arbitrary relational

schemas. Second, we do not restrictQ2 to be chordal. Finally, [22] re-

strict h to entropies satisfying the independence constraints defined

by Q1; while this restriction is not needed to prove Theorem 4.2, it

was needed in [22] to prove necessity in a special case (Theorem

3.3 in [22]). We will prove necessity in the next section without

needing this restriction. Our proof is an extension of the proof

in [22], and deferred to Appendix C. The proof of both Theorem 4.2

and 4.4 below use the following notation. Give a node t ∈ nodes(T )
of tree decomposition of Q , we denote by Qt the “subquery at t”,
consisting of all atoms A ∈ atoms(Q ) s.t. vars(A) ⊆ χ (t ). We can

assume w.l.o.g. (Appendix A) that vars(Qt ) = χ (t ). We end this

section with an example, also from [22].

Example 4.3. This example is attributed to Eric Vee in [22]:

Q1 = R (X1,X2) ∧ R (X2,X3) ∧ R (X3,X1) Q2 = R (Y1,Y2) ∧ R (Y1,Y3)
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We show that Q1 ⪯ Q2. Query Q2 is acyclic, and its tree decompo-

sition T is {Y1,Y2} − {Y1,Y3}, therefore:

ET = h(Y1Y2) + h(Y3 |Y1) = h(Y1Y2) + h(Y1Y3) − h(Y1)

There are three homomorphisms φ : Q2 → Q1, hence inequality

(13) becomes:

h(X1X2X3) ≤ max(E1,E2,E3) (14)

where E1,E2,E3 are the linear expressions in Example 3.11, where

we have shown that the inequality holds forall entropic h. The-
orem 4.2 implies Q1 ⪯ Q2. In lieu of a general proof, we prove

the theorem on this particular example. Consider any database

D, let P1 = hom(Q1,D), p1 the uniform probability space on P1,

and h1 its entropy. Since h1 satisfies inequality (14), one of the

three terms on the right is larger than the left, assume w.l.o.g. that

this term corresponds to the homomorphism φ (Y1) = X1, φ (Y2) =
φ (X3) = X2. Thus, h1 (X1X2X3) ≤ h1 (X1X2) + h1 (X2 |X1). Let P2 =

hom(Q2,D). This is a relation with attributesY1,Y2,Y3. We define a

probability distribution p2 on P2 as follows: the marginal p2 (Y1,Y2)
is the same as p1 (X1,X2), and the conditional p2 (Y3 |Y1) is the

same as p1 (X2 |X1). In particular, its entropy h2 satisfies log |P2 | ≥

h2 (Y1Y2Y3) = h2 (Y1Y2) + h2 (Y3 |Y1) = h1 (X1X2) + h1 (X2 |X1) ≥
h1 (X1,X2,X3) = log |P1 | proving Q1 ⪯ Q2.

4.2 A Necessary Condition
Next we prove that inequality (13) is also a necessary condition

for containment Q1 ⪯ Q2, when Q2 is acyclic. Our result answers

positively the conjecture by Kopparty and Rossman [22, Sect.3,

Discussion 1], in the case whenQ2 is acyclic. To prove the theorem,

we consider some entropy h on which Eq.(13) fails, and prove that

the support of its probability distribution, P , is a witness for Q1 ⪯̸
Q2. The key idea is to use Chan-Yeung’s group-characterizable

entropic functions [6, 7], and show that P can be chosen to be

“totally uniform”. This allows us to relate |hom(Q2,D) | to the right-
hand-side of Eq.(13). More precisely, we prove the following.

Theorem 4.4. Let Q2 be acyclic. If there exists an entropic function
h such that (13) does not hold, namely,

h(vars(Q1)) > max

(T , χ )∈TD(Q2 )
max

φ ∈hom(Q2,Q1 )
(ET ◦ φ) (h) (15)

then there exists a databaseD such that |hom(Q1,D) | > |hom(Q2,D) |.

Together, Theorems 4.2 and 4.4 prove that BagCQC-A ≤m Max-IIP.
To prove Theorem 4.4, we need some definitions and lemmas,

where we fix a relation P ⊆ DV
, for some set of variables V , let

p : P → [0, 1] be its uniform distribution (p ( f )
def

= 1/|P |, for all
f ∈ P ), and h : 2

V → R+ its entropy.

Definition 4.5. We call P totally uniform if every marginal of p is

also uniform.

For any two sets X ,Y ⊆ V , and any tuple f0 ∈ ΠX (P ), define the

Y -degree of f0 as degP (Y |X = f0)
def

= |{ΠY ( f ) | f ∈ P ,ΠX ( f ) = f0}|.

Lemma 4.6. Let P be totally uniform. Then, for any two sets X ,Y ⊆
V , the following hold:

(1) degP (Y |X = f0) is independent of the choice of f0, and we
denote it by degP (Y |X ).

(2) degP (Y |X ) = |ΠXY (P ) |/|ΠX (P ) | andh(Y |X ) = log(degP (Y |X )).

Proof. Item 1 follows from the fact that the X -marginal of p is

uniform and, therefore, p (X = f0) = deg(Y |X = f0)/|ΠXY (P ) | is
independent of f0. For item 2, |ΠXY (P ) | =

∑
f0∈ΠX (P ) degP (Y |X =

f0) = |ΠX (P ) |·degP (Y |X ), andh(Y |X ) = h(XY )−h(X ) = log |ΠXY (P ) |
− log |ΠX (P ) | = log(degP (Y |X )). □

Lemma 4.7. If P1 ⊆ DX , P2 ⊆ DY and P2 is totally uniform, then
|P1 Z P2 | ≤ |P1 | · degP2

(Y |X ∩ Y ).

Proof. |P1 Z P2 | ≤
∑
f ∈P1

degP2

(Y |X ∩ Y = ΠX∩Y ( f )) =
|P1 | degP2

(Y |X ∩ Y ). □

Lemma 4.8. Suppose the Max-II maxi=1,q Ei (h) ≥ 0 fails for some
entropic function h. Then, for every ∆ > 0, there exists a totally
uniform relation P such that its entropy h satisfies maxi=1,q Ei (h) +
∆ < 0. In other words, we can find a totally uniform witness that fails
the inequality with an arbitrary large gap ∆.

Proof. We use the following result on group-characterizable

entropic functions [7]. Fix a group G. For every subgroup G1 ⊆ G,

denote aG1

def

= {ab | b ∈ G1}. An entropic function h ∈ Γ∗n is

called group-characterizable if there exists a groupG and subgroups

G1, . . . ,Gn such that h is the entropy of the uniform probability

distribution on P
def

= {(aG1, . . . ,aGn ) | a ∈ G}. Chan and Yeung [7]

proved that the set of group-characterizable entropic functions is

dense in Γ∗n ; in other words, every h ∈ Γ∗n is the limit of group-

characterizable entropic functions. In particular, if a max-linear

inequality is valid for all group-characterizable entropic functions,

then it is also valid for all entropic functions.

We show that, if maxi Ei (h) ≥ 0 fails, then it fails with a gap

> ∆ on a group-characterizable entropy. Let h0 be any entropic

function witnessing the failure: maxi=1,q Ei (h0) < 0. Choose any

δ > 0 s.t. maxi=1,q Ei (h0)+δ < 0, and define k
def

= ⌈∆/δ⌉ + 1. Since

h
def

= k ·h0 = h0+h0+· · ·+h0 is also entropic andEi (k ·h0) = k ·Ei (h0)
for all i , we have that maxi=1,q Ei (h) + k · δ < 0, and therefore

maxi=1,q Ei (h) + ∆ < 0. By Chan-Yeung’s density result, we can

assume that h is group-characterizable.

Finally, we prove that the set P defining a group-characterizable

entropy is totally uniform. This follows immediately from the fact

that, under the uniform distribution, every tuple (aG1, . . . ,aGn ) ∈
P has probability |G1 ∩ · · · ∩Gn |/|G |, and the marginal probability

of any tuple (aGi1 , . . . ,aGik ) ∈ Πi1 · · ·ik (P ) has probability |Gi1 ∩

· · · ∩Gik |/|G |. (See Theorem 1 from [6].) □

Proof of Theorem 4.4. Let (T , χ ) be a junction tree (decom-

position) of Q2, which exists because acyclic queries are chordal.

Then,

h(vars(Q1)) > max

(T ′, χ )∈TD(Q2 )
max

φ ∈hom(Q2,Q1 )
(ET ′ ◦ φ) (h) (16)

≥ max

φ ∈hom(Q2,Q1 )
(ET ◦ φ) (h). (17)

Fix ∆ such that ∆ > log |hom(Q2,Q1) |, and let P ⊆ Dvars(Q1 )
be

the totally uniform relation given by Lemma 4.8, whose entropy h
satisfies:

log |P | = h(vars(Q1)) > ∆ + max

φ ∈hom(Q2,Q1 )
(ET ◦ φ) (h) (18)
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P ’s columns are in 1-1 correspondencewith vars(Q1) = {X1, . . . ,Xn }.
We annotate each value with the column name, thus a tuple f =
(c1, c2, . . . , cn ) ∈ P becomes f = ((”X1”, c1), (”X2”, c2), . . . , (”Xn”, cn ));
the annotated P is isomorphic with the original P , hence still totally
uniform. Let D = ΠQ1

(P ) be the database obtained by projecting

the annotated P on the atoms of Q1 (Eq.(8)). We have seen that

|hom(Q1,ΠQ1
(P )) | ≥ |P |. We will show that |P | > |hom(Q2,D) |,

thus P is a witness forQ1 ⪯̸ Q2. To do this we need to upper bound

|hom(Q2,D) |.
Let e : D → Q1 be the homomorphism mapping every value

(”X ”, c ) to the variable X : this is a homomorphism
7
because, by the

definition ofD, Eq.(8), each tuple f0 = Ri ((”X j1 ”, c1), (”X j2 ”, c2), . . .)
in D is the projection of some f ∈ P on the variables vars(A) of
some A ∈ atoms(Q1); then e maps f0 to A. If we view a tuple f ∈ P
as a function vars(Q1) → D, where D is the domain, then e ◦ f is

the identity function on vars(Q1). Fix φ ∈ hom(Q2,Q1) and denote:

homφ (Q2,D)
def

= {д ∈ hom(Q2,D) | e ◦ д = φ}

We have

hom(Q2,D) =
⋃

φ ∈hom(Q2,Q1 )

homφ (Q2,D)

|hom(Q2,D) | =
∑

φ ∈hom(Q2,Q1 )

|homφ (Q2,D) | (19)

We will compute an upper bound for |homφ (Q2,D) |, for each ho-

momorphism φ. We claim:

homφ (Q2,D) ⊆Zt ∈nodes(T ) Πφ |χ (t ) (P ) (20)

whereφ |χ (t ) is the restriction ofφ to χ (t ), and Πφ |χ (t ) (P ) is the gen-

eralized projection (Sec. 3.2), i.e. it is a relation with attributes χ (t ).
The reason for partitioning hom(Q2,D) into subsets homφ (Q2,D)
is so we can apply inequality (20) to each set: notice that the right-

hand-side depends on φ. To prove the claim (20), we first observe:

homφ (Q2,D) ⊆ Zt ∈nodes(T ) homφ |χ (t ) (Qt ,D) (21)

This is a standard property of any join decomposition (not nec-

essarily acyclic): every tuple д ∈ hom(Q2,D) is the join of its

fragments Πχ (t ) (д) ∈ hom(Qt ,D), as long as the fragments cover

all attributes of д. Next we prove the following locality property:

homφ |χ (t ) (Qt ,D) ⊆ Πφ |χ (t ) (P ) (22)

It says that every answer ofQt onD can be found in a single row of

P . Here we use the fact thatQ2 is acyclic therefore there exists some

B ∈ atoms(Q2) s.t. vars(B) = χ (t ). Then, any homomorphism д0 ∈

homφ |χ (t ) (Qt ,D) maps B to some tuple f0 ∈ D. By construction

of D, there exists some A ∈ atoms(Q1) such that f0 ∈ Πvars(A) (P );
in particular, f0 = Πvars(A) ( f ) for some f ∈ P . Thus д0, when

viewed as a tuple over variables χ (t ), can be found in a single row

f ∈ P , more precisely
8 д0 = Πψ ( f ), from some functionψ : χ (t ) →

7
For example, let Q1 = R (X , X ), R (X , Y ), S (X , Y ) and let P have a

single tuple (a, a). First annotate P to ((X , a), (Y , a)). Then RD =

{((X , a), (X , a)), ((X , a), (Y , a)) }, SD = {((X , a), (Y , a)) }. Without the

annotation, these relations would be RD = SD = {(a, a) }, and there is no

homomorphsims to Q , since the tuple in SD cannot be mapped anywhere.

8
We include here the rigorous, but rather tedious argument. Since д0 is a homo-

morphism it “maps” the atom B to the tuple f0 , meaning (д0 ◦ vars(B )) = f0 =
(f ◦ vars(A)) (all are functions [arity(B )] → D , where D is the domain). Since

vars(B ) : [arity(B )] → χ (t ) is surjective, it has a right inverse, which implies

д0 = f ◦ψ for someψ .

vars(Q1). Noticed that we have used in an essential way the fact

that χ (t ) is covered by a single atom B: we will need to remove

this restriction later when we prove Theorem 3.3 (Lemma D.1 in

Appendix D). From here it is immediate to show thatψ = φ |χ (t ) , by
composing with e: φ |χ (t ) = e ◦ д0 = e ◦ f ◦ψ = ψ because e ◦ f is

the identity on vars(Q1). This completes the proof of Eq.(22), which,

together with Eq.(21), proves the claim Eq.(20).

Finally, we will upper bound the size of the join in (20), by apply-

ing repeatedly Lemma 4.7. This is possible because each projection

Πφ |χ (t ) (P ) is totally uniform. Formally, fix an order of nodes(T ),

t1, t2, . . . , tm , such that every child occurs after its parent, and com-

pute the join (20) inductively, applying Lemma 4.7 to each step. If

Si
def

= Zj=1,i Πφ |χ (tj )
(P ), then the lemma implies |Si | = |Si−1 Z

Πφ |χ (ti )
(P ) | ≤ |Si−1 | degΠφ |χ (ti )

(P ) (χ (ti ) |χ (ti ) ∩ χ (parent(ti ))) |,

and this proves:

| Zt ∈nodes(T ) Πφ |χ (t ) (P ) | ≤∏
i=1,m

degΠφ |χ (ti )
(P ) (χ (ti ) |χ (ti ) ∩ χ (parent(ti ))) (23)

Let p′
def

= Πφ |χ (ti )
(p) be the φ |χ (ti )-pullback of p. Its entropy sat-

isfies h′(Z ) = h(φ (Z )) = (h ◦ φ) (Z ) for all Z ⊆ χ (ti ), implying

log degΠφ |χ (ti )
(P ) (Y |Z ) = (h ◦ φ) (Y |Z ). This observation, together

with (20) and (23) allow us to relate hom(Q2,D) to (ET ◦ φ) (h):

log |homφ (Q2,D) |

≤
∑
i=1,m

log degΠφ |χ (ti )
(P ) (χ (ti ) |χ (ti ) ∩ χ (parent(ti )))

=
∑
i=1,m

(h ◦ φ) ((χ (ti ) |χ (ti ) ∩ χ (parent(ti ))) = (ET ◦ φ) (h)

< h(vars(Q1)) − ∆ = log |P | − ∆ By Eq.(18)

Equivalently, |homφ (Q2,D) | < |P |/2∆. We sum up (19):

|hom(Q2,D) | < |hom(Q2,Q1) |
|P |

2
∆
< |P |

completing the proof. □

We remark that inequality (15) is slightly stronger than neces-

sary to prove containment. In the proof, we only need the inequality

to hold for some junction tree. Conversely, Theorem 4.2 can also

be stated such that we only consider non-redundant tree decompo-

sitions, of which junction trees are a special case.

5 REDUCING Max-IIP TO BagCQC-A
The results of the previous section imply BagCQC-A ≤m Max-IIP.
We now prove the converse, Max-IIP ≤m BagCQC-A; in other words
we show that Max-IIP can be reduced to the containment problem

Q1 ⪯ Q2, with acyclic Q2.

Theorem 5.1. Max-IIP ≤m BagCQC-A.

The proof has two parts. First, we convert the Max-IIP in Eq. (7)

into a form that resembles Eq.(13), then we construct Q1 and Q2.
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Example 5.2. We will illustrate the main idea on an IIP rather

than a Max-IIP. Consider9:

0 ≤ h(X1) + 2h(X2) + h(X3) − h(X1X2) − h(X2X3) (24)

We start by rewriting the inequality as:

3h(X1X2X3) ≤ h(X1) + h(X2) + h(X2) + h(X3)

+ h(X1X2X3) + h(X3 |X1X2) + h(X1 |X2X3) (25)

From the right-hand-side we derive two queries Q1,Q2. Query Q1

has 9 variables, X
(ℓ)
i , i = 1, 3, ℓ = 1, 3, while Q2 has 13 variables:

Q1 = Q
(1)
1
∧Q

(2)
1
∧Q

(3)
1

ℓ = 1, 3 : Q
(ℓ)
1
= S1 (X

(ℓ)
1

) ∧ S2 (X
(ℓ)
2

) ∧ S3 (X
(ℓ)
2

) ∧ S4 (X
(ℓ)
3

)

∧ R1 (X
(ℓ)
1
,X

(ℓ)
2
,X

(ℓ)
3

) ∧ R2 (X
(ℓ)
1
,X

(ℓ)
2
,X

(ℓ)
1
,X

(ℓ)
2
,X

(ℓ)
3

)

∧ R3 (X
(ℓ)
2
,X

(ℓ)
3
,X

(ℓ)
1
,X

(ℓ)
2
,X

(ℓ)
3

)

Q2 = S1 (U1) ∧ S2 (U2) ∧ S3 (U3) ∧ S4 (U4)

∧ R1 (Y
0

1
,Y 0

2
,Y 0

3
) ∧ R2 (Y

0

1
,Y 0

2
,Y 1

1
,Y 1

2
,Y 1

3
)

∧ R3 (Y
1

2
,Y 1

3
,Y 2

1
,Y 2

2
,Y 2

3
)

We apply Eq.(13) to Q1,Q2. TD(Q2) has a single tree because Q2 is

acyclic (see the comment at the end of Sec. 4.1).Q1 has 3 connected

components, and Q2 has 5, therefore there are 3
5
homomorphisms

Q2 → Q1. Eq.(13) becomes:

h(X
(1)
1

X
(1)
2

X
(1)
3

X
(2)
1

X
(2)
2

X
(2)
3

X
(3)
1

X
(3)
2

X
(3)
3

) ≤

max

ℓ1, ..., ℓ5=1,3
(h(X

(ℓ1 )
1

) + h(X
(ℓ2 )
2

) + h(X
(ℓ3 )
2

) + h(X
(ℓ4 )
3

)+

h(X
(ℓ5 )
1

X
(ℓ5 )
2

X
(ℓ5 )
3

) +h(X
(ℓ5 )
3
|X

(ℓ5 )
1

X
(ℓ5 )
2

) +h(X
(ℓ5 )
1
|X

(ℓ5 )
2

X
(ℓ5 )
3

))

We will prove in Lemma 5.4 that this Max-II is equivalent to the II
in Eq.(25), completing the reduction. Our example only illustrated

the reduction from IIP; Lemma 5.3 below addresses the challenges

introduced by Max-IIP.

5.1 Max-IIP ≤m Uniform-Max-IIP
Consider a general Max-IIP (Eq.(7)), which we repeat here:

0 ≤ max

ℓ∈[k]

Eℓ (h) (26)

where Eℓ (h)
def

=
∑
X ⊆V cℓ,Xh(X ). In order to reduce it to a query

containment problem, we start by making the expressions Eℓ uni-
form. More precisely, for fixed natural numbers n,p,q, we say that

an expression E is (n,p,q)-uniform if:

E (h) = n · h(U ) +
∑
j=0,p

h(Yj |X j ) − q · h(V ) (27)

where V is the set of all variables,U is a single variable called the

distinguished variable, and X j ,Yj , for j = 0,p, are (not necessarily
distinct) sets of variables, satisfying the following conditions:

Chain condition X0 = ∅ and X j ⊆ Yj−1 ∩ Yj for j = 1,p.
Connectedness U ∈ X j for j = 1,p

9
This IIP holds, but our goal is not to check it, but to reduce it to BagCQC-A.

A Uniform-Max-IIP is a Max-IIP, Eq.(26), such that there exist

numbers n,p,q and a variable U s.t. all expressions Eℓ in Eq.(26)

are (n,p,q)-uniform, and haveU as a distinguished variable. Notice

that n,p,q and U are the same in all expressions Eℓ . Clearly, a
Uniform-Max-IIP is a special case of a Max-IIP. We prove:

Lemma 5.3. Max-IIP ≤m Uniform-Max-IIP. Moreover, the reduc-
tion can be done in polynomial time.

Proof. Every Eℓ in Eq.(26) has the form

∑
X ⊆V cℓ,Xh(X ). By

expanding each positive coefficient as cℓ,X = 1 + 1 + · · · and each

negative coefficient as cℓ,X = −1 − 1 − · · · , we can write:

Eℓ (h) =

mℓ∑
i=1

h(Yi ) −

nℓ∑
j=1

h(X j ) =

mℓ∑
i=1

h(Yi ) +

nℓ∑
j=1

h(V |X j ) − nℓ · h(V )

Define X0

def

= ∅ and add h(V |X0) − h(V ) (= 0) to Eℓ :

Eℓ (h) =

mℓ∑
i=1

h(Yi ) +

nℓ∑
j=0

h(V |X j ) − (nℓ + 1) · h(V ) (28)

The second sum is a chain, becauseX0 = ∅ and everyX j is contained

in V . Let n
def

= maxℓ nℓ . We add n − nℓ terms h(V ) − h(V ) to the

expression Eℓ , resulting in two changes to the expression (28): the

term −(nℓ + 1) · h(V ) is replaced by −(n + 1) · h(V ), and the sum∑
i=1,mℓ

h(Yi ) becomes

∑
i=1,mℓ+n−nℓ

h(Yi ) where the n − nℓ new

terms areYi
def

= V . We combine the two sums

∑
i h(Yi )+

∑
j h(V |X j )

into a single sum by writing h(Yi ) as h(Yi |∅), and thus Eℓ becomes:

Eℓ (h) =

pℓ∑
j=0

h(Yj |X j ) − (n + 1) · h(V ) (29)

Notice that Eq.(29) still satisfies the chain condition: X0 = ∅, and

X j ⊆ Yj−1 ∩ Yj for j = 1,pℓ . Our next step is to enforce the con-

nectedness condition.

LetU be a fresh variable. We will denote by h an entropic func-

tion over the variables V , and by h′ an entropic function over the

variablesUV . For ℓ ∈ [k], denote by E ′
ℓ
the following expression:

E ′ℓ (h
′) = (n + 1) · h′(U ) +

pℓ∑
j=0

h′(UYj |UX j ) − (n + 1) · h′(UV ) (30)

We claim: ∀h, 0 ≤ maxℓ Eℓ (h) iff ∀h
′, 0 ≤ maxℓ E

′
ℓ
(h′). For the⇐

direction, assume ∀h′ : 0 ≤ maxℓ E
′
ℓ
(h′) and let h be any entropic

function over the variablesV . We extended it to an entropic function

h′ over the variables UV , by defining U to be a constant random

variable. In other words, h′(X )
def

= h(X − {U }) forall X ⊆ UV ; in
particular h′(U ) = 0. Then E ′

ℓ
(h′) = Eℓ (h), forall ℓ ∈ [k], and

the claim follows from 0 ≤ maxℓ E
′
ℓ
(h′) = maxℓ Eℓ (h). For the⇒

direction, let h′ be any entropic function over the variablesUV , and

denote h(−)
def

= h′(−|U ) the conditional entropy. The conditional
entropy h is not necessarily entropic, but it is the limit of entropic

functions (see Appendix B), hence it satisfies 0 ≤ maxℓ Eℓ (h). Then,

E ′
ℓ
(h′) =

∑pℓ
j=0

h′(UYj |UX j )− (n+1) ·h′(UV |U ) =
∑pℓ
j=0

h(Yj |X j )−

(n+1) ·h(V ) = Eℓ (h), and the claim follows from 0 ≤ maxℓ Eℓ (h) =
maxℓ E

′
ℓ
(h′).
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To enforce X0 = ∅ in the chain condition, we write E ′
ℓ
as:

E ′ℓ (h
′) = n · h′(U ) +

(
h′(U ) +

pℓ∑
j=0

h′(UYj |UX j )
)
− (n + 1) · h′(UV )

Finally, we need to ensure that all numbers pℓ are equal, and, for

that, we set p
def

= 1 + maxℓ pℓ and add p − pℓ − 1 terms h′(U |U )
to E ′

ℓ
(h′). Comparing it with Eq.(27), the new E ′

ℓ
is an (n,p,n + 1)-

uniform expression, proving the lemma. □

5.2 A Technical Lemma
The Uniform-Max-IIP has some arbitraryq, while Eq.(13) hasq = 1.

We prove here a technical lemma showing that an (n,p,q)-uniform
Max-IIP is equivalent to some Uniform-Max-IIP with q = 1. We

do this by introducing new random variables.

Let V be a set of variables. For each variable Z ∈ V , we create q

fresh copies Z (ℓ)
, ℓ = 1 . . .q, called adornments of Z . If X is a set

of variables, then X (ℓ)
is the set where all variables are adorned

with ℓ. We will denote by h an entropic function over the original

variables V , and by h′ an entropic function over the adorned vari-

ables V (1) · · ·V (q )
. If F =

∑
i cih

′(X
(ℓi )
i ) is a linear expression over

adorned variables, then its erasure, ϵ (F )
def

=
∑
i cih(Xi ), is defined

as the expression obtained by erasing every adornment; we also say

that F is an adornment of ϵ (F ). Conversely, if E =
∑
i cih(Xi ) is an

expression over the original variables, then a constant adornment

is an expression of the form E (ℓ) =
∑
i cih

′(X
(ℓ)
i ), i.e. all terms are

adorned by the same ℓ; clearly ϵ (E (ℓ) ) = E.

Lemma 5.4. Let E1, . . . ,Ek be linear expressions over variables V ,
and F1, . . . , Fm be linear expressions over adorned variablesV (1) , . . . ,V (q )

for some q ≥ 1, such that (a) each Fj is an adornment of some Ei ,
i.e. ϵ (Fj ) = Ei , and (b) all constant adornments are included, i.e for

every Ei and every ℓ there exists Fj = E
(ℓ)
i . Then the following two

statements are equivalent:

∀h : q · h(V ) ≤ max

i ∈[k]

Ei (h) (31)

∀h′ : h′(V (1) · · ·V (q ) ) ≤ max

j=1,m
Fj (h

′) (32)

Proof. (31)⇒ (32) follows from:

h′(V (1) · · ·V (q ) ) ≤
∑
ℓ=1,q

h′(V (ℓ) ) ≤ q max

ℓ=1,q
h′(V (ℓ) )

≤ max

ℓ=1,q
max

i ∈[k]

E
(ℓ)
i (h′) Eq.(31) applied to V (ℓ)

≤ max

j=1,m
Fj (h

′) Assumption (b)

(32) ⇒ (31) Let h be an entropic function over variables V . That
means that there exists a joint distribution over random variablesV
whose entropy is given by h. For each random variable Z , create q

i.i.d. copies Z (ℓ)
, for ℓ = 1,q, and denote by h′ the entropy function

of the new random variables V (1) , . . . ,V (q )
. Thus, for any adorned

set X (ℓ)
, h′(X (ℓ) ) = h(X ), and, if Ei = ϵ (Fj ), then Ei (h) = Fj (h

′).
The claim follows from:

q · h(V ) = h′(V (1) ) + · · · + h′(V (q ) ) By h(V ) = h′(V (ℓ) ), forall ℓ

= h′(V (1) · · ·V (q ) ) Independence

≤ max

j=1,m
Fj (h

′) Eq.(32)

≤ max

i ∈[k]

Ei (h) Assumption (a)

□

5.3 Uniform-Max-IIP ≤m BagCQC-A
Given an (n,p,q)-uniform Max-IIP problem (31),q·h(V ) ≤ maxi Ei ,
where

Ei = n · h(U ) +
∑
j=0,p

h(Yi j |Xi j ), (33)

wewill construct two queriesQ1,Q2 such thatQ1 ⪯ Q2 iff condition

(32) holds, which we have proven is equivalent to (31). Recall that

the distinguished variable U occurs everywhere, except in the sets

Xi0 which, by definition, are ∅. We first substitute everywhere the

single variableU with two variables,U = U1U2. This does not affect

the Max-IIP, since we can simply treat U1U2 as a joint variable.

The queryQ2 will have one atom for each term of the expression

Ei in (33), which is possible because, by uniformity, all expressions

Ei have the same number of terms. In particular, there will be an

atom Rj corresponding to the termh(Yi j |Xi j ), however, the number

of variables Yi j depends on i . For that reason, we consider their
disjoint union, as follows. For each variable V ∈ V and each i, j , let
V i j

be a fresh copy ofV ; ifW = {V1,V2, . . .} is a set, then we denote

byW i j def

= {V
i j
1
,V

i j
2
, . . .}. We define Ỹj

def

=
⋃
i ∈[k]

Y
i j
i j , for j = 0,p,

and X̃ j
def

=
⋃
i ∈[k]

X
i (j−1)
i j , for j = 1,p, and X̃0

def

= ∅. We notice that

|Ỹj | =
∑
i |Yi j |, the sets Ỹ0, . . . , Ỹp are disjoint, and, since the chain

condition Xi j ⊆ Yi (j−1) holds in (33), we also have X̃ j ⊆ Ỹj−1; of

course, X̃ j is disjoint from Ỹj . We define Q2 as:

Q2 = S1 (Ũ1) ∧ · · · ∧ Sn (Ũn ) ∧ R0 (X̃0Ỹ0Z̃ ) ∧ · · · ∧ Rp (X̃pỸpZ̃ )

All relation symbols are distinct. The relations S1, . . . , Sn are bi-

nary, and Ũ1, . . . , Ũn are disjoint sets of two fresh variables each,

and Z̃ is a fresh set of k variables. Thus, each relation Rj has arity
(
∑
i ( |Xi j | + |Yi j |)) + k . All variables occurring in Rj are distinct

(since X̃ j ⊆ Ỹj−1, which is disjoint from Ỹj ) and they occur in the

order that corresponds to the order X1j . . .Xk jY1j . . .Yk j of the

original variables, followed by the k variables Z̃ . Any two consecu-

tive atoms Rj−1,Rj share the variables X̃ j and Z̃ , and therefore the

tree decomposition of Q2 consists of n isolated components plus a

chain:

T : {Ũ1} . . . {Ũn } (34)

{X̃0, Ỹ0, Z̃ }
X̃1,Z̃
− {X̃1, Ỹ1, Z̃ }

X̃2,Z̃
− {X̃2Ỹ2, Z̃ } · · ·

X̃p,Z̃
− {X̃p , Ỹp , Z̃ }

The query Q1 consists of q isomorphic sub-queries:

Q1 = Q
(1)
1
∧ · · · ∧Q

(q )
1

which have disjoint sets of variables. We describe now the subquery

Q
(ℓ)
1

. Its variables consist of adorned copiesV (ℓ)
of the variablesV ,

and the query is in turn a conjunction of k sub-queries (which are

no longer disjoint):

Q
(ℓ)
1
= Q

(ℓ)
1,1 ∧ · · · ∧Q

(ℓ)
1,k
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To define its atoms, we need some notations. Recall that the dis-

tinguished variables U1U2 occur everywhere (except Xi0 which is

empty). Then, for every i , we define the the following sequences of

variables:

X̂
(ℓ)
i j = U

(ℓ)
1
· · ·U

(ℓ)
1︸         ︷︷         ︸

|X1j |

· · · X
(ℓ)
i j︸︷︷︸
|Xi j |

· · ·U
(ℓ)
1
· · ·U

(ℓ)
1︸         ︷︷         ︸

|Xk j |

Ŷ
(ℓ)
i j = U

(ℓ)
1
· · ·U

(ℓ)
1︸         ︷︷         ︸

|Y1j |

· · · Y
(ℓ)
i j︸︷︷︸
|Yi j |

· · ·U
(ℓ)
1
· · ·U

(ℓ)
1︸         ︷︷         ︸

|Yk j |

Ẑ
(ℓ)
i = U

(ℓ)
1︸︷︷︸
1

· · · U
(ℓ)
1︸︷︷︸
i−1

U
(ℓ)
2︸︷︷︸
i

U
(ℓ)
1︸︷︷︸
i+1

· · · U
(ℓ)
1︸︷︷︸
k

That is, the length of X̂
(ℓ)
i j is the same as that of the concatenation

X1jX2j . . .Xk j , and has the distinguished variablesU
(ℓ)
1

on all posi-

tions except the positions of Xi j , where it has the adornment X
(ℓ)
i j .

(As a special case, X̂
(ℓ)
i0 = ∅.) Note that the length of X̂

(ℓ)
i j is inde-

pendent of i , and |X̂
(ℓ)
i j | = |X̃ j | (the variables fromQ2). Similarly for

Ŷ
(ℓ)
i j . The sequence Ẑi has length k and contains U

(ℓ)
1

everywhere

except for position i where it has U
(ℓ)
2

. Then, query Q
(ℓ)
1,i is:

Q
(ℓ)
1,i = S1 (U

(ℓ) ) ∧ · · · ∧ Sn (U
(ℓ) )∧

R0 (X̂
(ℓ)
i0 Ŷ

(ℓ)
i0 Ẑ

(ℓ)
i ) ∧ R1 (X̂

(ℓ)
i1 Ŷ

(ℓ)
i1 Ẑ

(ℓ)
i ) ∧ · · · ∧ Rp (X̂

(ℓ)
ip Ŷ

(ℓ)
ip Ẑ

(ℓ)
i )

Notice that the variables of the atomRj are justY
(ℓ)
i j (which contains

U
(ℓ)
1
,U

(ℓ)
2

, andX
(ℓ)
i j ), and some variables are repeated several times.

We start by noticing that every homomorphism φ : Q2 → Q1

must map all atoms in the chain R0 · · ·Rp to the same sub-query

Q
(ℓ)
1

: this is because the chain is connected and, if one atom is

mapped to an atom whose variables are adorned with ℓ, then all

atoms must be mapped to atoms adorned similarly with ℓ. We claim

something stronger, that φ maps the entire chain to the same sub-

queryQ
(ℓ)
1,i . This is enforced by the variables Z̃ ofQ2: if one atoms is

mapped to the sub-queryQ
(ℓ)
1,i , thenφ (Z̃i ) = U

(ℓ)
2

andφ (Z̃i′ ) = U
(ℓ)
1

forall i ′ , i , implying that all other atoms are mapped to the same

sub-query.

By Theorems 4.2 and 4.4, we have:

Q1 ⪯Q2 iff ∀h′,h′(vars(Q1)) ≤ max

φ ∈hom(Q2,Q1 )
(ET ◦ φ) (h

′) (35)

We claim that the following are equivalent:

∀h′,h′(vars(Q1)) ≤ max

φ ∈hom(Q2,Q1 )
(ET ◦ φ) (h

′) iff

∀h,q · h(V ) ≤max

i
Ei (h), (36)

where Ei is given by (33). The claim implies the theorem:Q1 ⪯ Q2 iff

∀h,h(V ) ≤ maxi Ei (h). To prove the claim, we will use Lemma 5.4,

and, for that, we need to verify the conditions of the lemma. We

start by applying the definition of ET (Eq. (12)), where T is the tree

decomposition of Q2, Eq.(34), and obtain (recall that X̃0 = ∅):

ET = h(Ũ1) + · · · + h(Ũn ) + h(Ỹ0Z̃ ) +
∑
j=1,p

h(X̃ j Ỹj Z̃ |X̃ j Z̃ )

Consider a homomorphism φ ∈ hom(Q2,Q1). By the previous

discussion, it maps all atoms in the chain to the same subquery

Q
(ℓ)
1,i for some ℓ and i . We illustrate it by showing Q2 and φ (Q2)

next to each other:

Q2 = S1 (Ũ1) ∧ · · · ∧ Sn (Ũn ) ∧ R0 (X̃0Ỹ0Z̃ ) ∧ · · · ∧ Rp (X̃pỸpZ̃ )

φ (Q2) = S1 (U
(ℓ1 ) ) ∧ · · · ∧ Sn (U

(ℓn ) )

∧ R0 (X̂
(ℓ)
i0 Ŷ

(ℓ)
i0 Ẑ

(ℓ)
i ) ∧ · · · ∧ Rp (X̂

(ℓ)
ip Ŷ

(ℓ)
ip Ẑ

(ℓ)
i )

Next, we apply the substitution φ to ET to obtain ET ◦ φ. Since
each of the original expressions Ei in Eq.(33) was (n,p,q)-uniform,

U occurs in every set Yi j and Xi j (except for Xi0). By construction,

Ẑ
(ℓ)
i is a sequence consisting only of the variables U

(ℓ)
1

and U
(ℓ)
2

,

thus the following set inclusions hold (except for Ẑ
(ℓ)
i ⊆ X̂

(ℓ)
i0 ):

Ẑ
(ℓ)
i ⊆ X̂

(ℓ)
i j ⊆ Ŷ

(ℓ)
i j , and we obtain:

ET ◦ φ = h(U
(ℓ1 ) ) + · · · + h(U (ℓn ) ) + h(Ŷ

(ℓ)
i0 Ẑ

(ℓ)
i )+∑

j=1,p
h(X̂

(ℓ)
i j Ŷ

(ℓ)
i j Ẑ

(ℓ)
i |X̂

(ℓ)
i j Ẑ

(ℓ)
i )

= h(U (ℓ1 ) ) + · · · + h(U (ℓn ) ) + h(Y
(ℓ)
i0 ) +

∑
j=1,p

h(Y
(ℓ)
i j |X

(ℓ)
i j )

Clearly its erasure is precisely ϵ (ET ◦ φ) = Ei from Eq. (33) (recall

that Xi0 = ∅), proving condition (a) of the lemma. Conversely, for

each adornment E
(ℓ)
i there exists a homomorphism φ : Q2 → Q1

such that ET ◦ φ = E
(ℓ)
i , which proves condition (b), completing

the proof of Th. 5.1.

6 PROOF OF LEMMA 3.10
Recall that we blurred the distinction between a set of n variables

V and the set [n]. In this section we will use only [n]. Let L
def

= 2
[n]

be the lattice of subsets of [n]. Given a function h : L → R+, we
define its dual д : L → R+ as its Möbious inverse [18]:

∀X : h(X ) =
∑

Y :Y ⊇X
д(Y ), д(X ) =

∑
Y :Y ⊇X

(−1) |Y−X |h(Y ) (37)

For any set S ⊆ L we define:

д(S )
def

=
∑
X ∈S

д(X ) (38)

Notice that д(L) = h(∅).

Fact 6.1. Let h : L → R+ be any function. Then h is a polymatroid

(i.e. h ∈ Nn ) iff its Möbius inverse д satisfies: д(L) = 0, д([n]) ≥ 0

and д(X ) ≤ 0 forall X , [n].

Proof. First we check that the Möbius inverse of a step function

hW satisfies the required properties, forW ⊊ V :

hW (X ) =



0 if X ⊆W

1 otherwise

дW (X ) =




1 if X = V

−1 if X =W

0 otherwise

The converse follows by observing that every д with the required

properties is a non-negative linear combination of the дW ’s: д =∑
W ⊊[n]

(−д(W )) · дW , therefore h =
∑
W ⊊[n]

(−д(W )) · hW . □
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Fact 6.1 can be used, for example, to show that the parity function

h (Example 3.8) is not normal. Indeed, it’s Möbius inverse given

by Eq.(37) at ∅ is д(∅) = 1, which implies that h is not normal.

Fact. 6.1 will be our key ingredient to prove Lemma 3.10: in order

to construct the required normal polymatroid h′, we will instead
construct its dual д′ and check that it satisfies the conditions in

Fact. 6.1. We also need a technical lemma:

Lemma 6.2. Let a1, . . . ,an ≥ 0 be n non-negative numbers. Define:

h(X ) =max{ai | i ∈ X } (39)

Then h is a normal polymatroid.

Proof. Assume w.l.o.g. a1 ≤ a2 ≤ · · · ≤ an and define δi =

ai+1 − ai for i = 0, 1, . . . ,n − 1, where a0 = 0. Define д : 2
[n] → R:

д(X )
def

=




an if X = [n]

−δi if X = [i], (= {1, 2, . . . , i}), for some i < n

0 otherwise

We check that д is the dual of h by verifying:

h(X ) =a
max(X ) = −δmax(X ) − δmax(X )+1

− · · · − δn−1 + an =
∑

Y :X ⊆Y
д(Y )

We assumed above that max(∅) = 0. □

Finally, we need to recall the definitions of the conditional entropy
and the conditional mutual information:

h(i |X ) =h({i} ∪ X ) − h(X )

I (i; j |X ) =h({i} ∪ X ) + h({j} ∪ Y ) − h(X ) − h({i, j} ∪ X ) (40)

and observe that, denoting [X ,Y ]

def

= {Z | X ⊆ Z ⊆ Y }, we have:

h(X ) =д([X , [n]]) (41)

h(i |X ) = − д([X , [n] − {i}]) (42)

I (i; j |X ) = − д([X , [n] − {i, j}]) (43)

We can now prove Lemma 3.10, and will proceed by induction

on n. Split the lattice L = 2
[n]

into two disjoint sets L = L1 ∪ L2

where:

L1 =[∅, [n − 1]] L2 = [{n}, [n]]

In other words, L1 contains all subsets without n, while L2 contains

all subsets that include n. Then:

• д(L2) = h({n}). It follows д(L1) = −h({n}).
• Subtract h({n}) from д([n]) and add it to д([n − 1]), and call

д1,д2 the new functions on L1,L2 respectively. Formally:

д1 (X ) =



д([n − 1]) + h({n}) if X = [n − 1]

д(X ) if X ⊂ [n − 1]

д2 (X ∪ {n}) =



д([n]) − h({n}) if X = [n − 1]

д(X ∪ {n}) if X ⊂ [n − 1]

Notice that д1 (L1) = 0 and д2 (L2) = 0.

• One can check that the dual
10

of д2 is the conditional poly-
matroid

11
, defined as h2 : L2 → R:

∀X ∈ L2 : h2 (X )
def

= h(X |{n})

• We apply induction to h2 and obtain a normal polymatroid

h′
2

: L2 → R satisfying (1), (2), (3):

h′
2
(X ) ≤ h2 (X ) =h(X |{n})

h′
2
([n]) = h2 ([n]) =h([n]|{n})

h′
2
({i,n}) = h2 ({i,n}) =h({i}|{n}) since {i,n} is an atom in L2

Notice that h′
2
({n}) = 0, since {n} is the bottom of L2. Let д

′
2

be the dual of h′
2
, thus д′

2
(X ) ≤ 0 forall X , [n] (because h′

2

is normal).

• One can check that the dual of д1 is the function
12

h1 (X )
def

= I (X ; {n})

This is no longer a polymatroid. Instead, herewe use Lemma 6.2

and define the normal polymatroid h′
1

: L1 → R:

h′
1
(X )

def

= max

i ∈X
h1 ({i}) = max

i ∈X
I ({i}; {n})

Letд′
1

: L1 → R be its dual. Thus,д
′
1
(X ) ≤ 0 forallX , [n−1],

and д′
1
([n − 1]) = maxi ∈[n−1]

I ({i}; {n}).
• We combine д′

1
,д′

2
into a single function д′ : L(= L1 ∪L2) →

R as follows.д′ agrees withд′
1
on L1 and withд

′
2
on L2 except

that we subtract a mass of h({n}) from д′
1
([n − 1]) and add it

to д′
2
([n]). Formally:

д′(X )
def

=




д′
2
([n]) + h({n}) if X = [n]

д′
1
([n − 1]) − h({n}) if X = [n − 1]

д′
1
(X ) if X ∈ L1,X , [n − 1]

д′
2
(X ) if X ∈ L2,X , [n]

• We claim that for every X , [n], д′(X ) ≤ 0. This is ob-

vious for all cases above (since д′
1
,д′

2
are normal), except

when X = [n − 1]. Here we check: д′([n − 1]) = д′
1
([n −

1]) − h({n}) = maxi ∈[n−1]
I ({i}; {n}) − h({n}) ≤ 0 because

I ({i}; {n}) ≤ h({n}).
• Denote h′ : L(= L1 ∪ L2) → R the dual of д′; we have

established that h′ is a normal polymatroid. The following

hold:

∀x ∈ L1 : h′(X ) =
∑

Y :X ⊆Y ⊆[n]

д′(Y )

=
∑

Y :X ⊆Y ⊆[n−1]

д′(Y ) +
∑

Y :X ⊆Y ⊆[n−1]

д′(Y ∪ {n})

10
Strictly speaking we cannot talk about the dual of д2 because we defined the dual

only for functions д : 2
[m] → R. However, with some abuse, we identify the lattice

L2 with 2
[n−1]

, and in that sense the dual of д2 : L2 → R is a function h2 : L2 → R.
11
Proof: h2 (X ) =

∑
Y :X⊆Y ⊆[n]

д2 (Y ) =
∑
Y :X⊆Y ⊆[n]

д (Y ) − h ( {n }) = h (X ) −
h ( {n }) = h (X | {n }).
12
Proof:

h1 (X ) =
∑

Y :X⊆Y ⊆[n−1]

д1 (Y ) = h ( {n }) +
∑

Y :X⊆Y ⊆[n−1]

д (Y )

=h ( {n }) +
∑

Y :X⊆Y ⊆[n]

д (Y ) −
∑

Y :X⊆Y ⊆[n−1]

д (Y ∪ {n })

=h ( {n }) + h (X ) − h (X ∪ {n }) = I (X ; {n })
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=
∑

Y :X ⊆Y ⊆[n−1]

д′
1
(Y ) +

∑
Y :X ⊆Y ⊆[n−1]

д′
2
(Y ∪ {n})

=h′
1
(X ) + h′

2
(X ∪ {n}) (44)

∀X ∈ L2 : h′(X ) =
∑

Y :X ⊆Y ⊆[n]

д′(Y )

=h({n}) +
∑

Y :X ⊆Y ⊆[n]

д′
2
(Y ) = h({n}) + h′

2
(X )

(45)

• We check that h′ satisfies properties (1), (2), (3).

∀X ∈ L1 : h′(X ) =h′
1
(X ) + h′

2
(X ∪ {n}) by Eq.(44)

≤h1 (X ) + h2 (X ∪ {n})

=I (X ; {n}) + h(X |{n}) = h(X )

∀X ∈ L2 : h′(X ) =h({n}) + h′
2
(X ) by Eq.(45)

≤h({n}) + h2 (X )

=h({n}) + h(X |{n}) = h(X )

h′([n]) =h({n}) + h′
2
([n]) by Eq.(45)

=h({n}) + h2 ([n])

=h({n}) + h([n]|{n}) = h([n])

∀i ∈ [n − 1] : h′({i}) =h′
1
({i}) + h′

2
({i,n}) by Eq.(44)

=h1 ({i}) + h2 ({i,n})

=I ({i}; {n}) + h({i}|{n}) = h({i})

h′({n}) =h({n}) + h′
2
({n}) = h({n}) + 0 by Eq.(45)

This completes the proof. We illustrate with an extensive exam-

ple in the full version of the paper [1].

7 CONCLUSION AND DISCUSSION
In this paper we established a fundamental connection between

information inequalities and query containment under bag seman-

tics. In particular, we proved that the max-information-inequality

problem is many-one equivalent to the query containment where

the containing query is acyclic. It is open whether these problems

are decidable. Our results help in the sense that, progress on one of

these open questions will immediately carry over to the other. We

end with a discussion of our results and a list of open problems.

Beyond Chordal Our results showed that the query contain-

ment problem Q1 ⪯ Q2 is equivalent to a Max-IIP when Q2 is

either acyclic, or when it is chordal and has a simple junction tree.

In all other cases, condition (13) is only sufficient, and we do not

know if it is also necessary.

Repeated Variables, Unbounded Arities Our reduction form

Max-IIP to query containment constructs two queriesQ1,Q2 where

the atoms have repeated variables, and the arities of some of the

relation names depend on the size of the Max-IIP. We leave open

the question whether the reduction can be strengthened to atoms

without repeated variables, and/or queries over vocabularies of

bounded arity.

Max-Linear Information Inequalities Linear information in-

equalities have been studied extensively in the literature, while

Max-linear ones much less. Our result proves the equivalence of

BagCQC-A and Max-IIP, and this raises the question of whether IIP

and Max-IIP are different. In the full version of the paper [1], we

provide some evidence suggesting that they might be the same.

The remarkable formula ET (Eq.(12)) The first to introduce
the expression ET was Tony Lee [23]. This early paper established

several fundamental connections between the entropy h of the

uniform distribution of a relation P , and constraints on P : it showed
that an FD X → Y holds iff h(Y |X ) = 0, that an MVD X ↠ Y holds

iff I (Y ;V − (X ∪Y ) |X ) = 0, and, finally, that P admits an acyclic join

decomposition given by a tree T iff ET (h) = h(V ). It also proved

that ET is equivalent to an inclusion-exclusion expression, which,

in our notation becomes:

Et =
∑

S ⊆nodes(T )

(−1) |S |+1CC (T ∩ S ) · h(χ (S )) (46)

where χ (S )
def

=
⋂
t ∈S χ (t ), and CC (T ∩ S ) denotes the number of

connected components of the subgraph ofT consisting of the nodes

{t | t ∈ nodes(T ), χ (t ) ∩
⋃
t ′∈S χ (t

′) , ∅}.
Discussion of Kopparty and Rossman [22]We now re-state

the results in [22] using the notions introduced in this paper in order

to describe their connection. Theorem 3.1 in [22] essentially states

that Eq.(13) is sufficient for containment, thus it is a special case of

our Theorem 4.2 for graph queries; they use an inclusion-exclusion

formula for ET , similar to (46), but given for chordal queries only.

Theorem 3.2 in [22] essentially states that, if Eq.(13) fails on a

normal polymatroid, then there exists a database D witnessing

Q1 ⪯̸ Q2, thus it is a special case of our Lemma D.1 for the case

when the queries are graphs; they use a different expression for ET ,
based on the Möbious inversion of h. This inversion is precisely the

I-measure of h, as we explain in Appendix B. Finally, Theorem 3.3

in [22] proves essentially that Eq.(13) is necessary and sufficient

when Q1 is series-parallel and Q2 is chordal. This differs from our

Theorem 3.3 in that it imposes more restrictions on Q1 and fewer

on Q2. The proof of our Theorem 3.3 relies on the fact that any

counterexample of Eq.(13) is a normal entropic function, but this

does not hold in the setting of Theorem 3.3 [22]; however, the

only exception is given by the parity function (Appendix B), a case

that [22] handles directly.

ACKNOWLEDGMENTS
Suciuwas partially supported byNSF grants III-1703281, III-1614738,

IIS-1907997, AitF-1535565. Kolaitis was partially supported by NSF

Grant IIS-1814152.

REFERENCES
[1] Mahmoud Abo Khamis, Phokion G. Kolaitis, Hung Q. Ngo, and Dan Suciu. 2019.

Bag Query Containment and Information Theory. CoRR abs/1906.09727 (2019).

[2] Foto N. Afrati, Matthew Damigos, and Manolis Gergatsoulis. 2010. Query con-

tainment under bag and bag-set semantics. Inf. Process. Lett. 110, 10 (2010),

360–369.

[3] Marcelo Arenas and Leonid Libkin. 2005. An information-theoretic approach to

normal forms for relational and XML data. J. ACM 52, 2 (2005), 246–283.

[4] Albert Atserias, Martin Grohe, and Dániel Marx. 2013. Size Bounds and Query

Plans for Relational Joins. SIAM J. Comput. 42, 4 (2013), 1737–1767.
[5] Terence Chan. 2011. Recent Progresses in Characterising Information Inequalities.

Entropy 13, 2 (2011), 379–401.

[6] Terence H. Chan. 2007. Group characterizable entropy functions. In IEEE Inter-
national Symposium on Information Theory, ISIT 2007, Nice, France, June 24-29,
2007. IEEE, 506–510.

[7] Terence H. Chan and Raymond W. Yeung. 2002. On a relation between informa-

tion inequalities and group theory. IEEE Transactions on Information Theory 48,

7 (2002), 1992–1995.

Session 2: Containment and Rewritability  PODS ’20, June 14–19, 2020, Portland, OR, USA

108



[8] Ashok K. Chandra and Philip M. Merlin. 1977. Optimal Implementation of

Conjunctive Queries in Relational Data Bases. In ACM STOC. 77–90.
[9] Surajit Chaudhuri and Moshe Y. Vardi. 1993. Optimization of Real Conjunctive

Queries. In ACM PODS, 1993. 59–70.
[10] Ronald Fagin. 1982. Horn clauses and database dependencies. J. ACM 29, 4 (1982),

952–985.

[11] Ronald Fagin. 1983. Degrees of Acyclicity for Hypergraphs and Relational Data-

base Schemes. J. ACM 30, 3 (1983), 514–550.

[12] Dan Geiger and Judea Pearl. 1993. Logical and Algorithmic Properties of Condi-

tional Independence and Graphical Models. The Annals of Statistics 21, 4 (1993),
2001–2021.

[13] Arley Gomez, Carolina Mejía Corredor, and J. Andres Montoya. 2017. Defining

the almost-entropic regions by algebraic inequalities. IJICoT 4, 1 (2017), 1–18.

[14] Georg Gottlob, Stephanie Tien Lee, Gregory Valiant, and Paul Valiant. 2012. Size

and Treewidth Bounds for Conjunctive Queries. J. ACM 59, 3 (2012), 16:1–16:35.

[15] Martin Grohe and Dániel Marx. 2014. Constraint Solving via Fractional Edge

Covers. ACM Trans. Algorithms 11, 1 (2014), 4:1–4:20.
[16] Yannis E. Ioannidis and Raghu Ramakrishnan. 1995. Containment of Conjunctive

Queries: Beyond Relations as Sets. ACM Trans. Database Syst. 20, 3 (1995), 288–
324.

[17] T. S. Jayram, Phokion G. Kolaitis, and Erik Vee. 2006. The containment problem

for REAL conjunctive queries with inequalities. In ACM PODS, 2006. 80–89.
[18] Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. 2016. Computing Join

Queries with Functional Dependencies. In ACM PODS, 2016. 327–342.
[19] Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. 2017. What Do Shannon-

type Inequalities, Submodular Width, and Disjunctive Datalog Have to Do with

One Another?. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, PODS 2017. 429–444.

[20] Anthony C. Klug. 1988. On conjunctive queries containing inequalities. J. ACM
35, 1 (1988), 146–160.

[21] George Konstantinidis and Fabio Mogavero. 2019. Attacking Diophantus: Solving

a Special Case of Bag Containment. In ACM PODS, 2019.
[22] Swastik Kopparty and Benjamin Rossman. 2011. The homomorphism domi-

nation exponent. European Journal of Combinatorics 32, 7 (2011), 1097 – 1114.

Homomorphisms and Limits.

[23] Tony T. Lee. 1987. An Information-Theoretic Analysis of Relational Databases -

Part I: Data Dependencies and Information Metric. IEEE Trans. Software Eng. 13,
10 (1987), 1049–1061.

[24] Tony T. Lee. 1987. An Information-Theoretic Analysis of Relational Databases -

Part II: Information Structures of Database Schemas. IEEE Trans. Software Eng.
13, 10 (1987), 1061–1072.

[25] Frantisek Matús. 2007. Infinitely Many Information Inequalities. In IEEE Interna-
tional Symposium on Information Theory, ISIT 2007, Nice, France, June 24-29, 2007.
41–44.

[26] Nicholas Pippenger. 1986. What are the laws of information theory. In 1986
Special Problems on Communication and Computation Conference. 3–5.

[27] Yehoshua Sagiv and Mihalis Yannakakis. 1980. Equivalences Among Relational

Expressions with the Union and Difference Operators. J. ACM 27, 4 (1980),

633–655.

[28] Ron van der Meyden. 1997. The Complexity of Querying Indefinite Data about

Linearly Ordered Domains. J. Comput. Syst. Sci. 54, 1 (1997), 113–135.
[29] Martin J. Wainwright and Michael I. Jordan. 2008. Graphical Models, Exponential

Families, and Variational Inference. Foundations and Trends in Machine Learning
1, 1-2 (2008), 1–305. https://doi.org/10.1561/2200000001

[30] Raymond W. Yeung. 2008. Information Theory and Network Coding (1 ed.).

Springer Publishing Company, Incorporated.

[31] Raymond W Yeung. 2012. A first course in information theory. Springer Science
& Business Media.

[32] Zhen Zhang and Raymond W. Yeung. 1997. A non-Shannon-type conditional

inequality of information quantities. IEEE Trans. Information Theory 43, 6 (1997),

1982–1986.

[33] Zhen Zhang and Raymond W Yeung. 1998. On characterization of entropy

function via information inequalities. IEEE Transactions on Information Theory
44, 4 (1998), 1440–1452.

A BACKGROUND ON CQ’S
We prove the following in the full version of the paper [1]:

Lemma A.1. The containment problem under bag-set semantics
Q1 ⪯ Q2 is reducible in polynomial time to the containment problem
under bag-set semantics for Boolean queries, Q ′

1
⪯ Q ′

2
. Moreover, this

reduction preserves any property of queries discussed in this paper:
acyclicity, chordality, simplicity.

We prove now a claim that we made in Sec 4.1, namely that, for

any node t of a tree decomposition, we can assume vars(Qt ) = χ (t ),
where Qt is the query obtained by taking the conjunction of all

atoms with vars(A) ⊆ χ (t ).

Fact A.2. (Informal) Let (T , χ ) be a tree decomposition of some

query Q , and, forall t ∈ nodes(T ), let Qt denote the conjunction

of A ∈ atoms(Q ) s.t. vars(A) ⊆ χ (t ). Then, for the purpose of

query containment, we can assume that vars(Qt ) = χ (t ), for every
t ∈ nodes(T ). More specifically, we can assume that for every

t ∈ nodes(T ) and everyA ∈ atoms(Q ) such that vars(A)∩χ (t ) , ∅,
there exists A′ ∈ atoms(Q ) such that vars(A′) = vars(A) ∩ χ (t ),
hence A′ ∈ atoms(Qt ).

Proof. To see an example where this property fails, consider

Q = R (x ,y,u)∧S (y, z)∧R (x , z,v ). LetT be the tree decomposition

{x ,y,u} − {x ,y, z} − {x , z,v}, and let t be the middle node, χ (t ) =
{x ,y, z}. Then Qt = S (y, z) and its variables do not cover χ (t ).

We prove that the property can be satisfied w.l.o.g. We first mod-

ify the vocabulary, by adding for each relation name R of arity a
and for each S ⊂ [a], a new relation name RS of arity |S |. Similarly,

we modify a query Q by adding, for each atom R (X1, . . . ,Xa ) and

for each S ⊂ [a], a new atom RS (xS ), where xS
def

= (Xi )i ∈S . Denote
by Q̂ the modified query. Obviously Q̂ satisfies the desired prop-

erty. We claim that this change does not affect query containment,

more precisely Q1 ⪯ Q2 ⇔ Q̂1 ⪯ Q̂2. The⇐ direction follows by

expanding an input database D for Q1,Q2 with extra predicates

RDS
def

= ΠS (R
D ) for every relation symbol R and every S ⊂ [a]

where a is the arity of R. The⇒ direction follows from modifying

an input database D for Q̂1, Q̂2 by replacing every (a-ary) relation

RD by RD ⋉
(
ZS ⊂[a]

RDS

)
. □

B BACKGROUND ON INFORMATION
THEORY

Next, we review some additional background in information theory

used in this paper, continuing the brief introduction in Sec. 3.3.

Before we start, we review a basic concept, which we call “domain-

product”, first introduced by Fagin [10] to prove the existence of

an Armstrong relation for constraints defined by Horn clauses,

and later used by Geiger and Pearl [12] to prove that Conditional

Independence constraints on probability distributions also admit

an Armstrong relation. The same construction appears under the

name “fibered product” in [22].

Definition B.1. Fix two domains D1,D2. For any two tuples f ∈
DV

1
, д ∈ DV

2
we define f ⊗ д ∈ (D1 × D2)

V
as the function ( f ⊗

д) (x )
def

= ( f (x ),д(x )) for all x ∈ V . The domain product of two

relations P1 ⊆ DV
1
, P2 ⊆ DV

2
is P1 ⊗ P2

def

= { f ⊗ д | f ∈ P1,д ∈ P2}.

If p1,p2 are probability distributions on P1, P2 respectively, then

their product p1 · p2 is the probability distribution (p1 · p2) ( f ,д)
def

=

p1 ( f ) · p2 (д) on P1 ⊗ P2.

We start with a basic fact: if h1,h2 are two entropic functions,

then h1+h2 is also entropic. Indeed, if hi is the entropy of pi : Pi →
[0, 1], then h1 +h2 is the entropy of p1 ·p2 : P1 ⊗ P2 → [0, 1], where

P1 ⊗ P2 is the domain product.
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Fact B.2. If n = 1 (i.e. there is a single random variable) and h is

entropic, then c · h is also entropic for every c > 0.

Proof. Start with a distribution p whose entropy is ⌈c⌉ ·h. Let n
be the number of outcomes, and p1, . . . ,pn their probabilities. For

each λ ∈ [0, 1] define p (λ) to be the distribution p
(λ)
1
= p1 + (1 −

p1) (1−λ), p
(λ)
i = pi ·λ for i > 1, and h(λ) its entropy. Then h(0) = 0,

h(1) = ⌈c⌉ · h, and, by continuity, there exists λ s.t. h(λ) = c · h. □

Corollary B.3. For everyW ⊊ V and every c > 0, the function
c · hW is entropic, where hW is the step function. It follows that every
normal function is entropic (because it is a sum

∑
W cW h(W ) and

cW h(W ) is entropic).

Proof. By the previous fact, there exists a random variable Z
whose entropy is h0 (Z ) = c . Let h be the entropy of the following

n random variables: forallU ∈ V −W , defineU
def

= Z (hence, forall

X ⊆ V −W , h(X ) = h0 (Z ) = c), and for every U ∈ W , define U
to be a constant (hence for every X ⊆ W , h(X ) = 0). Therefore,

h = c · hW . □

However, when n ≥ 3, then Zhang and Yeung [32] proved that

c · h is not necessarily entropic. Their proof is based on the parity
function, introduced in Example 3.8.

Fact B.4. Γ∗
3
is not convex.

Proof. Zhang and Yeung [32] prove this fact as follows. Let h be

the entropy of the parity function in Example 3.8. For every c > 0,

consider the function h′ = c · h. They prove that h′ is entropic
iff c = logM , for some integer M , which implies that Γ∗

3
is not

convex. We include here their proof for completeness. Assuming h′

is entropic let p′ be its probability distribution, then the following

independence constraints hold: X ⊥ Y , because h′(XY ) = h′(X ) +
h′(Y ), and similarly X ⊥ Z and Y ⊥ Z . The following functional

dependencies also hold: XY → Z (because h′(XY ) = h′(XYZ ))
and similarly XZ → Y , YZ → X . Let x ,y, z be any three values s.t.

p′(x ,y, z) > 0. Then p′(x ,y, z) = p′(x ,y) = p′(x )p′(y). Similarly

p′(x ,y, z) = p′(y)p′(z), which implies p′(x ) = p′(z). Therefore, for
any other value x ′, p′(x ′) = p′(z). This means that the variable X
is uniformly distributed, because p′(x ) = p′(x ′) forall x ,x ′, hence
p′(x ) = 1/M whereM is the size of the domain of X . It follows that

h′(X ) = logM , proving the claim. □

Yeung [30] proves that the topological closure Γ̄∗n is a convex set,

for every n. Thus, Γ∗n ⊆ Γ̄∗n and the inclusion is strict for n ≥ 3. The

elements of Γ̄∗n are called almost entropic functions. We note that if a

linear information inequality, or a max-linear information inequal-

ity is valid forall entropic functions h ∈ Γ∗n , then, by continuity, it

is also valid forall almost entropic functions h ∈ Γ̄∗n .
Let h be an entropic function, and X ,Y ⊆ V two sets of variables.

For every outcome X = x , we denote by h(Y |X = x ) the entropy
of Y conditioned on X = x . The function Y 7→ h(Y |X = x ) is
an entropic function (by definition). Recall that we have defined

h(Y |X )
def

= h(XY ) − h(X ). It can be shown by direct calculation

that h(Y |X ) =
∑
x h(Y |X = x ) · p (X = x ), in other words it is

a convex combination of entropic functions. Thus, h(Y |X ) is the
expectation, over the outcomes x , of h(Y |X = x ), justifying the

name “conditional entropy”.

Fact B.5. In general, the mapping Y 7→ h(Y |X ) is not entropic.

Proof. To see an example, consider two probability spaces on

X ,Y ,Z , with probabilities p,p′ and entropies h,h′ such that h is

the entropy of the parity (Example 3.8) and h′ = 2h. Consider
a 4’th variable U , whose outcomes are U = 0 or U = 1 with

probabilities 1/2, and consider the mixture model: if U = 0 then

sampleX ,Y ,Z usingp, ifU = 1 then sampleX ,Y ,Z usingp′. Leth′′

be the entropy over the variables X ,Y ,Z ,U . Then the conditional

entropy h′′(W |U ) = 3/2h(W ), for allW ⊆ {X ,Y ,Z }, and thus it is

not entropic. □

Yeung [30] defines the I-measure as follows. Fix a set of variables

V , which we identify with [n]. Let Ω = 2
[n] − {∅}. An I-measure

is any function µ : 2
Ω → R such that µ (X ∪ Y ) = µ (X ) + µ (Y )

whenever X ∩ Y = ∅. Notice that µ is not necessarily positive. For

each variable Vi ∈ V we denote by V̂i
def

= {ω ∈ Ω | i ∈ ω} ⊆ Ω, and

extend this notation to sets X ⊆ V by setting X̂
def

=
⋃
V ∈X V̂ . For

each variable Vi denote V̂
1

i
def

= V̂i and V̂
0

i
def

= the complement of V̂i .

An atomic cell is an intersectionC
def

=
⋂
j=1,n V̂

εj
j , where εj ∈ {0, 1}

forall j, where at least one εj = 1. Obviously, µ is uniquely defined

by its values on the atomic cells.

Given h ∈ R2
n
(not necessarily entropic), the I-measure associ-

ated to h is the unique µ satisfying the following, forall X ⊆ V :

h(X ) =
∑

C :C⊆X̂

µ (C ) (47)

The normal entropic functions Nn are precisely those with a

non-negative I-measure. This can be seen immediately by observing

that, for any step function hW , it’s I-measure µW assigns the value

1 to the cell (
⋂
V <W V 1) ∩ (

⋂
V ∈W V 0), and 0 to everything else. In

fact, there is a tight connection between the I-measure µ and the

Möbious inverse function д (Eq.(37) in Sec. 6), which we explain

next. First, we notice that Equation (37) implies:

h(X ) = −
∑

Y :Y⊉X

д(Y ) (48)

The connection between µ and д follows by a careful inspection

of Eq. (47) and Eq (48). Each atomic cell C in Eq. (47) is uniquely

defined by the set of its negatively occurring variables, denote

this by neg(C ). Then, C ⊆ X̂ iff X ⊈ neg(C ). Define the function

д : 2
V → R as д(neg(C ))

def

= −µ (C ) and д(V ) = h(V ) (recall that
neg(C ) , V ). Then Eq.(47) becomes h(X ) =

∑
C :X⊈neg(C ) µ (C ) =

−
∑
Y :X⊈Y д(Y ) which is precisely Eq.(48).

C PROOF OF THEOREM 4.2
We give here the proof of Theorem 4.2. This generalizes the proof

of Theorem 3.1 by Kopparty and Rossman [22], whose main idea is

illustrated in Example 4.3. Recall the theorem:

Theorem 4.2 (A sufficient condition). LetQ1,Q2 be two conjunctive
queries, n = |vars(Q1) |, and let TD(Q2) denote the set of tree decom-
positions of Q2. If the following Max-II inequality holds ∀h ∈ Γ∗n :

h(vars(Q1)) ≤ max

(T , χ )∈TD(Q2 )
max

φ ∈hom(Q2,Q1 )
(ET ◦ φ) (h) (49)

then Q1 ⪯ Q2.
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To prove the theorem we need three lemmas. The first lemma is

folklore, and represents the main property of tree decomposition

used for query evaluation. If f ∈ DX
, д ∈ DY

agree on X ∩Y , then
f Z д is the unique tuple ∈ DX∪Y

that extends both f and д. If
P1 ⊆ DX , P2 ⊆ DY

, then P1 Z P2 = { f Z д | f ∈ P1,д ∈ P2}.

Lemma C.1. Let (T , χ ) be a tree decomposition for Q and recall
that Q ≡

∧
t ∈nodes(T ) Qt where Qt is a conjunction of atoms A

s.t. vars(A) ⊆ χ (t ). Then, for every D, hom(Q,D) =Zt ∈nodes(t )
hom(Qt ,D).

Lemma C.2. Fix a homomorphism φ : Q2 → Q1, let (T , χ ) be a tree
decomposition ofQ2,D be a database instance, and P = hom(Q1,D).

Then, for every node t ∈ nodes(T ), denoting P ′t
def

= Πφ |χ (t ) (P ) we
have:

P ′t ⊆hom(Qt ,D) (50)

Proof. Every tuple in Πφ |χ (t ) (P ) is the composition f ◦ φ |χ (t )
for some f ∈ P . The lemma follows from the fact that both φ |χ (t ) :

Qt → Q1 and f : Q1 → D are homomorphism. □

Lemma C.3. (1) Let p : P (⊆ DV ) → [0, 1] be a probability distri-
bution, and h : 2

V → R+ be its entropy. If φ : Y → V and Z ⊆ Y ,
then the φ |Z -pullback of p, Πφ |Z (p), is equal to the Z -marginal of
Πφ (p). In particular, if h′ : 2

Y → R+ is the entropy of Πφ (p), then,
∀Z ⊆ Y , h′(Z ) = h(φ (Z )). (2) If φ : V ′ → V and Y1,Y2 ⊆ V ′,
then the pull-back distributions Πφ |Y

1

(p) and Πφ |Y
2

(p) agree on the
common variables Y1 ∩ Y2.

Proof. (1) The φ-pullback Πφ (p) is defined to be the same as the

φ (Y )-marginal of p. Therefore its Z -marginal is the φ (Z )-marginal

of p. By definition, Πφ |Z (p) is also the φ (Z )-marginal of p, hence
they are equal. Formally, given f ∈ P :

Πφ (p) (Z = ΠZ (Πφ ( f ))) =
∑

f ′:ΠZ (Πφ (f ′))=ΠZ (Πφ (f ))

p ( f ′)

=
∑

f ′:Πφ (Z ) (f ′)=Πφ (Z ) (f )

p ( f ′) = Πφ |Z (p) (Z = Πφ |Z ( f ))

because ΠZ ◦Πφ = Πφ |Z . This discussion immediately implies that

h′(Z ) = h(φ (Z )), forall Z .
(2) Let Z = Y1 ∩ Y2. By claim (1), the Z -marginal of Πφ |Y

1

(p) is

Πφ |Z (p) and similarly for the Z -marginal of Πφ |Y
2

(p), hence they

are equal. □

Proof. (Of Theorem 4.2) Let D be any database with domain

D, and let P = hom(Q1,D). Consider the uniform probability dis-

tribution p : P → [0, 1], defined as p ( f ) = 1/|P | for all tuples
f ∈ P , and let h be its entropy. We have h = log |P | because p is uni-

form. By assumption of the theorem, there exists a homomorphism

φ : Q2 → Q1 and a tree decomposition (T , χ ) of Q2 such that:

log |P | = h(vars(Q1)) ≤(ET ◦ φ) (h) (51)

For each t ∈ nodes(T ), consider the projections of P and p on χ (t ):

P ′t
def

= Πφ |χ (t ) (P ), p′t
def

= Πφ |χ (t ) (p)

Lemma C.1 and Lemma C.2 imply:

P ′
def

= Zt ∈nodes(T ) P
′
t ⊆ Zt ∈nodes(T ) hom(Qt ,D)

= hom(Q2,D) (52)

We will construct a probability distribution p′ : P ′ → [0, 1], with

entropy function h′ : 2
vars(Q2 ) → R+, such that the following hold:

h′(vars(Q2)) =ET (h
′) (53)

ET (h
′) =(ET ◦ φ) (h) (54)

Wewill constructp′ by stitching together the pull-back distributions
p′t , for t ∈ nodes(T ); this is possible because, by Lemma C.3 (2), any

two induced probabilities p′t1

,p′t2

agree on the common variables

χ (t1) ∩ χ (t2).
Formally, we start by listing nodes(T ) in some order, t1, t2, . . . , tm ,

such that each child is listed after its parent. Let P ′i
def

= Zj=1,i
P ′tj , let Ti be the subtree induced by the nodes {t1, . . . , ti }, and

vars(Ti ) =
⋃
j=1,i χ (ti ) its variables. We construct by induction

on i a probability distribution p′i : P ′i → [0, 1] such it agrees with

p′t1

, . . . ,p′ti on χ (t1), . . . , χ (ti ) respectively, and it’s entropy func-

tion h′i : 2
vars(Ti ) → R+ satisfies:

h′i (vars(Ti )) =ETi (h
′
i ) (55)

ETi (h
′
i ) =(ETi ◦ φ) (h) (56)

To define p′i , we need to extend p′i−1
to the variables vars(Ti ) −

vars(Ti−1) = χ (ti ) − χ (parent(ti )). We define p′i to satisfy the fol-

lowing: (1) p′i agrees with p′ti on χ (ti ), (2) p
′
i agrees with p′i−1

on

the vars(Ti−1), and (3) χ (ti ) is independent of vars(Ti−1) given
χ (ti ) ∩ χ (parent(ti )). Notice that (1) and (2) are not conflicting

because p′ti agrees with any other p′j on their common variables.

Formally, we define p′i through a sequence of three equations:

p′i (χ (ti ) |χ (ti ) ∩ χ (parent(ti )))
def

=

p′ti (χ (ti ) |χ (ti ) ∩ χ (parent(ti ))) (57)

p′i (χ (ti ) |vars(Ti−1))
def

= p′i (χ (ti ) |χ (ti ) ∩ χ (parent(ti ))) (58)

p′i (vars(Ti ))
def

= p′i (χ (ti ) |vars(Ti−1))p
′
i−1

(vars(Ti−1)) (59)

We check Eq.(55):

h′i (vars(Ti )) =h
′
i (χ (ti ) |vars(Ti−1)) + h

′
i−1

(vars(Ti−1))

(by Eq.(59))

=h′i (χ (ti ) |vars(Ti−1)) + ETi−1
(h′i−1

)

(Induction)

=h′i (χ (ti ) |vars(Ti−1)) + ETi−1
(h′i )

(h′i is identical to h
′
i−1

on vars(Ti−1))

=h′i (χ (ti ) |χ (ti ) ∩ χ (parent(ti ))) + ETi−1
(h′i )

(by Eq.(58))

=ETi (h
′) (Definition of ET )

We check Eq.(56).

ETi (h
′
i ) =h

′
i (χ (ti ) |χ (ti ) ∩ χ (parent(ti ))) + ETi−1

(h′i )

(Definition of ET )

=h′i (χ (ti ) |χ (ti ) ∩ χ (parent(ti ))) + (ETi−1
◦ φ) (h)

(Induction)
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=h′ti (χ (ti ) |χ (ti ) ∩ χ (parent(ti ))) + (ETi−1
◦ φ) (h)

(by Eq.(57))

=h(φ (χ (ti )) |φ (χ (ti ) ∩ χ (parent(ti )))) + (ETi−1
◦ φ) (h)

(Lemma C.3 (1))

=(ETi ◦ φ) (h) (Definition of ET )

This completes the inductive proof.

By setting i =m (the number of nodes in T ) in Eq.(55) and (56)

we derive Eq.(53) and (54). The proof of the theorem follows from:

log |hom(Q1,D) | = log |P |

= h(vars(Q1)) ≤ (ET ◦ φ) (h) (by Eq. (51))

= ET (h
′) (by Eq.(54))

= h′(vars(Q2)) (by Eq.(53))

≤ log |P ′ | (Since P ′ is the support of h′)

≤ log |hom(Q2,D) | (By Eq (52))

□

D PROOF OF THEOREM 3.3 AND 3.6
In Th.4.4 we proved that, when Q2 is acyclic and Eq.(13) fails, then

Q1 ⪯̸ Q2. We prove here a variation of that result: when Q2 is

chordal and Eq.(13) fails on a normal entropic function, then Q1 ⪯̸
Q2. Recall that a junction tree is a special tree decomposition.

Lemma D.1. Let Q2 be chordal and admit a simple junction tree T ,
and let ET be its linear expression, Eq.(12). If there exists a normal
entropic function h (i.e. with a non-negative I-measure) such that:

h(vars(Q1)) > max

φ ∈hom(Q2,Q1 )
(ET ◦ φ) (h) (60)

then there exists a database instance D such that |hom(Q1,D) | >
|hom(Q2,D) |.

We first show how to use the lemma and the essentially-Shannon

inequalities in Th 3.9 to prove Theorems 3.3 and 3.6. Assume Q2

is chordal and has a simple junction tree T . We prove: Q1 ⪯ Q2 iff

Eq.(13) holds. It suffices to prove that Eq.(13) is necessary, because

sufficiency follows from Th. 4.2. Suppose Eq.(13) fails. Then there

exists an entropic function h such that (60) holds where T in (60) is

a simple junction tree ofQ2. SinceT is simple, the conditional linear

expressions on the right-hand-side of (60) are also simple. By Th 3.9,

there exists a normal entropic function h such that (60) holds. Then,

by Lemma D.1, Q1 ⪯̸ Q2. This proves that Eq.(13) is necessary and

sufficient for containment. Furthermore, Eq.(13) is decidable, since

it is an essentially-Shannon inequality, and this completes the proof

of Theorems 3.3. The proof of Theorem 3.6 follows immediately

from the fact that the set of normal entropic functions Nn is the

cone generated by the entropies of normal relations, and the set of

modular functionsMn is the cone generated by the entropies of

product relations.

It remains to prove Lemma D.1; the lemma generalizes Theorem

3.2 of [22] to arbitrary vocabularies (beyond graphs). To prove the

theorem, we will update the proof of Theorem 4.4, where we used

acyclicity of Q2: more precisely we need to re-prove the locality

property, Eq.(22). We repeat it here:

homφ |χ (t ) (Qt ,D) ⊆Πφ |χ (t ) (P )

We start by observing that this property fails in general.

Example D.2. Let Q1 = R (X1,X2), S (X2,X3),T (X3,X1) and Q2 =

R (Y1,Y2), S (Y2,Y3),T (Y3,Y1) (they are identical). Consider the par-

ity function in Example 3.8; more precisely, this is the entropy of the

relation P = {(X1,X2,X3) | X1,X2,X3 ∈ {0, 1},X1 ⊕ X2 ⊕ X3 = 0},

which we show here for clarity:

0 0 0

P = 0 1 1

1 0 1

1 1 0

Recall that the entropy of P is not a normal entropic function (Sec. 6).

This relation is perfectly uniform (in fact it is a group character-

ization). Computing D = ΠQ1
(P ) we obtain RD = SD = TD =

{(0, 0), (0, 1), (1, 0), (1, 1)}. Q2 is a clique, with a bag Qt = Q2, and

hom(Qt ,D) contains one extra triangle, (1, 1, 1), which is in no

single row of P .

The example shows that we need to use in a critical way the fact

that the counterexample h is a normal entropic function, h ∈ Nn .
To use this fact, we will describe a class of relations whose entropic

functions generate precisely the cone Nn , and prove that these are

precisely the normal relations (Def. 3.5).

Consider the normal entropic functionh given by LemmaD.1.We

can assume w.l.o.g. that h is a sum of step functions
13
, h =

∑
i hWi ,

where each hWi is a step function (not necessarily distinct). Recall

from Section 3.3 that PWi is the 2-tuple relation whose entropy

is hWi ; to reduce clutter we denote here PWi by Pi . Then h is the

entropy of their domain-product (Def B.1), P = P1 ⊗ P2 ⊗ · · · ⊗

Pm . One can check that P is totally uniform (it is even a group

realization). We now prove the locality property, Eq.(22), using the

fact that P is a domain product, which allows us to rewrite Eq.(22)

as:

homφ |χ (t ) (Qt ,D1 ⊗ · · · ⊗ Dm ) ⊆Πφ |χ (t ) (P1 ⊗ · · · ⊗ Pm )

It suffices prove that homφ |χ (t ) (Qt ,Di ) ⊆ Πφ |χ (t ) (Pi ) for each i .

Recall that Pi has two tuples, Pi = { f1, f2}, where f1 = (1, 1, . . . , 1)
and f2 has values 1 on positions ∈W and values 2 on positions <W ,

for some set of attributesW . Fix a tuple д ∈ homφ |χ (t ) (Qt ,Di ); we

must prove that either д ∈ Πφ |χ (t ) ( f1) or д ∈ Πφ |χ (t ) ( f2). If д maps

every variable in vars(Qt ) to 1, then the first condition holds, so

assume that д maps some variable Y ∈ vars(Qt ) to 2; in particular,

φ (Y ) <W . We must prove that, for every variable Y ′, if φ (Y ′) <W
then д(Y ′) = 2. Here we use the fact thatQ2 is chordal, henceQt is

a clique, thanks to Fact A.2. Therefore, there exists B ∈ atoms(Qt )
that contains both Y and Y ′. Since д is a homomorphism, it maps

B to some tuple in Πφ (vars(B )) (P ); since both φ (Y ),φ (Y
′) <W , this

tuple must have the value 2 on both positions (they can be identical:

φ (Y ) = φ (Y ′)). It follows that all variables Y ′ s.t. φ (Y ′) < W are

mapped to 2, proving that д ∈ Πφ |χ (t ) ( f2). This proves the local

property, Eq.(22). The rest of the proof of Theorem 4.4 remains

unchanged, and this completes the proof of Lemma D.1.

13
Suppose the contrary, that the inequality holds for all functions h that are sums of

step functions. Then it holds for all linear combinations

∑
W cW hW where cW ≥ 0

are integer coefficients. If an inequality holds for h, then it also holds for λ · h for

any constant λ > 0; it follows that the inequality holds for all linear combinations∑
W cW hW where cW ≥ 0 are rationals. The topological closure of these expressions

is Nn , contradicting the fact that the inequality fails on some h ∈ Nn .
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