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We study the complexity of computing the probability of a query on a probabilistic database. The

queries that we consider are unions of conjunctive queries, UCQ: equivalently, these are positive,
existential First Order Logic sentences, or non-recursive datalog programs. The databases that we
consider are tuple-independent. We prove the following dichotomy theorem. For every UCQ query,

either its probability can be computed in polynomial time in the size of the database, or is hard for
FP#P . Our result also has applications to the problem of computing the probability of positive,
Boolean expressions, and establishes a dichotomy for such classes based on their structure. For
the tractable case, we give a very simple algorithm that alternates between two steps: applying

the inclusion/exclusion formula, and removing one existential variable. A key, and novel feature of
this algorithm is that it avoids computing terms that cancel out in the inclusion/exclusion formula,
in other words it only computes those terms whose Mobius function in an appropriate lattice is
non-zero. We show that This simple feature is a key ingredient needed to ensure completeness.

For the hardness proof, we give a reduction from the counting problem for positive, partitioned
2CNF, which is known to be #P-complete. The hardness proof is non-trivial, and uses techniques
from logic and from classical algebra.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Query Process-

ing; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Mobius function, Mobius inversion formula, probabilistic
database

1. INTRODUCTION

We study the complexity of computing the probability of a query on a probabilistic
database. We are interested in identifying tractable cases, when the query proba-
bility can be computed in polynomial time in the size of the input databases, as
well as identifying intractable cases, when computing the probability of the query is
provably hard. Our work is motivated by probabilistic databases [Dalvi and Suciu
2004; Dalvi and Suciu 2007b; Olteanu et al. 2009; Olteanu and Huang 2009], as
well as the probabilistic inference problem for Boolean expressions (which gener-
alizes the model counting problem) [Creignou and Hermann 1996; Darwiche 2000;
Darwiche and Marquis 2002; Wegener 2004; Golumbic et al. 2006].

A probabilistic database is a pair D = (D,P ) where D is a database instance (i.e.
a set of tuples) and P : D → [0, 1] associates a probability to each tuple t ∈ D.
The probabilistic database defines a probability space, where the outcomes are the
subsets W of D, and their probabilities are given by:

PD(W ) =
∏

t∈W

P (t) ×
∏

t∈D−W

(1 − P (t)) (1)
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Given a query Q (i.e. sentence in First Order Logic), P (Q) is the marginal
probability of Q, i.e. the probability that Q is true on a randomly chosen subset
W of D: PD(Q) =

∑

W⊆D:W |=Q PD(W ).

The problem we address in this paper is the following. For a fixed query Q, what
is the complexity of computing PD(Q) as a function of the size of D. We consider
the data complexity only, where Q is fixed and the input consists only of D. The
queries that we study are those in the positive, existential fragment of FO, which
are sentences that can be constructed from positive atoms using the connectives
∧,∨,∃. Each such sentence can be expressed as Q = q1 ∨ q2 ∨ . . . ∨ qk, where each
qi is a conjunctive query (i.e. uses only the connectives ∧,∃), and therefore such
a query is also known as a union of conjunctive queries, UCQ. Alternatively, the
query can be expressed as a non-recursive datalog program [Abiteboul et al. 1995].

We prove in this paper the following Dichotomy Theorem (Theorem 4.11). For
any UCQ Q, one of the following holds: either PD(Q) can be computed in PTIME
in the size of D, or the problem “given D, compute PD(Q)” is hard for FP#P .

Using simple transformations, our results can also be applied to the positive,
universal subset of First Order Logic, i.e. to sentences using only the connectives
∧,∨,∀. Such sentences are used often in knowledge representation. For example,
in Markov Logic Networks [Richardson and Domingos 2006], where First Order
Logic is extended with probabilities in order to capture degrees of confidence in
uncertain data, the knowledge base consists of a set of universally quantified clauses.
Our results can also be applied to sentences with a limited use of negation: the
negation must be applied directly to atoms, and every relation symbol must be
unnate [Golumbic et al. 2006], i.e. either all its occurrences are positive, or all its
occurrences are negative.

Given a query Q and a database instance D, the lineage of Q on D is a Boolean
Expression ΦD

Q , which captures the evaluation of the query on the database in-
stance. The lineage has one Boolean variable for each tuple in the database, and
expresses which tuples must be present in the database in order for the query to
be true; we give the formal definition is in Sect. 2. The lineage is a special form of
provenance [Green et al. 2007], where it is called PosBool, because for a UCQ, the
lineage is a positive Boolean expression. Furthermore, it has a DNF representation
whose size is polynomial in D. The probability of the query Q is equal to the prob-
ability of the lineage ΦD

Q , when each Boolean variable is set independently to true

with a probability P (t), where t is the tuple corresponding to the Boolean variable.
In other words, PD(Q) = P (ΦD

Q), and the query evaluation problem is the same
as the problem of computing the probability of a Boolean expression. Therefore,
our dichotomy theorem is also a dichotomy theorem for classes of positive Boolean
expressions, defined by their structure. Each query Q defines the class of Boolean
expressions consisting of all lineage expressions of the form ΦD

Q : for each such class,
the problem “given a formula Φ in this class, compute P (Φ)” is either in PTIME
or is hard for FP#P . While the natural representation of lineage expression is in
DNF, our results extend immediately to their dual CNF counterparts, obtained by
negating the formula, and substituting each variable with its negation. Equiva-
lently, the dual is obtained by simply switching ∧ and ∨. For a taste of how our
results apply to Boolean expressions in CNF, Table I shows several queries Q, and
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Query The Dual of the Lineage P (Φ)

qJ = R(x1), S(x1, y1), S(x2, y2), T (x2) Φ =
∧

ijkl(Yi ∨ Xij ∨ Xkl ∨ Zk) PTIME

qU = R(x1), S(x1, y1) ∨ S(x2, y2), T (x2) Φ =
∧

ij(Yi ∨ Xij) ∧
∧

ij(Xij ∨ Zi) PTIME

h1 = R(x1), S(x1, y1) ∨ S(x2, y2), T (y2) Φ =
∧

ij(Yi ∨ Xij) ∧
∧

ij(Xij ∨ Zj) FP#P -hard

qV =R(x1), S(x1, y1) ∨ S(x2, y2), T (y2)

∨R(x3), T (y3)

Φ =
∧

ij

(Yi ∨ Xij) ∧
∧

ij

(Xij ∨ Zj)∧

∧

ij

(Yi ∨ Zj)
PTIME

qH =

(R(x1), S1(x1, y1) ∨ S2(x2, y2), S3(x2, y2))

∧(S1(x3, y3), S2(x3, y3) ∨ S3(x4, y4), T (y4))

Φ =
∧

i1j1...i4j4

[

((Yi1 ∨ X1
i1j1) ∧ (X2

i2j2 ∨ X3
i2j2))∨

((X1
i3j3 ∨ X2

i3j3) ∧ (X3
i4j4 ∨ Zj4))

]

FP#P -hard

qW =

(R(x1), S1(x1, y1) ∨ S2(x2, y2), S3(x2, y2))

∧(R(x3), S1(x3, y3) ∨ S3(x4, y4), T (y4))

∧(S1(x5, y5), S2(x5, y5) ∨ S3(x6, y6), T (y6))

Φ =
∧

i1j1...i6j6

[

((Yi1 ∨ X1
i1j1) ∧ (X2

i2j2 ∨ X3
i2j2))∨

((Yi3 ∨ X1
i3j3) ∧ (X3

i4j4 ∨ Zj4))∨

((X1
i5j5 ∨ X2

i5j5) ∧ (X3
i6j6 ∨ Zj6))

]

PTIME

Table I. Some simple applications of the dichotomy result. The first column shows
a query: all variables are existentially quantified. The middle column shows the
Boolean expression obtained by taking the dual of their lineage expression (switch-
ing the roles of ∧,∨). The Boolean variables Yi,X

k
ij , Zj correspond to the tuples

R(i), Sk(i, j), T (j) respectively. The first four expressions are already in CNF. The
last two expressions are not in CNF, but can be rewritten in CNF with only a
constant factor increase in their size. The last column indicates whether P (Q), or,
equivalently, P (Φ), is tractable or not. Consider the row for h1, where P (Φ) is hard
for FP#P . Compare it to qU , where Zj becomes Zi, and the complexity of P (Φ)
is PTIME. Also, compare it to qV , where a new set of clauses is added to Φ and
the complexity is also PTIME. A similar comparison can be done for qH and qV .

the class of Boolean expressions Φ corresponding to the dual of their lineage. For
each class, we indicate whether its complexity is PTIME or hard for FP#P .

A special case of the probability computation problem is the counting problem:
given a Boolean expression Φ, count the number of satisfying assignments #Φ.
Valiant [Valiant 1979] showed that #SAT, the counting version of the SAT problem
is #P-complete. Provan and Ball [Provan and Ball 1983] have shown that for a very
simple class of Boolean expressions, called partitioned, positive, 2CNF (reviewed in
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Sect. 8.1), the counting problem is already #P-complete. Our PTIME algorithm
for P (Φ) extends immediately to the counting problem, since #Φ = 2nP (Φ), where
n is the number of Boolean variables, and the probability P (Φ) is computed by
setting each Boolean variable independently to true with probability 1/2. Our
hardness results do not extend immediately to the counting version; more precisely,
our hardness proof is not a parsimonious reduction from #SAT, but one that uses
an oracle: our hardness result proves that computing P (Φ) is hard for FP#P , the
class of functions computable by a polynomial-time Turing Machine with access to
an oracle for a #P hard problem.

Creignou and Hermann proved a dichotomy theorem [Creignou and Hermann
1996] for the generalized satisfiability counting problem, #GenSAT. They consider
Boolean expressions that are conjunctions of logical relations, also known as gen-
eralized clauses, and establish a dichotomy for the counting problem based on the
type of logical relations: they show that the counting problem is in PTIME iff every
logical relation is affine. Thus, they restrict the formulas based on the generalized
clauses, and allow otherwise arbitrary structure. We do the opposite: we restrict
the structure, and obtain many interesting tractable cases that are not identified
by Creignou and Hermann’s result. This is illustrated in Table I: all clauses in this
table are of the form x ∨ y ∨ z ∨ . . . and therefore fall in the #P-class of Creignou
and Hermann.

We discuss now in some more details the two parts of our dichotomy result:
the PTIME algorithm for the tractable queries, and the hardness proof for the
intractable queries.

The Algorithm We have first described the PTIME algorithm in [Dalvi et al.
2010a]: we review it here in Sect. 3, with some minor changes to improve its
presentation and to also improve its performance. The algorithm has two simple
steps. In the first step it applies the inclusion/exclusion formula to remove the
outer-most ∧ operations in a query. In the second step it removes one outermost
∃, by choosing a variable that satisfies a certain property and is called a separator
variable. Thus, the algorithm alternates between the inclusion/exclusion step, and
the separator variable step, until it reaches ground atoms, for which it looks up
their probabilities in D.

The inclusion/exclusion is the dual of the popular version: the algorithm com-
putes P (q1 ∧ q2 ∧ . . .) in terms of P (qi1 ∨ qi2 ∨ . . .), rather than the other way
around. For that reason, we must first rewrite Q from its traditional representation
of a union of conjunctive queries, into a conjunction of disjunctive queries, a format
that we call the CNF representation of a query. In particular, even if one starts
with simple conjunctive queries, like qJ in Table I, the algorithm may eventually
introduce ∨. In other words, the class of conjunctive queries is not a natural class
to study in terms of probabilities: the natural class is that of unions of conjunctive
queries. The reliance on the CNF rather than the DNF representation, and the use
of the dual inclusion/exclusion formula are surprising features of the algorithm.

In order for the algorithm to be complete, it needs to trace terms in the inclu-
sion/exclusion formula that may cancel out: we do this by replacing the inclu-
sion/exclusion formula with Mobius’ inversion formula in a lattice. Recognizing
when terms cancel out is of crucial importance, because sometimes all hard terms
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cancel out, and we can compute the query in PTIME, although some terms in the
inclusion/exclusion formula are hard. The concept that allows us to do that is
Mobius’ function in a lattice [Stanley 1997]. We define a certain CNF-lattice for a
query Q, whose elements correspond to queries that can be thought of as general-
ized subexpressions of Q. In this case the Mobius function of a subexpression qu

is precisely the coefficient of the term P (qu) in the inclusion/exclusion formula. If
the Mobius function is 0, then that term cancels out, and can thus be discarded
when computing P (Q). In some sense, the Mobius function acts like a syntactic
feature of Q, which must be examined in order to determine if Q is in PTIME or
hard for FP#P . We show that this is unavoidable: for every lattice L, one can con-
struct a query Q whose CNF lattice is L, and where all subqueries are in PTIME
except the query that is the minimal element of L. Therefore, Q is in PTIME iff
the Mobius function at that minimal element is 0. This is a surprising connection
between the Mobius function and the computational complexity of a query. The
inclusion/exclusion formula, or, equivalently, Mobius’ inversion formula, have been
used before in probabilistic inference [Knuth 2005]. However, the strong connection
between the Mobius function’s zeroes is new.

The power of our simple algorithm has been highlighted by recent results in [Jha
and Suciu 2010]. Several notions of tractability for computing P (Φ) were dis-
cussed there: read-once Boolean expressions [Golumbic et al. 2006], polynomial-
size OBDDs and FBDDs [Wegener 2000; Wegener 2004], and polynomial-size d-
DNNFs [Darwiche 2000; Darwiche and Marquis 2002]. It was shown that they
form a strict hierarchy for unions of conjunctive queries: in particular, the queries
qJ , qV , qW , q9 separate these classes (e.g. qJ is not read-once, but has a polynomial-
size OBDD, etc). It is further conjectured that q9 (Fig. 2), whose probability can be
computed in PTIME using our algorithm, does not have a polynomial size d-DNNF.

In our earlier work [Dalvi and Suciu 2004; Dalvi and Suciu 2007b] we have given
a PTIME algorithm for a much more restricted query language: conjunctive queries
without self-joins. The version of the algorithm that is described in the paper is a
conservative extension of that algorithm over tuple-independent databases.

Hardness proof The hardness proof of our dichotomy theorem is entirely new,
and forms the main technical contribution of this paper. We prove the following.
If Q is any query on which the algorithm fails (called an unsafe query), then there
exists a PTIME Turing machine with an oracle for computing PD(Q) that solves
the counting problem for the partitioned-positive-2CNF problem. The latter was
shown to be #P-hard by Provan and Ball [Provan and Ball 1983]. This implies that
PD(Q) is hard for FP#P . In our proof, the oracle for PD(Q) is called polynomially
many times, on the same database instance D, but with varying probabilities P .
The proof consists of three main steps, which we explain next.

The first step, described in Sect. 6, is called leveling, and it transforms any
unsafe query Q into another unsafe query Q′, such that the hardness of Q′ implies
the hardness of Q, and Q′ is a leveled query, meaning that it has the following
property. Every attribute of every relational symbol in Q′ can be associated a
“type”, called level, such that every variable x occurs only on attribute positions
of the same level, and, moreover, for any relational symbol, all its attributes have
distinct levels. This first step allows us to restrict the hardness proof to leveled
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queries.
The second step, described in Sect. 7, applies the following rewriting step to

a leveled query Q: choose certain variables z1, . . . , zk and substitute them with
constants. If Q′ is the rewritten query and Q′ is hard, then it is not difficult to
prove that Q is also hard. In this second step we show that, if Q is an unsafe query
with at least three levels, then it is always possible to rewrite it to another unsafe
query Q′. This rewriting process always terminates, hence the second step allows
us to restrict the hardness proof to unsafe, leveled queries with two levels, which
we call forbidden queries. The difficulty of this second step consists of choosing the
variables z1, . . . , zk such that Q′ is still unsafe, which turns out to be quite subtle.

The third step, described in Sect. 8, proves that every unsafe, forbidden query Q
is hard for FP#P . After several technical preparation steps, here we construct a
direct reduction of Provan and Ball’s partitioned-positive-2CNF counting problem
#Φ to the problem PD(Q). From Φ we construct a certain database D and show
that PD(D) depends on #Φ, as well as on (polynomially many) other parameters of
Φ. By changing the tuple probabilities in D and computing PD(D) repeatedly, we
can construct a linear system of equations and compute all parameters, including
#Φ, using Gaussian elimination. The difficult step, and the crux of the entire proof,
is to show that the matrix of the system of equations is non-singular. In fact, if
the original query Q is safe, then the matrix is singular. Here, we use techniques
from classical algebra, such as irreducible polynomials in the ring of multivariate
polynomials, and Cauchy’s double alternant determinant.

Related work Grädel et al. [Grädel et al. 1998] were the first to given an example
of a query Q for which P (Q) is FP#P -hard; their work was done in the context of
query reliability. In the following years, several studies [Dalvi and Suciu 2004; Dalvi
and Suciu 2007b; Olteanu et al. 2009; Olteanu and Huang 2009], sought to identify
classes of tractable queries. These works provided conditions for tractability only
for conjunctive queries without self-joins. The only exception is [Dalvi and Suciu
2007a], which considers conjunctive queries with self-joins. We extend those results
to a larger class of queries, and at the same time provide a very simple algorithm.
Some other prior work is complimentary to ours, e.g., the results that consider the
effects of functional dependencies [Olteanu et al. 2009].

2. BACKGROUND AND OVERVIEW

In this paper we discuss unions of conjunctive queries (UCQ), which are expressions
defined by the following grammar:

Q ::=R(x̄) | ∃x.Q1 | Q1 ∧ Q2 | Q1 ∨ Q2 (2)

R(x̄) is a relational atom with variables and/or constants, whose relation symbol
R is from a fixed vocabulary. We replace ∧ with comma, and drop ∃, when no
confusion arises: for example we write R(x), S(x) for ∃x.(R(x) ∧ S(x)).

A query is an expression up to logical equivalence. We consider only Boolean
queries in this paper. A conjunctive query (CQ) is a query without ∨.

Let D be a database instance. Denote Xt a distinct Boolean variable for each
tuple t ∈ D. Let Q be a UCQ. The lineage of Q on D is the Boolean expression ΦD

Q ,
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or simply ΦQ if D is understood from the context, defined inductively as follows,
where ADom denotes the active domain of the database instance:

ΦR(ā) = XR(ā) Φ∃x.Q =
∨

a∈ADom

ΦQ[a/x] (3)

ΦQ1∧Q2
= ΦQ1

∧ ΦQ2
ΦQ1∨Q2

= ΦQ1
∨ ΦQ2

(4)

The lineage expression is a particular instance of a provenance expression in
semi-rings [Green et al. 2007]: in the terminology of provenance expressions over
semi-rings, our lineage expresses are called PosBool, because for queries without
negations they are positive Boolean expressions. Notice that, for a fixed Q, the
size of the Boolean expression ΦQ defined above is polynomial in the size of D.
Furthermore, since the depths of the expression is O(1) and the outdegree of ev-
ery ∧ operators is O(1), by applying the distributivity law we can obtain a DNF
expression for ΦQ whose size is polynomial in the size of D.

The query evaluation problem on probabilistic databases is the following. Given
numbers P (t) ∈ [0, 1], for every tuple t in the database D, compute the probability
that the formula ΦQ is true, if each Boolean variable Xt is set to true indepen-
dently, with probability P (t); the resulting probability is denoted P (Q) = P (ΦD

Q).
We call the pair D = (D,P ) a probabilistic database instance, and sometimes use

D in the subscript, PD(Q), to emphasize that the query’s probability is computed
on the instance D.

Definition 2.1. UCQ(P ) the class of UCQ queries Q s.t. for any probabilistic
database D, the probability PD(Q) can be computed in PTIME in the size of D.

In this paper we give a complete syntactic characterization of the class UCQ(P ),
and establish a dichotomy, by proving that for every query not in UCQ(P ), comput-
ing P (Q) is hard for FP#P . Notice that each query Q defines a family of Boolean
expressions, namely the family ΦD

Q where D ranges over all finite databases. Thus,
our results are also a characterization of families of Boolean expressions that are
computable in PTIME, and establish a dichotomy on these families.

We will assume without any loss of generality that there are no constants in a
query Q. Otherwise, we rewrite Q into an equivalent query without constants, over
an extended vocabulary. For example, R(x, a), S(x) ∨ R(x, y), T (x) is rewritten as
R1(x), S(x) ∨ R1(x), T (x) ∨ R2(x, y), T (y), where R1(x) = πx(σy=a(R(x, y))) and
R2(x, y) = σy 6=a(R(x, y)). Thus, throughout the paper we will assume that queries
do not have constants, unless otherwise stated.

We start with some basics:

—A component, c, is a conjunctive query that is connected1, i.e. whenever q1, q2

are two conjunctive queries such that q1 ∧ q2 ⇒ c, then either q1 ⇒ c or q2 ⇒ c.
Given a component c, we denote Dc the canonical database for c: its active
domain consists of all constants and variables in c, and it has a tuple for each

1The traditional definition of a connected conjunctive query is the following: c is connected if the
following undirected graph is connected. The nodes are the atoms of c, and the edges are pairs
(g, g′) s.t. the atoms g and g′ share a common variable. For queries without constants, this is

equivalent to our definition.
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atom in c [Abiteboul et al. 1995]. Given two components c, c′, the following three
statements are equivalent: the logical implication c ⇒ c′ holds; there exists a
homomorphism c′ → c; Dc |= c′ [Chandra and Merlin 1977].

—A conjunctive query is a conjunction of components, q = c1, c2, . . . , ck. Given
two conjunctive queries q, q′, the implication q ⇒ q′ holds iff ∀j.∃i s.t. ci → c′j .

—A disjunctive query is a disjunction of components, d = c1 ∨ . . .∨ ck. The classic
result by Sagiv and Yannakakis [Sagiv and Yannakakis 1980] implies that an
implication d ⇒ d′ holds iff ∀i.∃j s.t. ci ⇒ c′j .

—A UCQ in DNF is an expression of the form Q = q1 ∨ . . . ∨ qm. An implication
Q ⇒ Q′ holds iff ∀i.∃j s.t. qi ⇒ q′j [Sagiv and Yannakakis 1980].

—A UCQ in CNF is an expression of the form Q = d1 ∧ . . . ∧ dm.

The terms DNF expression and CNF expression are justified by viewing the
components as atoms. Then the DNF expression is a disjunction of conjunction of
atoms, while the CNF expression is a conjunction of disjunctions of atoms. One
should keep in mind, however, that the components have their own conjunction,
thus a CNF expression is, in fact, a conjunction of disjunctions of existential quan-
tifiers of conjunctions.

Throughout this paper we will use the letters c, q, d, Q to denote a component,
conjunctive query, disjunctive query, and union of conjunctive queries respectively,
unless otherwise stated.

For CNF expressions we prove the following:

Proposition 2.2. If Q =
∧

i di and Q′ =
∧

j d′j are two UCQ queries in CNF,
and have no constants, then the implication Q ⇒ Q′ holds iff ∀j.∃i s.t. di ⇒ d′j.

Proof. Suppose the contrary: there exists an index j such that ∀i, di 6⇒ d′j .
Thus, forall i, by Sagiv and Yannakakis’ criteria we obtain that ∃ki s.t ciki

6⇒ d′j ,
where ciki

is one of the components of the disjunctive query di. On the other hand,
∀i, ciki

⇒ di, implying that
∧

i ciki
⇒ Q ⇒ Q′ ⇒ d′j . The left side is a conjunctive

query, the right side a disjunctive query. Applying Sagive and Yannakakis’ criteria
a second time, we obtain a component c′jl of d′j s.t.

∧

i ciki
⇒ c′jl. Now we use the

fact that c1k1
, c2k2

, . . . have no constants, and that c′jl is a component: hence there
exists i s.t ciki

⇒ c′jl, contradicting the fact that ciki
6⇒ d′j .

The proposition fails if the queries have constants: for example R(x, a), S(a, z) ⇒
R(x, y), S(y, z) (where a is a constant), but neither R(x, a) 6⇒ R(x, y), S(y, z) nor
S(a, z) 6⇒ R(x, y), S(y, z). This is the main reason why we eliminate constants.

We will assume throughout the paper that a query is minimized. We review
briefly: a component c is minimized if no component c0 exists with strictly fewer
atoms s.t. c0 ⇒ c; a conjunctive query

∧

ci (disjunctive query
∨

ci) is minimized
if each ci is minimized and i 6= j implies ci 6⇒ cj ; a CNF

∨

i qi (DNF
∧

di) is
minimized if each qi (di) is minimized and i 6= j implies qi 6⇒ qj (di 6⇒ dj).

As a consequence of the containment criteria for the DNF and CNF representa-
tion, each UCQ admits a unique (up to isomorphism) representation in DNF, and
a unique (up to isomorphism) representation in CNF that are minimized. From
now on, whenever we say that a query is given in DNF or in CNF, we assume it
is given in its minimized representation, which is unique up to isomorphism. Fur-
thermore, we will constantly move back and forth between the DNF and the CNF
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Algorithm 1 Algorithm from [Dalvi and Suciu 2004; Dalvi and Suciu 2007b]
computing P (q) for a conjunctive query without self-joins

1: Write q as a conjunction of components q = c1, . . . , cm.
2: if m ≥ 2 then

3: return P (c1) · P (c2) · · ·P (cm) /* independent join */
4: end if

5:

6: /* q is a single component: denote it c */
7: if c has no variables then

8: /* c consists of a single ground tuple t */
9: return P (t) /* look up in the probabilistic database */

10: end if

11:

12: if c has a root variable z then

13: return 1 −
∏

a∈ADom(1 − P (c[a/z])) /* independent project */
14: end if

15:

16: Otherwise FAIL

representation of a UCQ: this may come at the cost of an exponential increase in
the size of the expression, but does not affect the complexity of evaluating P (Q),
which is measured only in terms of the size of the database. To give an example of
a DNF to CNF conversion, consider the query:

qV =R(x1), S(x1, y1) ∨ S(x2, y2), T (y2) ∨ R(x3), T (y3)

The third conjunctive query has two components, R(x3) and T (y3). We convert
it into CNF, then minimize:

qV =(R(x1), S(x1, y1) ∨ S(x2, y2), T (y2) ∨ R(x3))

∧(R(x1), S(x1, y1) ∨ S(x2, y2), T (y2) ∨ T (y3))

=(R(x3) ∨ S(x2, y2), T (y2)) ∧ (R(x1), S(x1, y1) ∨ T (y3))

Finally, we define a root variable. Recall that the scope of a variable x is the
part of the expression where the variable is defined: for example, in q1 ∧ ∃x.q2, the
scope of x is q2.

Definition 2.3. Consider a query expression Q given by the grammar in Eq. 2.
A variable z is called a root variable if it occurs in all atoms within its scope.

Prior Work A conjunctive query is said to be without self-joins if no two atoms
have the same relational symbol. The algorithm 1 was first described in [Dalvi and
Suciu 2004; Dalvi and Suciu 2007b] and computes the probabilities for conjunctive
queries without self-joins. The algorithm proceeds inductively on the structure on
the query. If the query is disconnected, then it multiplies the probabilities of its
components. If the query is a single ground tuple t then it looks up and returns the
tuple’s probability in the probabilistic database. If the query is connected and has
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variables, then it chooses a root variable z and substitutes it successively with all
constants in the active domain: the resulting queries c[a/z], a ∈ ADom are indepen-
dent, and their probabilities are combined to compute P (c). Finally, if the query
has no root variable, then the algorithm fails. The two steps are called independent
join and independent project respetively, because they can be implemented as a
join, or as a project operator in Relational Algebra, over independent probabilistic
events [Dalvi and Suciu 2004].

The algorithm was proven in [Dalvi and Suciu 2004; Dalvi and Suciu 2007b]
to be complete for conjunctive queries without self-joins, in the following sense.
For any query q, the algorithm either succeeds in computing the probability of
q, or, if it fails, then the query is hard for FP#P . For example, the query q =
R(x), S(x, y), T (y) is connected and has no root variable: therefore it is hard for
FP#P . We briefly illustrate the algorithm on an example.

Example 2.4. Consider q = R(x), S(x, y) = ∃x.R(x) ∧ ∃y.S(x, y). algorithm 1
computes its probability as follows:

P (q) = 1 −
∏

a∈ADom

(1 − P (R(a),∃y.S(a, y)))

P (R(a),∃y.S(a, y)) = P (R(a)) · P (∃y.S(a, y))

P (∃y.S(a, y)) = 1 −
∏

b∈ADom

(1 − P (S(a, b)))

Here we have shown the existential quantifiers ∃y explicitly. In most of the rest of
the paper we will drop quantifiers.

However, the algorithm cannot be applied beyond conjunctive queries without
self-joins. For example, consider the query R(x1), S(x1, y1), S(x2, y2), T (x2). Here
we cannot apply multiply the probabilities of the two components, because they
share the common symbol S.

3. A SIMPLE ALGORITHM

We start by describing a very simple algorithm for computing the probability of
a union of conjunctive queries. The algorithm is incomplete yet, but only two
adjustments (shown in Sect. 4) are sufficient to make it complete. We motivate the
algorithm with an example:

Example 3.1. Consider the query q = R(x1), S(x1, y1), S(x2, y2), T (x2), which
can be written as q = c1, c2, where c1 = R(x1), S(x1, y1), c2 = S(x2, y2), T (x2). To
compute P (q) we use the inclusion-exclusion formula:

P (c1, c2) =P (c1) + P (c2) − P (c1 ∨ c2)

We have seen in Example 2.4 how to compute P (c1), and P (c2) is computed sim-
ilarly. We show here how to compute P (c3), where c3 = c1 ∨ c2, by writing it as
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follows:

c3 =∃z.((R(z) ∨ T (z)) ∧ ∃y.S(z, y)) =
∨

a∈ADom

((R(a) ∨ T (a)) ∧ ∃y.S(a, y))

P (c3) =1 −
∏

a∈ADom

(1 − P ((R(a) ∨ T (a)) ∧ ∃y.S(a, y)))

The last line holds because the queries (R(a)∨T (a))∧∃y.S(a, y) for a ∈ ADom are
independent. Next, P ((R(a)∨T (a))∧∃y.S(a, y)) = P ((R(a)∨T (a)))∧P (∃y.S(a, y)).
Thus, P (c3) can be computed in PTIME in the size of the database.

The example illustrates an important point: in order to compute the probability
of a conjunctive query with self-joins, we had to compute the probability of a
disjunctive query c1 ∨ c2 as an intermediate step. In other words, the class of
conjunctive queries is not a natural class to study: the natural class is that of
unions of conjunctive queries, UCQ.

To describe the algorithm for UCQ we need two definitions. First:

Definition 3.2. A separator variable for a query Q is a variable z s.t. Q ≡
∃z.Q1 and (a) z is a root variable (i.e. it appears in every atom), (b) for every
relation symbol R, there exists a number iR s.t. every atom with symbol R contains
exactly one occurrence of z, and that is on the position iR.

Only a disjunctive query can have a separator variable. To see this, write Q ≡
∃z.Q1 then expand Q1 in DNF: Q ≡ ∃z.q1 ∨ ∃z.q2 ∨ . . . ∨ ∃z.qm. Since z is a
root variable in each expression ∃z.qi, it follows that each such expression is a
component, and therefore Q is a disjunctive query.

On the other hand, not every disjunctive query has a separator variable. A trivial
example is R(x), S(x, y), T (y), which has no separator variable because it doesn’t
even have a root variable. More subtly, R(x1), S(x1, y1)∨S(x2, y2), T (y2) does have
a root variable if one writes it as ∃z.(R(z),∃y1.S(z, y1) ∨ T (z),∃x2.S(x2, z)). But
z is not a separator variable because it occurs on the first position in S(z, y1) and
on the second position in S(x2, z).

We have:

Proposition 3.3. Let d be a disjunctive query with a separator variable z. Then
the events d[a/z], a ∈ ADom are independent probabilistic events. In particular:

P (d) =1 −
∏

a∈ADom

(1 − P (d[a/z])) (5)

Proof. Let a 6= b be two distinct constants in the active domain. Consider
the lineage expressions of the queries d[a/z] and d[b/z]. We claim that these two
Boolean expressions do not share any common Boolean variables. Indeed, suppose
they share Xt, where t is a ground tuple: t = R(c1, c2, . . .). Since z is a separator
variable, every ground tuple of R occurring in the lineage of d[a/z] has the constant
a on position iR: in other words, ciR

= a. Reasoning similarly for d[b/z], we also
conclude that the ground tuple contains b on position iR, i.e. ciR

= b. This is a
contradiction because a 6= b.

The second definition is:
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Definition 3.4. Let Q = {Q1, Q2, . . . , Qk} be a set of queries. The co-occurrence
graph of Q is the following undirected graph: the nodes are 1, 2, . . . , k, and the edges
are pairs (i, j) s.t. there exists a relational symbol that occurs both in Qi and in
Qj. Let K1, . . . ,Km be the connected components (they form a partition on [k]).

Let Q = d1 ∧ . . . ∧ dk be a UCQ query written in CNF, and K1, . . . ,Km the
connected components of set of queries {d1, . . . , dk}. The symbol-components of Q
are:

Q1 =
∧

i∈K1

di, Q2 =
∧

i∈K2

di . . . Qm =
∧

i∈Km

di

Then we have:

P (Q) =P (Q1) · P (Q2) · · ·P (Qm) (6)

If m = 1, then we say that Q is symbol-connected.
Similarly, if d = c1∨ . . .∨ck is a disjunctive query, and K1, . . . ,Km are connected

components of the set of queries {c1, . . . , ck}, then the symbol-components of d are:

d1 =
∨

i∈K1

ci, d2 =
∨

i∈K2

ci . . . dm =
∨

i∈Km

ci

Then we have:

P (d) =1 − (1 − P (d1)) · (1 − P (d2)) · · · (1 − P (dm))

If m = 1, then we say that d is symbol-connected.
We can now describe a very simple algorithm for computing P (Q) for a UCQ Q:

algorithm 2 either computes P (Q) or fails. The algorithm proceeds inductively on
the structure of Q: each expressions P (Q′) represents a recursive call, with a simpler
query Q′. There are four main steps: an independent join, the inclusion/exclusion
formula, an independent union, and an independent project. The first and last step
generalize those of algorithm 1, and are justified by Eq. 6 and Eq. 5 respectively. In
fact, when run on a conjunctive queries without self-joins, algorithm 2 is identical
to algorithm 1.

The inclusion/exclusion formula in step 9 is the dual of the more familiar one,
because it is applied to a conjunction, like:

P (d1 ∧ d1 ∧ d3) =P (d1) + P (d2) + P (d3) − P (d1 ∨ d2) − P (d1 ∨ d3) − P (d2 ∨ d3) + P (d1 ∨ d2 ∨ d3)

This is the dual of the more familiar inclusion/exclusion formula:

P (d1 ∨ d1 ∨ d3) =P (d1) + P (d2) + P (d3) − P (d1 ∧ d2) − P (d1 ∧ d3) − P (d2 ∧ d3) + P (d1 ∧ d2 ∧ d3)

Note how the algorithm reaches the end of the recursion. If one of the ci’s in a
disjunctive query d =

∨

i ci is a ground tuple, then it is a symbol-component by
itself: this ground tuple cannot occur in any other component cj , because cj is
connected. Thus, ci will be isolated by step 15, and at the next step it is treated
as a query without variables: the algorithm simply looks up its probability in the
database.

Finally, if the algorithm ever reaches a disjunctive query that has no separator,
then it fails.
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Algorithm 2 Algorithm for Computing P (Q)
Input: UCQ Q, and Probabilistic database with active domain ADom
Output: P (Q)
Comments: Two small adjustments are needed to make the algorithm complete:
(1) rank the query before running the algorithm, see Sect. 4.1, and replace the
inclusion-exclusion formula in Line 9 with Mobius’s inversion function in Line 11,
see Sect. 4.2.
1: Compute the symbol-components: Q = Q1 ∧ . . . ∧ Qm

2: if m ≥ 2 then

3: return P (Q1) · P (Q2) · · ·P (Qm) /* independent join */
4: end if

5:

6: /* Q is symbol-connected */
7: Write Q in CNF: Q = d1 ∧ . . . ∧ dk

8: if k ≥ 2 then

9: return −
∑

s⊆[k],s 6=∅(−1)|s|P (
∨

i∈s dk) /* inclusion/exclusion */

10: /* replaced with Mobius’ inversion formula in Sect. 4.2: */
11: /* return −

∑

v<1̂,µ(v,1̂) 6=0 µL(v, 1̂)P (dv) */
12: end if

13:

14: /* Q is a disjunctive query. Denote it d */
15: Compute the symbol-components: d = d1 ∨ . . . ∨ dm

16: if m ≥ 2 then

17: return 1 − (1 − P (d1)) · · · (1 − P (dm)) /* independent union */
18: end if

19:

20: /* d is symbol-connected */
21: Write d as d = c1 ∨ . . . ∨ ck

22: if d has no variables (i.e. d is a single ground tuple t) then

23: return P (t) /* look up the probability of t */
24: end if

25:

26: if d has a separator variable z then

27: return 1 −
∏

a∈ADom(1 − P (d[a/z])) /* independent project */
28: end if

29: Otherwise FAIL

We assumed that the query has no constants, yet in the last step of the algorithm
we construct the query d[a/z], where a is a constant. But for all practical purposes,
we can view this also as a query without constants. Indeed, for every relation
symbol R, every atom referring to R in d[a/z] will have a on the same attribute
position iR. We can simply remove that attribute from R, thus reducing its arity by
one, and restrict the database instance to only those tuples that have the constant
a on attribute iR.

Clearly algorithm 2 is sound: whenever it succeeds, it computes correctly the
probability P (Q) and does this in PTIME in the size of the input database. We
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want the algorithm to be complete, i.e. to not miss out any query in UCQ(P ).
However, the algorithm is not yet complete: in the next section we make two
adjustments to complete it.

4. THE COMPLETE ALGORITHM

There are two reasons why algorithm 2 is not complete, and each requires a different
adjustment.

4.1 Ranking

First, the algorithm 2 may not find a separator variable, yet the query is still in
UCQ(P ). For example, consider q = R(x, y), R(y, x). The query has no separator.
The root variable x is not a separator because it occurs on the first position in
R(x, y) and on the second position in R(y, x); as a consequence the events q[a/x],
a ∈ ADom are no longer independent. The same holds for y: it is not a separator
for q. Thus, algorithm 2 fails immediately on q. But q ∈ UCQ(P ) by the following
argument. Transform a probabilistic database over the vocabulary R(A,B) into
another probabilistic database, over the vocabulary RA=B(A), RA<B(A,B) and
RB<A(B,A), as follows:

RA=B = ΠA(σA=B(R)) RA<B = ΠAB(σA<B(R)) RB<A = ΠBA(σB<A(R))

Then rewrite the query q to RA=A(x) ∨ RA<B(x, y), RB<A(x, y). Now x is a sepa-
rator variable, allowing us to compute the query in PTIME (using algorithm 2).

This justifies the following definition. We will assume that the domain of con-
stants is an ordered domain.

Definition 4.1. A query Q is ranked if it is consistent after the following trans-
formation: for any atom, and any two attribute positions i < j in that atom, add the
predicate xi < xj to the query, where xi, xj are the variables occurring on positions
i and j respectively. (Note: xi, xj do not need to be distinct variables.)

In a ranked query no variable is repeated in the same atom (as in R(. . . x, . . . x, . . .)).
Furthermore, if an atom contains both variables x, y and x comes before y, then
in all other atoms that contain both variables, x comes before y (that is, no two
atoms R(. . . x, . . . y, . . .) and S(. . . y, . . . , x, . . .) may exists).

For example, R(x, y), R(y, z), R(x, z) is ranked because x < y ∧ y < z ∧ x < z
is consistent. The query R(x, y), R(y, x) is not ranked because x < y ∧ y < x is
inconsistent; also R(x, x, y) is not ranked because x < x ∧ x < y is inconsistent.

We prove:

Proposition 4.2. Every UCQ query Q is computationally equivalent to a ranked
UCQ query Q′ over an extended vocabulary; that is, the problem “given D compute
PD(Q)” can be reduced in polynomial time to “given D′ compute PD′(Q′)”, and
vice versa.

Proof. (Sketch) The proof idea is the same as in the example given earlier. For
every symbol R, define a ranking for R to be a surjective function τ : [k] → [m],
where k is the arity of R, and m is a number such that 1 ≤ m ≤ k. The extended
vocabulary will consists of symbols Rτ , where R is a relation name and τ is a
ranking for R: the arity of Rτ is m.
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Given a ranking τ for R and two number i, j ∈ [k], denote opτ
i,j the unique

relation < or = or > for which τ(i) opτ
i,jτ(j) holds. Let g = R(x1, . . . , xk) be

an atom in Q, where x1, . . . , xk are variables, not necessarily distinct, and define
the predicate ρg,τ =

∧

1≤i<j≤k xi opτ
i,jxj . Let τ−1 be any left inverse of τ (choose

one arbitrary), and define τ−1(x1, . . . , xk) = (xτ−1(1), . . . , xτ−1(m)). Then, given a
query Q, we define the new query Q′ inductively on the structure of Q, following
the grammar Eq. 2:

(R(x̄))′ =
∨

τ

(Rτ (τ−1(x̄)) ∧ ρR(x̄),τ )

(∃x.Q1)
′ = ∃x.(Q1)

′ (Q1 ∨ Q2)
′ = Q′

1 ∨ Q′
2 (Q1 ∧ Q2)

′ = Q′
1 ∧ Q′

2

Next we prove that Q and Q′ are “equivalent” more precisely that their computa-
tion problem is equivalent. Given a database D, we transform into a new database
D′, as follows. For each symbol R and for each ranking τ , define:

Rτ =Πτ−1(1)···τ−1(m)σ
V

1≤i<j≤k i opτ
i,j

j(R)

The tuples in D are in 1-1 correspondence with those in D′. Therefore, when D is
a probabilistic database (meaning that each tuple t has a probability p(t)), then so
is D′, and they have the same sets of possible worlds. It is straightforward to check
that PD(Q) = PD′(Q′). For the converse, given a database D′ for Q′, define a new
database D where each relation R consists of all tuples of the form (aτ(1), . . . , aτ(k)),
for all tuples (a1, . . . , am) ∈ Rτ and for all rankings τ . Here, too, it is easy to check
that the tuples of D and D′ are in 1-1 correspondence, and PD(Q) = PD′(Q′).

It remains to remove the predicates <,=, > from Q′, while ensuring that it is
ranked. First, write it in DNF, Q′ =

∨

i qi. For each qi, one of two things may
happen. Either the relational predicates are inconsistent, e.g. contain x < x,
or a cycle in the strict order: then remove qi from the definition of Q′. Or, the
relational predicates are consistent: in this case, from each equivalence class defined
by = choose a unique variable x, and substitute all other variables in the same
equivalence class with x; then remove all <,=, > predicates. The resulting query
no longer has any predicates <,=, >, it is ranked (since by re-introducing the
predicates < and > it will remain consistent), and its semantics on the database D′

has not changed (since each relation in D′ already enforces the predicates < and >
that we removed from the query).

The first adjustment that we make to algorithm 2 is to rank the query before
running the algorithm. Ranking needs to be done only once: if Q is ranked, then
all subqueries processed recursively by algorithm 2 are also ranked. Therefore, one
does not have to change the actual algorithm, one just needs to rank the query
once, before running the algorithm.

Definition 4.3. A disjunctive query d is called immediately unsafe if it is
symbol-connected, has variables, and has no separators.

In other words, d is immediately unsafe if the algorithm gets stuck on d immedi-
ately, i.e. it fails on d immediately.

Theorem 4.4. If d is ranked and immediately unsafe then computing P (d) is
hard for FP#P .
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The theorem is the hardest technical result in this paper, and most of the paper
consists of the proof of this result, starting with Sect. 5. As we have seen, the
condition that d be ranked is necessary: a counterexample is R(x, y), R(y, x), which
is immediately unsafe, but is in UCQ(P ).

We illustrate the theorem with some queries that will be important further in
the paper:

Example 4.5. All queries below are ranked, and immediately unsafe. Hence,
none of these queries is in UCQ(P ), unless P = #P .

h0 =R(x0), S1(x0, y0), T (y0)

h1 =R(x0), S1(x0, y0) ∨ S1(x1, y1), T (y1)

h2 =R(x0), S1(x0, y0) ∨ S1(x1, y1), S2(x1, y1) ∨ S2(x2, y2), T (y2)

h2 =R(x0), S1(x0, y0) ∨ S1(x1, y1), S2(x1, y1) ∨ S2(x2, y2), S3(x2, y2) ∨ S3(x3, y3), T (y3)

. . .

hk =R(x0), S1(x0, y0) ∨ S1(x1, y1), S2(x1, y1) ∨ . . . ∨ Sk(xk, yk), T (yk)

4.2 Mobius Inversion Formula

The second problem in algorithm 2 is that the inclusion-exclusion formula attempts
to compute the probability of all queries of the form

∨

i∈s di, for all nonempty
subsets s. If any of these queries is hard, then the algorithm eventually fails.
But, in some cases, some of these queries are not needed in the inclusion/exclusion
formula, because they cancel out with other, equivalent queries. We illustrate this
with the query qW = d1 ∧ d2 ∧ d3 where:

d1 =R(x1), S1(x1, y1) ∨ S2(x2, y2), S3(x2, y2)

d2 =R(x3), S1(x3, y3) ∨ S3(x4, y4), T (y4)

d3 =S1(x5, y5), S2(x5, y5) ∨ S3(x6, y6), T (y6)

The inclusion/exclusion formula iterates over these three queries, as well as the
following:

d12 =d1 ∨ d2 = R(x1), S1(x1, y1) ∨ S2(x2, y2), S3(x2, y2) ∨ S3(x4, y4), T (y4)

d23 =d2 ∨ d3 = R(x3), S1(x3, y3) ∨ S1(x5, y5), S2(x5, y5) ∨ S3(x4, y4), T (y4)

d123 =d1 ∨ d3 = d1 ∨ d2 ∨ d3 ≡ h3

Two facts are interesting here. First, d123 is equivalent to h3 in Example 4.5, and
therefore is hard. The naive algorithm would simply apply the inclusion-exclusion
formula and fail when it reaches d123. Second, we have the following equivalence:
d1 ∨ d3 ≡ d1 ∨ d2 ∨ d3; in other words, d13 = d123 and the two hard queries cancel
out in the inclusion-exclusion formula:

P (qW ) =P (d1) + P (d2) + P (d3) − P (d1 ∨ d2) − P (d1 ∨ d3) − P (d2 ∨ d3) + P (d1 ∨ d2 ∨ d3)

=P (d1) + P (d2) + P (d3) − P (d12) − P (d23)

All five queries on the last line have a separator, hence all are in UCQ(P ). It
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follows that qW is in UCQ(P ), and in order to compute P (qW ) in PTIME we must
“cancel out” the two hard terms in the inclusion/exclusion formula.

The algebraic definition of the inclusion-exclusion formula is Mobius inversion
formula on lattices. We review here the basic definitions, following Stanley [Stanley
1997]. A finite lattice is a finite ordered set (L,≤) where every two elements u, v ∈ L
have a greatest lower bound u△ v and a least upper bound u▽ v, called meet and
join. (The standard notations are ∧ and ∨, but we reserve these for logical OR
and AND operations on queries.) Since the lattice is finite, it has a minimum and
a maximum element, denoted 0̂, 1̂. We say that v covers u if u < v and there is no
w such that u < w < v. The atoms are all elements that cover 0̂; the co-atoms are
all elements covered by 1̂; u is called atomic if it is the join of atoms; u is called
co-atomic if it is the meet of co-atoms; the entire lattice is atomic (co-atomic) if all
elements are atomic (co-atomic).

The Mobius function on the lattice2 L is the function µL : L × L → Z defined
by:

µL(u, u) =1

µL(u, v) = −
∑

w:u<w≤v

µL(w, v)

(It follows that, whenever u 6≤ v, µ(u, v) = 0.) We drop the subscript and write µ
when L is clear from the context.

The Mobius function has the following important property. Let f : L → R be any
real function defined on the lattice. Define a new function g as g(v) =

∑

u≤v f(u).
Then, one can recover f from g by:

f(v) =
∑

u≤v

µ(u, v)g(u) (7)

Let Q = d1 ∧ . . . ∧ dk be a query in CNF. For any set s ⊆ [k], define s̄ = {i |
di ⇒

∨

j∈s dj}. The following three properties follow immediately: s ⊆ s′ ⇒ s̄ ⊆ s̄′;

s ⊆ s̄; s̄ = s̄. Hence, s 7→ s̄ is a closure operator. A set s is closed if s̄ = s. Denote
L(Q) the set of closed sets.

Definition 4.6. Given a UCQ query Q, its CNF lattice is (L(Q),≤), where
L(Q) consists of all closed subsets of [k], and u ≤ v if u ⊇ v.

The CNF lattice has the following properties:

—Each element u ∈ L(Q), u 6= 1̂, represents a disjunctive query du =
∨

i∈u di. By
convention, we denote d1̂ = Q. Note that the lattice order u ≤ v corresponds to
reverse implication, dv ⇒ du.

—Q ≡
∧

u∈L,u6=1̂ du.

—For all u, v ∈ L, u ≤ v iff dv ⇒ du. In particular, du ≡ dv iff u = v.

2The standard definition of the Mobius function is on a poset, i.e. one does not need it to be a

lattice. But in this paper we are only interested in the Mobius function on lattices.
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—For all u, v ∈ L(Q), du△v = du ∨ dv. Here △ denotes the meet operation in the
lattice (traditionally denoted ∧), while ∨ is query disjunction. In other words,
the lattice-meet (traditionally written ∧) is the query-or (∨).

—The disjunctive queries d1, . . . , dk in the CNF representation of Q correspond to
the co-atoms of L(Q). This follows from our assumption that the CNF represen-
tation is minimized: if dj is not a co-atom, then dl ⇒ dj for some l 6= j, hence
dj it can be removed from the CNF expression Q =

∧

i=1,k di, contradicting the
fact that the CNF expression was minimized.

—The lattice is co-atomic.

Proposition 4.7 Mobius inversion formula for queries in CNF. Let Q
be a UCQ, with CNF lattice (L(Q),≤). Then:

P (Q) = −
∑

v<1̂

µL(v, 1̂)P (dv) (8)

Proof. Denote R = ¬Q, and, for every v ∈ L, denote ev = ¬dv. The following
three properties hold: (a) R ≡ e1̂ ≡

∨

v∈L(Q),v 6=1̂ ev; (b) u ≤ v iff eu ⇒ ev; (c) for

all u, v ∈ L(Q), eu△v = eu ∧ ev. We first prove:

P (R) = −
∑

v<1̂

µL(v, 1̂)P (ev) (9)

Here we follow [Stanley 1997]. For all u ∈ L(Q), denote f(u) = P (eu∧¬(
∨

v<u ev)).
Then:

P (eu) =
∑

v≤u

f(v) ⇒ f(u) =
∑

v≤u

µL(v, u)P (ev)

The claim Eq. 9 follows by setting u = 1̂ and noting f(1̂) = 0. From here, Eq. 8
follows from the following three observations: P (Q) = 1 − P (R); for all v ∈ L(Q),
P (dv) = 1 − P (ev); and

∑

v∈L µ(v, 1̂) = 0.

It should be clear that Mobius’ inversion formula generalizes inclusion/exclusion.
Therefore, the second change that we need to make to algorithm 2 is to replace

the inclusion-exclusion formula with Mobius’ inversion formula: that is, replace
Line 9 with Eq. 8. Notice that when we apply the Mobius’ inversion formula we
must explicitly avoid the lattice elements whose Mobius function is 0: this is shown
in Line 11 of the algorithm. This is a key technical detail that allows us to prove
that the algorithm is complete.

Example 4.8. Consider qW from the beginning of this section, qW = (h30 ∨
h32) ∧ (h30 ∨ h33) ∧ (h31 ∨ h33), where:

h30 =R(x0), S1(x0, y0)

h31 =S1(x1, y1), S2(x1, y1)

h32 =S2(x2, y2), S3(x2, y2)

h33 =S3(x3, y3), T (y3)

Note that h30 ∨h31 ∨h32 ∨h33 ≡ h3, where h3 is given in Example 4.5, and is hard
for FP#P . Figure 1 shows the CNF lattice for qW . All five queries other than the
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qW =(h30 ∨ h32) ∧ (h30 ∨ h33) ∧ (h31 ∨ h33)

Fig. 1. The CNF Lattice for qW ; see Example 4.8.

bottom query have a separator, and hence these five queries are in UCQ(P ). At
the bottom we have h3, which is not in UCQ(P ). The Mobius function µ(v, 1̂) is
shown for each node: in particular, it is 0 for the bottom element. That means
that we can compute P (qW ) using Mobius’ inversion formula, by summing over the
five queries (which form a W, hence the name of the query): we don’t need P (h3).
Notice that the lattice in Figure 1 is not atomic: neither h30 ∨h32 nor h31 ∨h33 are
atomic. By exploiting this fact [Jha and Suciu 2010], it has been shown that P (qW )
can also be computed in PTIME using a d-DNNF [Darwiche 2000; Darwiche and
Marquis 2002], as an alternate technique to Mobius’ inversion formula.

Figure 2 shows the CNF lattice of another query, called q9. The lattice has 9
points (hence the name). Here, too, the query at the bottom of the lattice is h3,
while all other queries are in UCQ(P ). The Mobius function at the bottom element
is = 0, hence we can compute P (q9) using Mobius’ inversion formula without the
need to compute P (h3). Therefore, q9 is in UCQ(P ). The interesting fact about
this lattice is that it is both atomic and coatomic, yet it has µ(0̂, 1̂) = 0. The
technique used in [Jha and Suciu 2010] to derive a polynomial size d-DNNF no
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'(#$

q9 =(h30 ∨ h33) ∧ (h31 ∨ h33) ∧ (h32 ∨ h33) ∧ (h30 ∨ h31 ∨ h32)

Fig. 2. The CNF Lattice for q9; see Example 4.8.

longer works if the lattice is atomic. In fact, it is conjectured in [Jha and Suciu
2010] that this query does not have a polynomial size d-DNNF. To the best of our
knowledge, the only technique to date that can compute P (q9) in PTIME is Mobius’
inversion function, as in algorithm 2.

4.3 The Dichotomy Theorem

We prove now the dichotomy theorem for unions of conjunctive queries: every
query is either in UCQ(P ), or it is provably hard for FP#P . For the proof of the
dichotomy theorem, we use algorithm 2 and Theorem 4.4. We assume throughout
this section that the query is ranked: the results immediately extend to unranked
queries, since we have shown that every query can be ranked without affecting its
membership in UCQ(P ).

If Q is a query and R a relational symbol, then Q[R = false] denotes the result
of replacing in Q every atom that refers to R with false.
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Definition 4.9. Define the following rewrite rule on UCQ, denoted Q → Q′:

Q →Q[R = false] where R is a relational symbol

Q →dv where v ∈ L(Q) and µ(v, 1̂) 6= 0

d →d[a/z] where z is a separator and a a constant

Denote
∗
→ the reflexive and transitive closure of →.

As in algorithm 2, we make the assumption that the query d[a/z] is rewritten such
that it does not mention the constant a. This is possible because z is a separator
variable: for every symbol R, every atom with the symbol R will have a on the
same position, so we simply eliminate that position, decreasing the arity of R by
one, for every R.

Definition 4.10. A query Q is called unsafe if there exists a rewriting Q
∗
→ Q′,

s.t. Q′ is immediately unsafe (Def. 4.3). Otherwise it is called safe.

For a simple illustration, the following query is unsafe:

d =R(z0, x0), S(z0, x0, y0) ∨ S(z1, x1, y1), T (z1, y1)

To see this, use the separator z = z0 = z1 (i.e. write d equivalently as d[z/z0, z/z1]:
now z is a separator), then rewrite d → d[a/z]: the latter is the same as h1 in
Example 4.5.

Theorem 4.11 Dichotomy. For every UCQ query Q the following holds:

—If Q is safe, then Q ∈ UCQ(P ).

—If Q is unsafe, then computing P (Q) is hard for FP#P .

Before proving the theorem we give a technical lemma. Call a rewriting step
Q → dv maximal, if for every u s.t. v < u, if µ(u, 1̂) 6= 0 then du is safe. We call a

sequence of rewritings Q
∗
→ Q′ maximal if every rewriting step of type Q → dv is

maximal (there are no restrictions on the other two types of rewritings). Then:

Lemma 4.12. If Q
∗
→ Q′ is a maximal rewriting, then the computation problem

of P (Q′) can be reduced in polynomial time to the computation problem of P (Q).
In particular, if Q′ is hard for FP#P , then Q is hard for FP#P .

Proof. We prove the lemma by induction on the length of the rewriting. When
the length is 0 then it is trivial, so assume the length is > 0 and consider the first
rewriting step Q → Q′′. There are three cases.

The rewriting is Q → Q[R = false]. By induction, Q′′ = Q[R = false] and
the computation problem of P (Q′) can be reduced to that of P (Q′′). On the other
hand, one can compute P (Q′′) given an oracle for computing P (Q): indeed, given
a database D′′ for Q′′, modify it by setting the probabilities of all tuples in R to
0. This change does not affect P (Q′′) (since Q′′ does not mention R), and on the
new database, P (Q) = P (Q′′).

The rewriting is d → d[a/z]. Here Q = d is a disjunctive query. By induction, we
know that the computation problem of P (Q′) can be reduced to that of P (d[a/z]).
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The latter further reduced to P (d) as follows. Consider a database D′′ for d[a/z].
Recall that in the schema for d[a/z], each relation R has one missing attribute,
namely the attribute corresponding to the separator variable z: modify D′′ by re-
inserting that attribute, and setting its value to the constant a in all tuples. Call
D the resulting database. It is easy to see that PD(d) = PD′′(d[a/z]).

The rewriting is Q → du, where u ∈ L(Q) and µ(u, 1̂) 6= 0. Since the rewriting
is maximal, we know that for all queries dw for w > u, either µ(w, 1̂) = 0 or dw

is computable in PTIME: we will use this below. By induction, we know that the
computation problem for P (Q′) can be reduced to P (du); we show that the latter
can be reduced to P (Q). Assume we have access to an oracle computing P (Q). Let
D′′ be a probabilistic database for du. We construct a new probabilistic database
D consisting of D′′ and the union of several deterministic databases Dz, one for
each z ∈ L(Q), u 6≤ z < 1̂. We will define Dz such that Dz |= dz, yet Dz does not
affect any query dw, for u ≤ w. We start by noting that u 6≤ z implies dz 6⇒ du;
since dz is a disjunctive query dz = c1 ∨ c2 ∨ . . ., where each ci is a component,
there exists i such that ci 6⇒ du (such an i exists because of Sagiv and Yannakakis
theorem [Sagiv and Yannakakis 1980], as we explained in Sect. 2). Then define Dz

to be the canonical database of ci. We further ensure that all constants in Dz are
distinct from all other constants used in D′′ or in other Dz’s: this is possible since
ci has no constants, so we can simply replace its variables with fresh constants in
the canonical database. By adding Dz to D′′ we ensure that the query dz is true:
Dz ∪ D′′ |= dz. On the other hand, this does not affect any of the queries dw for
u ≤ w. Indeed, if a valuation maps a component c′j of dw to Dz ∪D′′, then it must
map it either entirely to Dz or entirely to D′′, because c′j is connected and Dz,D

′′

do not share constants: the former is not possible, because it would imply ci ⇒ c′j ,
which implies ci ⇒ du (because c′j ⇒ dw and dw ⇒ du), which contradicts u 6≤ z.
Let D = D′′ ∪

⋃

u6≤z<1̂ Dz. We have:

PD(Q) =PD(
∧

w<1̂

dw)

=PD(
∧

u≤w<1̂

dw) because if u 6≤ z < 1̂ then D |= dz

=PD′′(
∧

u≤w<1̂

dw) because dw is not affected by any Dz

= −
∑

u≤w<1̂

µ(w, 1̂)PD′′(dw)

Given PD(Q), we can compute PD′′(du) because µ(u, 1̂) 6= 0 and for all w s.t.
u < w < 1̂, either µ(w, 1̂) = 0 and then we ignore that term, or the probability
PD′′(dw) can be computed in PTIME.

Proof. of Theorem 4.11. To prove the first item we show that algorithm 2 never
gets stuck on a safe query. Indeed, starting with Q, the algorithm processes recur-
sively various queries Q′. We prove that for each such Q′, Q

∗
→ Q′. Indeed, when

the algorithm narrows to a symbol-component in Lines 3 and 15, then we rewrite
Q → Q′ by setting R = false for all relations outside that symbol-component.
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When the algorithm computes the probability recursively on a lattice element dv

s.t. µ(v, 1̂) 6= 0 (Line 11), then we use the rewrite rule Q → dv; and when the algo-
rithm substitutes a separator with a constant (Line 27) then we rewrite d → d[a/z].

Thus, if the algorithm ever gets stuck, it gets stuck on some Q′ s.t. Q
∗
→ Q′; since Q′

is immediately unsafe, we conclude that Q is unsafe, contradicting the assumption
that Q was safe. Therefore, the algorithm never gets stuck on a safe query.

We prove now the second item. For that, we will prove the following claim: for
any unsafe query Q there exists a maximal rewriting Q

∗
→ Q′ s.t. Q′ is immediately

unsafe. The claim proves the second item, because Theorem 4.4 ensures that Q′ is
hard, then Lemma 4.12 proves that Q is hard. We prove the claim by induction
on the structure of Q. Indeed, suppose Q is unsafe, and suppose that the first step
in a rewriting to an immediately unsafe query is Q → dv. Consider all elements
u ∈ L(Q) with the properties: µ(u, 1̂) 6= 0, and du is unsafe: there exists at
least one such element, namely v. Choose u to be any maximal element with this
property. Since du is simpler than Q, by induction hypothesis there exists a maximal
rewriting du

∗
→ Q′, with Q′ immediately unsafe. Then the rewriting Q → du

∗
→ Q′

is maximal, and proves the claim. If the first step of the rewriting any of the other
two kinds, Q → Q′′, then we simply use induction hypothesis on Q′′ to argue that
there exists a maximal rewriting Q′′ ∗

→ Q′, which gives us a maximal rewriting
Q

∗
→ Q′. This concludes the proof of the claim and the theorem.

4.4 Representation Theorem

Finally, we show that testing for zeros of the Mobius function is a necessary step
in ensuring that an algorithm is complete. For that we prove the following:

Theorem 4.13 Representation theorem. Let L be any finite lattice. Then
there exists a UCQ query Q such that (a) the CNF lattice of Q is isomorphic to L,
(b) if u = 0̂ ∈ L, then the query du is unsafe, and (c) if u ∈ L, u 6= 0̂, 6= 1̂, then du

is safe.

In general, there are many queries Q for which L(Q) is isomorphic to a given
lattice L. The query stated by the theorem is one that has the special property
that P (Q) is in PTIME iff µL(0̂, 1̂) = 0. In other words, the theorem says that
there is no substitute to checking µL(0̂, 1̂) = 0.

Proof. Call an element r ∈ L join irreducible if whenever v1 ▽ v2 = r, then
either v1 = r or v2 = r. (Recall that ▽ is join: traditionally written ∨ in lattice
theory.) This includes all atoms (since every atom is join irreducible), and possibly
more elements. Let R = {r0, r1, . . . , rk} be all join irreducible elements in L. For
every u ∈ L denote Ru = {r | r ∈ R, r ≤ u}, and note that Ru△v = Ru∪Rv. Define
the following components (see also Example 4.8):

hk0 = R(x0), S1(x0, y0)

hki = Si(xi, yi), Si+1(xi, yi) i = 1, k − 1

hkk = Sk(xk, yk), T (yk)

Define Q =
∧

u<1̂

∨

ri∈Ru
hki. Then the query at 0̂ is

∨

i hki = hk and is unsafe;

any query at some u 6= 0̂ misses at least one component of hk, and thus is safe.
This proves the claim.
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Both queries qW and q9 were obtained by this construction from the lattices in
Fig. 1 and Fig. 2. Note that the query Q defined in the proof is given in a CNF
expression which is not necessarily minimized. This is needed in order to ensure
that L(Q) is isomorphic to L. If one minimizes Q first, then L(Q) is isomorphic
to the set of co-atomic elements of L, which form a meet-sublattice, denote it L0.
Thus, algorithm 2 operates on the lattice L0 rather than L. However, the test
µL(0̂, 1̂) = 0 is still unavoidable in order to check if P (Q) is in PTIME, because of
the following two properties, which can be proved using standard lattice-theoretic
techniques [Stanley 1997]: (a) if 0̂ 6∈ L0 then µL(0̂, 1̂) = 0; in that case P (Q) is
in PTIME (because all elements in L0 are safe queries), and (b) if 0̂ ∈ L0 then
µL(0̂, 1̂) = µL0

(0̂, 1̂); in that case P (Q) is in PTIME iff µL(0̂, 1̂) = 0.

5. OUTLINE OF THE HARDNESS PROOF

In the rest of the paper we prove Theorem 4.4. The proof has three parts:

Query Leveling. We assign to each relation attribute a “type” s.t. every join is
between the same type. We call such a type a “level”. Call a query “leveled” if
all attributes in a relation symbol are on distinct levels. This prevents two distinct
attributes of a symbol to join, even indirectly. For example, R(x, y), R(y, z) is not
leveled, since both attributes of R must have the same type. In Sect. 6 we prove
that if a query d is immediately unsafe, then it can be transformed into a leveled
query d′ that is immediately unsafe, and the computation problem for P (d′) can be
reduced to that for P (d). Thus, it suffices to prove hardness for all leveled queries,
and we restrict the discussion to leveled queries in the rest of the proof.

Rewriting to forbidden queries. If a query is unsafe, then the rewrite rules in
Def. 4.9 allow us to simplify it. But if d is immediately unsafe, then none of those
rules further applies. To further simplify a query d, we introduce a new rewrite
step, where we replace all variables on a level with constants. If d′ is the resulting
query, then it is not difficult to prove that the computation problem for P (d′) can
be reduced to that for P (d). The difficulty is to choose the level such that, after the
rewriting, d′ is still unsafe. This is only possible for leveled queries: for example it
is not possible for R(x, y), R(y, z) because there all attributes have the same level,
and substituting that level with constants leads to a safe query (without variables).
This explains why we leveled the query in the first part. In Sect. 7 we prove that,
if d is leveled and immediately unsafe, then, as long as it has three or more levels,
one can choose a level such that, after substituting it with constants, the new query
d′ is also unsafe. This allows us to simplify the query until it has only two levels.
The proof of this step is rather subtle, because choosing the right level to substitute
such that the resulting query is still unsafe requires a careful case analysis.

Hardness of forbidden queries. Call a 2-leveled query that is immediately unsafe,
a forbidden query. Based on the previous two parts, it suffices to prove hardness
for forbidden queries, which we do in Sect. 8: we show that every forbidden query
is hard for FP#P . This is by far the most difficult part of the hardness proof. Our
reduction is from the partitioned, positive 2CNF problem, which was shown to be
#P-hard by Provan and Ball [Provan and Ball 1983]. We show that if d is any
forbidden query, then one can solve the pp-2CNF problem with a polynomial-time
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Turning Machine with an oracle for P (d). The proof is difficult because the general
structure of a forbidden query is quite different from that of the pp-2CNF problem.

6. QUERY LEVELING

Fix a relational vocabulary. An attribute is a pair (R, i), where R is a relation name
and i ∈ [arity(R)]. Denote Attr the set of all attributes in the vocabulary.

Let d be a disjunctive query, d = c1 ∨ c2 ∨ . . . We usually call ci a “component”,
but in this section we will prefer the longer term “connected conjunctive query”,
or just “conjunctive query”. Construct the following undirected graph, called the
attribute graph of d. The nodes are Attr, and the edges are pairs ((R, i), (S, j)) s.t.
there exists a conjunctive query ck that contains two atoms R(. . .) and S(. . .) s.t.
the same variable x occurs in position i in the first atom and in position j in the
second atom. In other words, two attributes are connected in the graph if they are
joined in some of the queries ck.

Definition 6.1. A level of d is a connected component in the attribute graph of
d.

Thus, a level is a set of attributes, and every attribute belongs to exactly one
level Z. By some abuse of notation we say that a variable x belongs to a level Z,
and write x ∈ Z, when x occurs in an attribute position that is at the level Z.
Clearly a variable x belongs to exactly one level. In other words, one can view the
levels as a partition of the set of variables, and each level Z as a set of variables.

We start by establishing the connection between a separator and a level. Recall
that d = c1 ∨ c2 ∨ . . . is called symbol-connected if its co-occurrence graph is con-
nected Def. 3.4. A variable x in ci is a root variable if it occurs in all atoms of
ci.

Proposition 6.2. Let d be a disjunctive query that is symbol-connected. Then
d has a separator iff there exists a level Z that contains only root variables.

Proof. To prove the “if” direction, assume Z is a level that contains only root
variables. Then Z contains at least one variable from each component ci, because
the query is symbol-connected; also, Z contains at least one attribute from each
relational symbol R. We prove that it contains exactly one attribute from each
symbol R. For each R, let iR be the smallest attribute in Z: that is, (R, iR) ∈ Z,
and, if (R, j) ∈ Z then iR ≤ j. Call (R, iR) the minimal Z-attribute in R. We claim
that if a minimal Z-attribute (R, iR) is connected to some other attribute (S, j) in
the attribute graph, then (S, j) is also a minimal Z-attribute. Indeed, consider a
component containing R(. . .), S(. . .) and a common variable x on position iR in
R and on position j in S. Clearly x is a root variable. Suppose iS < j: then
the variable y on position iS in S is also a root variable, and must also occur in
R, on some position i, and obviously (R, i) ∈ Z. Because the query is ranked
(Def. 4.1), we must have i < iR, contradicting the fact that iR was minimal. Thus,
Z contains exactly one attribute in each relation, and exactly one root variable in
each component. We prove now that it is a separator. Let xi be the root variable
in ci on level Z. Write d as ∃z.(c1[z/x1] ∨ c2[z/x2] ∨ . . .). Now z is a separator
variable: it is clearly a root variable, and in every atom with relation symbol R,
the variable z occurs precisely on the attribute that is at the level Z. This proved
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the “if” direction. For the “only if” direction, write d as Q = ∃z.(q1 ∨ q2 ∨ . . .)
where z is a separator variable. Let Z be the set of attributes where z occurs: we
prove that Z is a level, and that it satisfies the proposition. First, Z is a level,
because if two attributes (R, i) and (S, j) join, and (R, i) is in Z, then every atom
with symbol R contains z on position i: since it joins with (S, j), the atom with
symbol S also contains z on position j, hence (S, j) is in Z. Obviously, Z contains
only root variables (namely z).

In the rest of the paper we will use the criteria in Prop. 6.2 as the definition of
a separator in a leveled query, instead of the official Def. 3.2.

Definition 6.3. A disjunctive query is called leveled if every level Z contains
at most one attribute from every relational symbol R.

Example 6.4. All queries hk in Example 4.5 are leveled. Queries qW , q9 in
Fig. 1, Fig. 2 are leveled.

The following two queries are not leveled:

d1 =R(x, y), R(y, z)

d2 =R(x, y), S(y, z) ∨ R(x′, y′), S(x′, y′)

The main result in this section is:

Theorem 6.5 Leveling. If d is a disjunctive query that is immediately unsafe,
then there exists a leveled, disjunctive query d′ s.t. d′ is also immediately unsafe,
and the computational problem for P (d′) can be reduced to that of P (d).

In the rest of the section we prove Theorem 6.5. We start by constructing the
leveled query. Fix a number L > 0, call a number t ∈ [L] a level number. Define
a new vocabulary, called the L-vocabulary, where each symbol is a pair (R, τ),
denoted Rτ , where R is a relation symbol in the original vocabulary, and τ ∈
[L]arity(R), is a sequence of distinct numbers, called level numbers. Thus, there are
L!/(arity(R))! relation names in the new vocabulary from each relation name R in
the old vocabulary. Each attribute i of Rτ is associated with a number τi, called
the level number of that attribute.

Consider a connected, conjunctive query c′ over the L-vocabulary. We call this
query well annotated if each of its variables can be mapped to a level number t ∈ [L],
such that the variable occurs only on attribute positions with level number t. A
disjunctive query d′ = c′1 ∨ c′2 ∨ . . . is well annotated if all its conjunctive queries
are. The following is straightforward:

Proposition 6.6. If a disjunctive query is well annotated, then it is leveled.

Indeed, if the query is well annotated then every level consists of attributes with
the same level number. (The converse does not hold in general.) The claim follows
from the fact τ in Rτ is a sequence of distinct level numbers.

Start from a connected conjunctive query c. We will associate to it several well
annotated queries cT over the L-vocabulary, as follows. Let T : V ars(c) → [L] be a
function that associates level numbers to variables, s.t. whenever x, y co-occur in a
common atom, then T (x) 6= T (y). Define cT as follows: for each atom R(x1, x2, . . .)
in c, there is one atom RT (x1)·T (x2)···(x1, x2, . . .) in c′. In other words, cT has the
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same atoms as c, except that the relation symbols are now annotated with level
sequences. Clearly, cT is well annotated.

Definition 6.7. The leveling of a connected, conjunctive query c is d′ =
∨

T cT ,
there T ranges over all functions associating level numbers to the variables of c. The
leveling of a disjunctive query d = c1 ∨ c2 ∨ . . . is d′ = d′1 ∨ d′2 ∨ . . . where d′i is the
leveling of ci.

To prove Theorem 6.5 we show two properties: the computation problem for
Pd′) can be reduced to that of P (d), and if d is immediately unsafe, then d′ is also
immediately unsafe.

Example 6.8. We illustrate the main idea on d1, d2 in Example 6.4. Choosing
L = 4 for both d1 and d2, we could construct the following levelings:

d′1 =R12(x1, y2), R23(y2, z3) ∨ R23(x2, y3), R34(y3, z4)

d′2 =R23(x2, y3), S34(y3, u4) ∨ R12(x1, y2), S23(y2, z3) ∨ R23(x′2, y′3), S23(x′2, y′3)

We have indicated in a superscript the level annotation for each variable, making
it easy to check that both queries are well annotated. This is more frugal leveling
than that defined by Def. 6.7, since it does not include many possible annotations,
e.g. R13, R21, R31, etc. But in these examples, the two main properties still hold.
Neither d′1, d′2 have a separator. Furthermore, the reader may check that one can
use an oracle for P (d1) in order to compute P (d′1) (but not in the other direction);
and similarly for d2, d

′
2. Notice that the choice of L matters: it has to be “large

enough”. If we choose L = 3 for leveling d1, then d′1 = R12(x1, y2), R23(y2, z3) has
the separator y2.

Proposition 6.9. Let d′ be the leveling of d. The computation problem for
P (d′) can be reduced to that of P (d).

Proof. We use an oracle for P (d) in order to compute P (d′). Let D′ be a
database over the L-vocabulary. For every t ∈ [L], let ADomt be the set of all
constants in D that occur in some attribute with level number t. W.l.o.g. we can
assume that the domains ADom1, ADom2, . . . are disjoint. Indeed, suppose some
active domain ADomt shares some constants with some other active domain. Then
we re-map all constants in ADomt to a new domain ADom′

t, disjoint from all others,
by using a bijective function f : ADomt → ADom′

t. More precisely, we modify the
database D′ to D′′, by replacing every value a ∈ ADomt of an attribute with
level number t with the new value f(a) ∈ ADom′

t, and leaving all other attribute
values unchanged. Since d′ is well annotated, we have D′ |= d′ iff D′′ |= d′;
moreover, if D′ is a probabilistic database, then so is D′′ and PD′(d′) = PD′′(d′).
Thus, we can assume w.l.o.g. that ADom1, ADom2, . . . are disjoint. Construct a
new database D over the original vocabulary, by simply erasing the level number
annotation of all tuples in D′. The tuples in D are in 1-1 correspondence with
those in D′, because no two tuples can become the same after erasing their level
annotation, since attributes with different level annotations have different active
domains. Furthermore, we prove that D |= d iff D′ |= d′. The “if” direction
is straightforward: any valuation from a component cT of d′ to D′, it is also a
valuation of the corresponding component c to D. For the “only if” direction,
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consider a valuation from a component c to D. It maps every atom in c to some
tuple in D. Every variable x in c must be mapped to some ADomt: define T (x) = t.
It is easy to see that this valuation is also a valuation from cT to D′.

Proposition 6.10. Let d be a disjunctive query that is immediately unsafe (i.e.
symbol-connected, and without separators, see Def. 4.3). Then there exists L > 0
such that the L-leveling d′ of d has a symbol-component that is also immediately
unsafe.

Proof. Let d = c1 ∨ c2 ∨ . . . and d′ = c′1 ∨ c′2 ∨ . . .. Let G be the co-occurrence
graph of c1, c2, . . ., and G′ the co-occurrence graph of c′1, c

′
2, . . . By assumption

G is connected, but G′ is not necessarily connected3. Let K be any connected
component in G′ that has a separator. That is, K consists of a subset of d′1, d

′
2, . . .

that is symbol-connected, and their disjunction has a separator. By Prop. 6.2 there
is a level Z ′ s.t. each variable on level Z ′ is a root variable.

Let Z be the image of Z ′ in d: that is Z contains all attributes (R, i) for which
there exists τ s.t. (Rτ , i) in Z ′. We will prove that Z contains only root variables:
then, by Prop. 6.2, d has a separator, which contradicts our assumption. Hence the
component K cannot have a separator, proving the proposition.

To check the conditions of Prop. 6.2, start by showing that Z is a level: indeed,
if (R, i) ∈ Z, because of (Rτ , i) ∈ Z ′, and is connected in the attribute graph
to another attribute (S, j) because there exists a conjunctive query ci containing
the atoms R(. . . x . . .) and S(. . . x . . .), then we can level ci to cT

i such that the
leveling annotation of the first atom becomes Rτ (hence cT belongs to the connected
component K); then the second atom will receive some annotation Sσ, and from
(Sσ, j) ∈ Z ′ we obtain that (S, j) ∈ Z. Thus, Z is a level.

Finally, we check that every variable on level Z is a root variable. Let (R, i) be
an attribute in Z, and consider a query ci with an atom R. Let x be the variable on
position i. There must exists some attribute (Rτ , i) ∈ Z ′, and we define a function
T : V ars(ci) → [L] s.t. the atom R in ci becomes Rτ in cT

i (to be able to construct
T we assume L is large enough). Then Rτ contains x on position i, hence x must
be a root variable in cT

i , hence it is a root variable in ci.

7. REWRITING TO A FORBIDDEN QUERY

From now on we will assume that the queries are leveled. If a query has L levels,
then we call it an L-leveled query.

If a query is unsafe, then the rewrite rules in Def. 4.9 allow us to simplify it.
But if d is immediately unsafe, then none of those rules further applies. To further
simplify a query d, we introduce in this section a new rewrite step, where we replace
all variables on a level with constants, resulting in a new unsafe query d′. As long
as d has at least three levels, then either this rule, or one of the rules in Def. 4.9
allows us to further simplify it. At the end we reach a query with only two levels,
which we call a forbidden query:

Definition 7.1. A forbidden query is a 2-leveled, disjunctive query that is im-
mediately unsafe.

3For a trivial example, the 2-leveling of d = R(x) is d′ = R1(x1) ∨ R2(x2) which is not symbol-

connected.
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We describe now the new rewriting. Let d = c1 ∨ c2 ∨ . . . be a disjunctive query.
Recall that each ci is a connected, conjunctive query, which we call a component.
As usual, we assume d to be minimized. Let Z be a level, and denote V arsZ(ci) the
set of variables in ci that are in level Z; call them Z-variables. Since the query is
leveled, for any fixed Z, each atom contains 0 or 1 Z-variables. Let A = {a1, a2, . . .}
be a set of constants (A is at most as large as the number of variables in d). Denote:

ΘZ(ci, A) ={θ | θ : V arsZ(ci) → A}

ci[A/Z] =
∨

θ∈ΘZ(ci,A)

ci[θ]

d[A/Z] =
∨

i

ci[A/Z] (10)

ΘZ(ci, A) is the set of substitutions of Z-variables, and d[A/Z] is obtained by
substituting the Z-variables in all possible ways with constants from A.

Our new rewrite step is the following: choose a level Z and rewrite d to d[A/Z].
It is easy to prove that, for any Z,A, if d[A/Z] is hard, then d is hard; the proof is
similar to Lemma 4.12. There we showed that, if d[a/z] is hard then d is hard, and
this can be extended to the case when Z is a level and A is a set of constants. We
omit the proof.

The difficulty is to choose the level Z such that d[A/Z] is still unsafe. In fact, if
d is not leveled, then no such level exists: for example, in d = R(x, y, z), R(y, z, u)
there is a single level containing all three attributes of R, and for any set of constants
A, d[A/Z] consists only of ground tuples, hence is safe. This was the reason why
we leveled the query. Even if d is leveled, we cannot choose Z arbitrarily. The main
result in this section is:

Theorem 7.2. Let d be a disjunctive query, with ≥ 3 levels, which is immedi-
ately unsafe. Then there exists a level Z and set of constants A (no larger than the
set of variables in d) such that d[A/Z] is unsafe.

We make the same assumptions about d[A/Z] as we made about d[a/z] in algorithm 2
and in Def. 4.9: d[A/Z] is not a query with constants, but instead it is a query with-
out constants over a new vocabulary. If R is a relation name and Z contains one
attribute of R, then we create new relation names R1, R2, . . ., one for each constant
a1, a2, . . . in A, and replace each atom R(. . . ai . . .) with Ri, removing the constant
ai and thus decreasing the arity by 1. Since Z is a level, all atoms with symbol
R will have some ai on that attribute position, hence we no longer have the old
symbol R in the rewritten query, only the new symbols R1, R2, . . .

In the rest of the section we prove Theorem 7.2. But first, let us see how the
above results lets us reduce any query to a forbidden query.

Corollary 7.3. Let d be an unsafe query. Then, there exists a forbidden query
q which is polynomial time reducible to d.

Proof. The idea is to start from d and repeatedly apply either the rules in
Def. 4.9 or the rewrite step in Theorem 7.2, as long as there are at least 3 levels.
We prove that the process terminates: then we arrive at a query that has at most
2 levels, i.e., a forbidden query.
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Suppose, on the contrary, the process never terminates. Then, there must exist
an infinite sequence of queries

d0 → d1 → d2 → · · ·

such that each is obtained from the previous either by one of the rewrite rules in
Def. 4.9 or is a step that replaces d with d[A/Z]. There must be infinitely of the
latter kind of steps, so assume w.l.o.g. that the sequence d0, d1, . . . includes only
the queries obtained after a d[A/Z] step. Let l be the maximum arity of the set of
relational symbols in d0. Any rewriting d[A/Z] takes a set of relational symbols,
and for each relation R in the set, it replaces all occurrences of R with new relations
of strictly smaller arity. Thus, the arity of any symbol in any query in the sequence
is at most l. Consider a function seq from queries to Nl such that seq(q) is a
sequence of non-negative integers with ith integer is equal to the number of distinct
relational symbols in q with arity exactly i. Also, consider the lexicographical order
> on Nl, where, for a, b ∈ Nl, the order between a and b is determined by the order
of numbers in the largest index where they differ. Since a rewriting replaces all
occurrences of a relational symbol R with a set of relations of smaller arity, it
follows that:

seq(d0) > seq(d1) > seq(d2) > · · ·

Also, since the natural order is a well-order for N, the lexicographical order is a
well-order for Nl, which follows a known property of lexicographical orders. Also,
we know that in a well-ordered set, there cannot be an infinite sequence of strictly
decreasing elements. This proves that the sequence of rewritings must terminate
after finite number of steps, and result in a forbidden query.

Note that the corollary holds only if we substitute with constants an entire level:
this guarantees that at least one relation of arity k is replaced completely with
relations of arities k−1. If we don’t substitute all variables on a level with constants,
then the rewriting process may never terminate.

Now, we return to Theorem 7.2. More precisely, we prove the following: given
the assumptions in the theorem, there exists Z,A s.t. in the (minimized) CNF
expression d[A/Z] =

∧

l d
′
l, there exists l s.t. d′l has a symbol-component without

a separator d′. Then Def. 4.9 gives us the following two rewrite steps d[A/Z] →

d′l
∗
→ d′: the first step replaces d[A/Z] with d′l which is a co-atom in its CNF lattice

(recall that for any coatom, we have µ = −1); the second step sets R = false for all
symbols that are not in the symbol-component d′. Furthermore, d′ is immediately
unsafe. Hence, d[A/Z] is unsafe, which proves the theorem. In the rest of the
section we will prove that one can always find such Z and A.

We illustrate here the main idea, and also show why we need sets A with cardi-
nality larger than 1:

Example 7.4. Consider:

d =R(x, z1), S(x, y1, z1), S(x, y2, z2), U(x, z2) ∨ S(x, y, z), T (y) ∨ R(x, z), U(x, z)

The query is immediately unsafe, hence none of the rewriting steps in Def. 4.9
applies. To further simplify d, we use the level Z = {z1, z2, z}, and rewrite d →
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d[A/Z]. However, we cannot use a single constant, because then d[a/Z] minimizes:

d[a/Z] =R(x, a), S(x, y1, a), S(x, y2, a)U(x, a) ∨ S(x, y, a), T (y) ∨ R(x, a), U(x, a)

=S(x, y, a)T (y) ∨ R(x, a)U(x, a)

Here d[a/Z] is safe. Instead, we use two constants, A = {a, b}:

d[A/Z] =R(x, a), S(x, y1, a), S(x, y2, b), U(x, b) ∨ R(x, b), S(x, y1, b), S(x, y2, a), U(x, a)∨

S(x, y, a), T (y) ∨ S(x, y, b), T (y) ∨ R(x, a), U(x, a) ∨ R(x, b), U(x, b)

Now d[A/Z] has no separator; in fact, it is immediately unsafe.

7.1 Properties of d[A/Z]

We start by describing the structure of d[A/Z]. Let ci be a component and Z
a level. Define the Z-subcomponents of ci to be the connected components of
the following graph: the nodes are the atoms in ci, and edges are pairs of atoms
that share at least one variable that is not in Z. Denote scZ(ci) = {s1, . . . , sm}
the Z-subcomponents of ci. In other words, if we substitute the Z-variables with
constants, then ci will be decomposed into several connected components: these
are precisely the Z-subcomponents. Formally, for θ ∈ ΘZ(ci, A):

ci[θ] =
∧

s∈scZ(ci)

s[θ] (11)

and each s[θ] is a separate connected component. Now we will write d[A/Z] in
CNF. Starting from Eq. 10:

d[A/Z] =
∨

i,θ

ci[θ] =
∨

i,θ

∧

s∈scZ(ci)

s[θ] (12)

Here and in the sequel, the disjunction
∨

i,θ is taken over all pairs i, θ, where
θ ∈ ΘZ(ci, A). Next, we convert this DNF expression to CNF, as follows. For each
pair i, θ, choose one component s ∈ scZ(ci); there are M =

∏

i |ΘZ(ci, A)| choices.
For each choice k = 1, 2, 3, . . . ,M , define the following disjunctive query:

d′k =
∨

i,θ

s[θ] (13)

Then the CNF expression is d[A/Z] =
∧

k d′k. However, this expression is not
minimized: the minimized expression contains only a subset of the dk’s, and these
may be further minimized.

Throughout this section we will denote d′k a disjunctive query in Eq. 13, keeping
in mind that it may not necessarily occur in the minimized CNF expression. Note
that the logical implication d[A/Z] ⇒ d′k holds, for every k. We also denote d′l a
disjunctive query that is part of the minimized CNF expression d[A/Z] =

∧

l d
′
l.

We give now a technical lemma, which shows that d[A/Z] preserves any single
sub-component: if s ∈ scZ(di) is a sub-component then the lemma says that we
will still find s in the minimized CNF expression of d[A/Z]. For example, if s plays
a role in making d unsafe, then we can use the lemma to argue that d[A/Z] is
unsafe. While we use the lemma in this form only once, we will later extend the
proof technique to prove that sets of subcomponents s1, s2, . . . occur together in
the minimized CNF expression, and thus we will refer back to this proof.
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Lemma 7.5. Let θ ∈ ΘZ(ci, A) be an injective function (hence A needs to be
large enough for such a function to exists), and s ∈ scZ(ci) a subcomponent, and
consider the minimized CNF expression d[A/Z] =

∧

l d
′
l. Then there exists l such

that the disjunctive query d′l has a component isomorphic to s[θ].

Proof. We start by showing that there exists a disjunctive query d′k given by
Eq. 13 with the following properties: (1) s[θ] is a component of d′k, and (2) for any
other component s′[θ′] in d′k, the logical implication ci[θ] ⇒ s′[θ′] does not hold:
equivalently, there is no homomorphism s′[θ′] → ci[θ]. In particular s[θ] 6⇒ s′[θ′]
(because s[θ] is a component of ci[θ], see Eq. 11), hence, after minimizing d′k, it still
contains s[θ]. Recall that each d′k is determined by choosing, for every pair j, θ′,
one subcomponent s′ ∈ scZ(cj). We choose as follows. For the pair i, θ we will
choose s: thus, d′k contains s[θ]. For every other pair j, θ′ we choose s′ ∈ scZ(dj)
s.t. there is no homomorphism s′[θ′] → ci[θ]. We claim that this is always possible.
Otherwise, if for all s′ ∈ scZ(dj), there exists a homomorphism, then we obtain a
homomorphism cj [θ

′] → ci[θ] (because of Eq. 11): since θ is injective, this means
that there exists a homomorphism cj → ci, contradicting the fact that the original
query d was minimized. We have shown that for each pair j, θ′ there exists some
s′ ∈ ΘZ(cj) s.t. there is no homomorphism s′[θ′] → s[θ]: this is the s′ that we
choose to include in d′k, completing the construction of d′k.

Let d[A/Z] =
∧

l d
′
l be the minimized CNF expression for d[A/Z]; d′k is not

necessarily one of the d′l, because d′k may disappear during the minimization. The
following logical implications hold obviously:

ci[θ] ⇒
∧

l

d′l ⇒ d′k

From Prop. 2.2 we deduce that there exists l such that:

ci[θ] ⇒d′l ⇒ d′k

Using Sagiv and Yannakakis’ containment criteria, we find a component c′lj in d′l
and a component s′[θ′] in d′k s.t.:

ci[θ] ⇒c′lj ⇒ s′[θ′]

Because of the way we constructed d′k, the only component s′[θ′] that can be logi-
cally implied by ci[θ] is s[θ], hence we have:

ci[θ] ⇒c′lj ⇒ s[θ]

Next we write ci[θ] as a conjunction of components,
∧

s′∈scZ(ci)
s′[θ] (Eq. 11), and

since both c′lj and s[θ] are components themselves, we conclude that there exists a
subcomponent s′ ∈ scZ [ci] s.t.

s′[θ] ⇒c′lj ⇒ s[θ]

But the only subcomponent s′ s.t. s′[θ] ⇒ s[θ] is s′ = s: otherwise, if there exists a
different component s′, then the query ci could be further minimized (by removing
the subcomponent s), contradicting the fact that d was minimized.

Thus, we have proven that c′lj ≡ s[θ], which proves the lemma.
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7.2 Preliminary: No Root Variable

We first prove Theorem 7.2 when d contains some component ci that has no root
variable. Here we use Lemma 7.5 to prove that the minimized CNF for d[A/Z] also
contains a query without a root variable, hence is unsafe.

Given a variable x ∈ V ars(ci), let at(x) denote its set of atoms. Let x be a
variable for which at(x) is a maximal set; at(x) does not contain all atoms in ci,
because x is not a root variable. Since ci is connected, there exists some other
variable y s.t. all three sets at(x) ∩ at(y), at(x) − at(y) and at(y) − at(x) are
nonempty. (A query with this property is called non-hierarchical in [Dalvi and
Suciu 2004; Dalvi and Suciu 2007b]). Choose Z to be any level distinct from the
two levels containing x and y: there exists such a level since we assumed that
d has at least three levels4. Choose a set of constants A as large as V ars(ci).
The variables x, y will occur in the same subcomponent of ci, i.e. there exists
s ∈ scZ(ci) s.t. x, y ∈ V ars(s). Let θ ∈ ΘZ(ci, A) be any injective substitution.
Then the component s[θ] has no root variable: this is because x is not a root
variable, since at(x) does not contain at(y), and no other variable u can have at(u)
strictly larger than at(x). By Lemma 7.5 there exists a conjunct d′l in the minimized
CNF expression for d[A/Z] that contains s[θ] as a component. Then, obviously, the
symbol-component to which s[θ] belongs has no separator, proving Theorem 7.2 for
this case.

In the rest of the section we prove Theorem 7.2, assuming that each component
has a root variable.

7.3 Case 1: Non-splitting Level

Call a level Z non-splitting for ci if |scZ(ci)| = 1. If Z splits ci, i.e. |scZ(ci)| > 1,
then ci has exactly one root variable, and that is on level Z. This is because ci

must have a root variable (as we assumed), and if it has at least one root variable
on a level other than Z, then that variable will continue to make ci connected even
if we substitute Z with constants.

Call a level Z non-splitting if for all i, Z is non-splitting for ci. Obviously, if Z
is non-splitting, then d[A/Z] is a disjunctive query (since each ci[θ] in Eq. 12 is a
connected conjunctive query).

In this section we prove Theorem 7.2 in the case when there exists a non-splitting
level. We pick any non-splitting level Z, and prove our claim for d[A/Z].

Lemma 7.6 Case 1. Let Z be any non-splitting level. Let A be a set of constants
s.t. |A| ≥ |V arZ(ci)|, for all i. Then d[A/Z] is a disjunctive query, and it has a
symbol-component d′ s.t. d′ has no separator.

Proof. For any substitution θ ∈ ΘZ(ci, A), ci[θ] is connected, and therefore
d[A/Z] given by Eq. 12 is a disjunctive query by definition. Moreover, from
Lemma 7.5 we know that for any injective substitution θi : V arsZ(ci) → A, Ci[θ]
is not redundant.

Let K be any symbol-component in d[A/Z]. (We have assumed that d is symbol-
connected, but d[A/Z] may not be.) We show that K has no separator. Suppose

4It is entirely possible that Z has no attributes in ci. For example ci may be R(x), S(x, y), T (y),

while Z contains attributes from other relations. We still make progress simplifying d to d[A/Z].
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it had a separator: then there exists a level V ′ that contains only root variables:
then we show that the “corresponding level” in d also contains only root variables,
showing that d has a separator. To define the “corresponding level”, let V be the
set of all attributes (R, i) s.t. there exists an attribute (Ra, i) ∈ V , where Ra is a
symbol occurring in the symbol-component K. Here Ra denotes the new symbol
representing R with the constant a on position Z: different constants a result in
different symbols Ra. We will prove that V is a level, and that it contains only root
variables.

To prove that V is a level, consider an edge (R, i), (S, j) in the attribute graph,
and suppose that V contains (R, i). Thus, there exists a symbol Ra s.t. (Ra, i) ∈ V ′.
Let ck be the component in d that connects these two attributes, i.e. ck contains two
atoms R and S, with the same variable on positions i and j respectively. Consider
any substitution θ : V arsZ(c) → A that maps R to Ra: then in c[θ] we have an
edge from (Ra, i) to (Sb, j) (or to (S, j) if S has no attributes in level Z), proving
that (S, j) ∈ Z. (Obviously Sb is also in K, because it is connected to Ra.)

Finally, we show that every variable in V is a root variable. Let (R, i) ∈ V ; by
definition, there exists (Ra, i) ∈ V ′. Consider some atom R in some component
ck, and let x be the variable on position i. Define θ ∈ ΘZ(ck) to be s.t. it is
injective, and it maps the atom R to Ra. By Lemma 7.5, the minimized query
d[A/Z] contains the component ck[θ], and this further belongs to K (because it
contains the symbol Ra): hence x is a root variable in ck[θ], and it must also be
a root variable in ck (because ck[θ] and ck are isomorphic, since we chose θ to be
injective).

Example 7.7. We illustrate Case 1. Consider:

d =c1 ∨ c2 = R(x), S(x, y, z) ∨ S(x′, y′, z′), T (y′)

Level Z1 = {x, x′} splits c1 into two subcomponents R(x) and S(x, y, z), while level
Z2 = {y, y′} splits c2 into two subcomponents S(x′, y′, z′) and T (y′). Therefore
Z3 = {z, z′} is the only non-splitting level. We choose level Z3 and rewrite5

d[a/Z3] =R(x), S(x, y, a) ∨ S(x′, y′, a), T (y′)

and this query is still without separator.
Note that it would have been a mistake to choose Z1:

d[a/Z1] =R(a), S(a, y, z) ∨ S(a, y′, z′), T (y′)

=(R(a) ∨ S(a, y′, z′), T (y′)) ∧ (S(a, y, z) ∨ S(a, y′, z′), T (y′))

=(R(a) ∨ S(a, y′, z′), T (y′)) ∧ S(a, y, z)

and d[a/Z1] is a safe query (because all three elements of its V -shaped CNF lattice
have separators). Thus, Case 1 is necessary.

From now on we will assume that Case 1 does not apply, i.e. every level Z splits
some component.

5In this example it suffices to choose A = {a}; choosing a larger set A = {a, b} leads to a longer

but similar query.
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7.4 Case 2: Two Related Levels

By assumption there are at least three distinct levels. Choose any three distinct
levels, and call them Z1, Z2, Z3. We will fix these three levels, for both cases 2 and
3.

For each i = 1, 2, 3, let Ci be the set of components cj that are split by the level
Zi. For every i = 1, 2, 3, we have Ci 6= ∅: otherwise, Zi is non-splitting, and we
have assumed that every level splits some component.

We say that two distinct levels Zi, Zj are related if there exists s ∈ scZi
(ci) and a

homomorphism s → cj for j 6= i. In this section we prove Theorem 7.2 in the case
when there exists two related levels. Here we pick Z to be the other (third) level
among Z1, Z2, Z3, and prove our claim for d[A/Z]. If there are multiple pairs of
related levels, we choose arbitrarily one such a pair, then let Z be the third level.

Lemma 7.8 Case 2. Suppose Z1, Z2 are related levels: that is, there exists s1 ∈
scZ1

(c1) and a homomorphism h : s1 → c2. Let A be a set of constants such that
|A| ≥ |V arZ3

(c1)|+ |V arZ3
(c2)|. Consider the CNF expression for d[A/Z3] =

∧

l d
′
l.

Then there exists l s.t. some symbol-component in d′l has no separator.

Proof. The plan is this. Consider c1, c2 the components witnessing the fact
that Z1, Z2 are related. We will chose certain substitutions θ1, θ2 s.t. c1[θ1]∨ c2[θ2]
are symbol-connected, and, together, have no separator; we also show that they
occur in one of the disjunctive queries d′l in the minimized query d[A/Z3].

Let θ2 ∈ ΘZ3
(c2, A) be any injective substitution, and denote A2 = Im(θ2).

Define θ1 ∈ ΘZ3
(c1, A) as follows. Recall that s1 ∈ scZ1

(c1) is the subcomponent
for which we have a homomorphism h : s1 → c2. For every x ∈ V arZ3

(s1), define
θ1(x) = θ2(h(x)). For every other Z3-variable y of c1, define h(y) to be a fresh
constant, which is not in A2. In other words, we start by splitting c1 in two parts,
using the level Z1: the subcomponent s1, and everything else. All the Z3 variables
in the subcomponent s1 are mapped by θ1 to the values θ2◦h; all the Z3 variables in
the rest, are mapped injectively to fresh new constants, not used by θ2. Denote the
latter A1 = Im(θ1)−A2. Note that both c1[θ1] and c2[θ2] are connected conjunctive
queries. This is because level Z1 disconnects c1, and the only way this can happen
is if c1 has a unique root variable, which is on level Z1: therefore, level Z3 cannot
disconnect c1. Similarly for c2. Furthermore, the two queries c1[θ1] and c2[θ2] are
symbol-connected, because of the homomorphism h : s1[θ1] → c2[θ2]. Furthermore,
any disjunctive query that contains c1[θ1] ∨ c2[θ2] cannot have a separator: this is
because the only root variable in c1[θ1] is on level Z1, and the only root variable
in c2[θ2] is on level Z2, while a separator must be a single level that contains root
variables from all components (Prop. 6.2). Thus, to prove the lemma, it suffices to
show that there exists a disjunctive query d′l in the minimized CNF expression of
d[A/Z3] that has both components c1[θ1] ∨ c2[θ2]. We prove this by extending the
proof of Lemma 7.5.

Like in Lemma 7.5, we first prove that there exists some d′k in Eq. 13 that (1)
contains both queries c1[θ1] and c2[θ2], and (2) for any other query s′[θ′] in d′k,
there is no homomorphism s′[θ′] → c1[θ1] and there is no homomorphism s′[θ′] →
c2[θ2]. Once we prove this, then we use exactly the same argument as at the end of
Lemma 7.5 to prove that there exists a disjunctive query d′l in the minimized CNF
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of d[A/Z3] that contains both c1[θ1]∨ c2[θ2]: we omit this step of the proof since it
is identical to Lemma 7.5. Thus, it suffices to show how to construct d′k with the
two properties above.

Fix a pair j, θ′. We need to show that there exists a subcomponent s′ ∈ scZ3
(cj)

s.t. there is no homomorphism from s′[θ′] to either c1[θ1] or to c2[θ2].
If Z3 does not split cj , then the only component s′ ∈ scZ3

(cj) is cj itself. In that
case there cannot be any homomorphism cj [θ

′] → c1[θ1], because that would give us
a homomorphism cj → c1, contradicting the fact that the query d was minimized;
similarly there is no homomorphism cj [θ

′] → c2[θ2].
So we assume wlog that Z3 splits cj : then cj has a root variable z on level Z3,

and that is the only root variable in cj . We know the following from the proof
of Lemma 7.5: (a) there exists s′ ∈ scZ3

(cj) s.t. there exists no homomorphism
s′[θ′] → c1[θ1], and (b) there exists s′ ∈ scZ3

(cj) s.t. there exists no homomorphism
s′[θ′] → c2[θ2]. This is not sufficient yet, because the two s′ may not be the same.
To prove that they can be chosen the same, we use the special structure of c1[θ1]
and c2[θ2] and the fact that cj has the root variable z on level Z3.

We consider two cases. First, when θ′(z) ∈ A2. Then let s′ be given by (b)
above, i.e. there is no homomorphism s′[θ′] → c2[θ2]. We prove that there is also
no homomorphism g : s′[θ′] → c1[θ1]. Suppose such a g exists: every atom of s′

contains the variable z, hence every atom in s′[θ′] contains the constant θ′(z) ∈
A2, the image of g is contained entirely in s1[θ1]. But, by assumption there is
a homomorphism h : s1 → c2 (that “relates” the levels Z1, Z2) and this can be
extended to a homomorphism h : s1[θ1] → c2[θ2] (because of the way we constructed
θ1): by composing h ◦ g we obtain a homomorphism s′[θ′] → c2[θ2], which is a
contradiction. Thus, there is no homomorphism s′[θ′] → c1[θ1], and this proves the
claim for the first case.

The second case is when θ′(z) ∈ A1. Then we choose s′ given by (a) above, i.e.
there is no homomorphism s′[θ′] → c1[θ1]. Clearly there cannot be a homomorphism
s′[θ′] → c2[θ2], since every atom in s′[θ′] has a constant from A1, while c2[θ2] has
no such constants. This proves the claim for the second case.

Example 7.9. We illustrate Case 2 with:

d = c1 ∨ c2 ∨ c3 =R(x1, y1), S(x1, z1) ∨ R(x2, y2), T (y2, z2) ∨ S(x3, z3), T (y3, z3)

Level Z1 = {x1, x2, x3} splits c1 into R(x1, y1) and S(x1, z1); similarly level Z2 =
{y1, y2, y3} splits c2, and level Z3 = {z1, z2, z3} splits c3. Thus, every level is
splitting, and Case 1 does not apply. Case 2 applies here, because every two levels
are related. For example there is a homomorphism from the subcomponent R(x1, y1)
to c2, showing that levels Z1, Z2 are related. We therefore choose level Z3, and two
constants A = {a, b} and rewrite to:

d[A/Z3] =c1[A/Z3] ∨ c2[A/Z3] ∨ S(x3, a), T (y3, a) ∨ S(x3, b), T (y3, b)

=(c1[A/Z3] ∨ c2[A/Z3] ∨ S(x3, a) ∨ S(x3, b))∧

(c1[A/Z3] ∨ c2[A/Z3] ∨ S(x3, a) ∨ T (y3, b))∧

(c1[A/Z3] ∨ c2[A/Z3] ∨ T (y3, a) ∨ S(x3, b))∧

(c1[A/Z3] ∨ c2[A/Z3] ∨ T (y3, a) ∨ T (y3, b))
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The CNF expression is given in the last four rows, and is the conjunction of four
disjunctive queries. Consider the second:

d′2 =c1[A/Z3] ∨ c2[A/Z3] ∨ S(x3, a) ∨ T (y3, b)

Expanding the first two expressions results in 4 components. Two of these are
redundant, because one contains S(x1, a) and the other contains T (y2, b). However,
the following two components are not redundant:

d′2 = . . . ∨ R(x1, y1), S(x1, b) ∨ R(x2, y2), T (y2, a) ∨ . . .

Obviously, d′2 has no separator.
In the next example we show why it is important to pick the level according to

our rule (as the third level, if two levels are related). Consider:

d = c1 ∨ c2 ∨ c3 =

U(x, y′, z′), V (x, y′′, z′′) ∨ R(y), S(x′′, y, z′′), U(x′′, y, z′′) ∨ V (x′, y′, z), S(x′, y′, z), T (z)

Here Z1 = {x, x′, x′′} splits c1 into two subcomponents: U(x, y′, z′) and V (x, y′′, z′′),
and there is a homomorphism from the first to c2: here we must pick level Z3 =
{z, z′, z′′}. There is also a homomorphism from the second component to c3; here
we should pick level Z2 = {y, y′, y′′}. Either choice is fine, but it would be a mistake
to pick Z1 = {x, x′, x′′}, since Z2, Z3 are unrelated. To see that, consider expanding
it with a set of constants A = {a, b, c, . . .}:

d[A/Z1] =
∨

v∈A

U(v, y′, z′)V (v, y′′, z′′) ∨ c2[A/Z1] ∨ c3[A/Z1] =
∧

k

d′k

Each d′k contains c2[A/Z1]∨ c3[A/Z1] and, for each constant v ∈ A, it contains ei-
ther U(v, y′, z′) or V (v, y′′, z′′) (for a total of 2|A| disjunctive queries dk). However,
each d′k has a separator. Indeed:

c2[A/Z1] ∨ c3[A/Z1] =
∨

a∈A

(R(y), S(a, y, z′′), U(a, y, z′′) ∨ V (a, y′, z), S(a, y′, z), T (z))

For any fixed constant a the disjunction of the two components above has no separa-
tor: in particular the entire expression above has no separator. However, for every
constant a we must include in d′k either U(a, y′, z′) or V (a, y′′, z′′), and either the
first or the second component above becomes redundant. If A had a single constant
a, then it is obvious that d′k has a separator; one can check that d′k continues to
have a separator for an arbitrary A (just choose separately, a separator for each
constant a ∈ A). This shows that we cannot expand on Z1. On the other hand,
expanding on level Z3 with a single constant a we obtain:

d[a/Z3] = U(x, y′, a), V (x, y′′, a) ∨ R(y), S(x′′, y, a), U(x′′, y, a) ∨ V (x′, y′, a), S(x′, y′, a), T (a)

= (U(x, y′, a), V (x, y′′, a) ∨ R(y), S(x′′, y, a), U(x′′, y, a) ∨ V (x′, y′, a), S(x′, y′, a)) ∧

(U(x, y′, a), V (x, y′′, a) ∨ R(y), S(x′′, y, a), U(x′′, y, a) ∨ T (a))

Neither conjunct has a separator.

7.5 Case 3: Three Unrelated Levels

We continue to assume that every level is splitting. Further, we use the same
notations Z1, Z2, Z3, for three arbitrary, but fixed levels, and C1, C2, C3 for the
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non-empty sets of components split by each of these three levels. We assume that
no two levels are related. Since the query d is symbol-connected, for each i 6= j
there exists a path in the co-occurrence graph from a query in Ci to a query in Cj .
Let nij be the length of the shortest such path. Assume n12 is the minimum of
n12, n13, n23 (break ties arbitrarily). Then we pick level Z3.

Lemma 7.10 Case 3. Suppose n12 = min(n12, n13, n23). Let A be a set of
constants such that |A| ≥ maxi(|V arZ3

(ci)|), for all components ci of d, and let
d[A/Z3] =

∧

l d
′
l be the minimized, CNF expression of d[A/Z3]. Then there exists l

such that d′l has a symbol-component without a separator.

Proof. Suppose that the shortest path from C1 to C2 is:

c1 = c0, c2, . . . , cn = c2

where c1 ∈ C1 and c2 ∈ C2; thus, n12 = n. That is, any pair of consecutive queries
ci−1, ci share a common relational symbol. Note that, for every i = 1, n−1, ci does
not belong to any of C1, C2, C3: otherwise we would have a strictly shorter path
between two of the three sets.

Define, inductively, the substitutions θi ∈ ΘZ3
(ci, A) as follows. Start by defining

θ0 : V arZ3
(c0) → A to be any injective substitution. To define θi : V arZ3

(ci) → A,
consider the two atoms in ci−1 and ci that share a common relational symbol R.
If the symbol R has no attribute in level Z3, then choose θi an arbitrary injective
function. Otherwise, let x be the unique Z3-variable in the first atom, and y be
the unique Z3 variable in the second atom (obviously, they occur on the same
attribute position in R). Choose θi to be injective and s.t. θi(y) = θi−1(x). Note
that ci[θi] is a connected conjunctive query, for all i = 0, . . . , n, since none of
the queries c0, . . . , cn is in C3. We note two simple properties: the set of queries
c0[θ0], . . . , c

n[θn] is symbol-connected, because of the way we constructed the θi’s,
and there is no homomorphism from ci[θi] to cj [θj ] for i 6= j: otherwise we would
have a homomorphism ci → cj , contradicting the assumption that d is minimized.

We will show now that there exists a disjunctive sentence d′l in the minimized
CNF expansion of d[A/Z] that contains all components ci[θi]: this proves our claim,
because the only root variable in c0 is on level Z1, and the only root variable in cn

is on level Z2, hence d′l cannot have a separator. To prove this claim, we extend
the proof of Lemma 7.5. We show that there exists a d′k (given by Eq. 13) with the
following properties: (1) it contains all queries c0[θ0], . . . , c

n[θn], and (2) for any
other component s′[θ′] in d′k, there is no homomorphism to any of the queries ci[θi].
If such a d′k exists, then we use exactly the same argument as at the end of the
proof of Lemma 7.5 to show that there exists a d′l in the minimized CNF expression
of d[A/Z] that contains all queries c0[θ0], . . . , c

n[θn].
Fix j and θ′ ∈ ΘZ3

(cj , A). We need to show that there exists s′ ∈ scZ3
(cj)

s.t. there is no homomorphism s′[θ′] → ci[θi] for any i = 0, n. First, note that if
cj 6∈ C3, then Z3 does not split cj , and the only subcomponent in scZ3

(cj) is cj

itself: in that case there is no homomorphism cj [θ
′] → ci[θi], because that would

imply a homomorphism cj → ci, which contradicts the fact that d was minimized.
So if cj 6∈ C3 then there is no homomorphism, and then we can choose s ∈ scZ3

(cj)
arbitrarily.

Suppose now that cj ∈ C3, and suppose there exists s′ ∈ scZ3
(cj) s.t. there is a
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homomorphism s′[θ′] → ci[θi]. Then i 6= 0: otherwise levels Z3 and Z1 would be
related. Similarly, i 6= n; otherwise levels Z3 and Z2 would be related. (Recall that
we assumed that no two levels among Z1, Z2, Z3 are related.) Hence i = 1, . . . , n−1.
Then, we obtain the following two paths in the co-occurrence graph of d, one from
C1 to C3 and one from C3 to C2:

c0, c1, . . . , ci, cj

cj , c
i, ci+1, . . . , cn−1, cn

None of them can be shorter than n, because we assumed n to be the shortest
possible path. Since i 6= 0, i 6= n, it follows that n = 2 and i = 1.

Now we can prove our claim, by considering two simple cases. If n > 2, then for
every pair j, θ′, choose an arbitrary subcomponent s′ ∈ scZ3

(cj): we know there is
no homomorphism to any ci[θi]. If n = 1, then we know from the proof of Lemma 7.5
that there exists s′ ∈ scZ3

(cj) s.t. there exists no homomorphism to c1[θ1]. This
s′ satisfies our claim, since we already know that there are no homomorphisms
s′[θ′] → c0[θ0] or s′[θ′] → c2[θ2].

8. FORBIDDEN QUERIES ARE HARD

Recall that a forbidden query is 2-leveled disjunctive query that is symbol-connected
and has no separator. They form an important subclass of UCQ, since they are the
“simplest” possible queries that are still hard.

8.1 Definitions and Main Result

We denote X, Y the two levels; variables in X are denoted x, x1, x2, . . ., those in
Y are denoted y, y1, y2, . . . There are three kinds or relation symbols: (a) Unary,
R(x), (b) binary S(x, y), and (c) unary T (y).

Note that if a leveled query contains only relation symbols of arity ≤ 2, then it is
not necessarily a forbidden query. This is illustrated by Example 7.9: all symbols
have arity 2, yet the query is not forbidden, because it has three levels. We have
shown in the example how to rewrite it to a forbidden query.

We prove in this section the following, which is the most difficult result in the
paper.

Theorem 8.1. If d is a forbidden query, then the problem: given a probabilistic
database D compute P (d), is hard for FP#P .

Example 8.2. Query h0 = R(x), S(x, y), T (y) is forbidden. All queries hk, k ≥
1 in Example 4.5 are forbidden queries. Below are further examples of forbidden
queries:

g =U(x, y1), S1(x, y1), U(x, y2), S2(x, y2), U(x, y3), S3(x, y3)∨

S1(x, y), S2(x, y), S3(x, y), S′(x, y)∨

S′(x, y), T (y)

j =R(x), S1(x, y1), S2(x, y2) ∨ S1(x1, y), S2(x2, y), T (y)

Queries hk, k ≥ 0 form an important subset of forbidden queries, but they are
not the only ones, as the example showed.
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Our proof of Theorem 8.1 consist of reducing the #PP2DNF problem to the
problem of computing P (D).

Definition 8.3. The Positive Partitioned 2 DNF problem, #PP2DNF, is the
following. Given a Boolean formula Φ =

∨

(i,j)∈E XiYj, compute the number of
satisfying assignments, denoted #Φ.

Provan and Ball [Provan and Ball 1983] have shown6 that the #PP2DNF problem
is hard for #P. Note that the problem is completely defined by the set E ⊆ [n1] ×
[n2], where n1 is the number of Xi variables, and n2 the number of Yj variables.

As a warmup, we prove Theorem 8.1 by reviewing a simple case, shown in [Dalvi
and Suciu 2004; Dalvi and Suciu 2007b]. Recall that a root variable in ci is a
variable that occurs in all atoms of ci.

Proposition 8.4. Let d =
∨

i ci be a forbidden query. Suppose that there exists
a component ci that has no root variables. Then computing P (D) is hard for FP#P .

Proof. We illustrate the proof only in the special case when ci = R(x), S(x, y), T (y):
here neither x nor y is a root variable. The general case follows immediately, using
the techniques in [Dalvi and Suciu 2004; Dalvi and Suciu 2007b]. Given a PP2DNF
instance Φ, defined by E ⊆ [n1] × [n2], construct the following database instance
D: R has n tuples, R(a1), . . . , R(an1

) and their probabilities are 1/2; S contains
all tuples S(ai, bj) for (i, j) ∈ E, and their probabilities are 1; and T consists of all
tuples T (b1), . . . , T (bn2

), and their probabilities are 1/2. All relation symbols other
than R,S, T are empty in D; thus D 6|= cj for j 6= i (since d is minimized). Then
P (d) = #Φ/2n1+n2 , proving the proposition.

In the rest of this section we will assume that every component ci in d has a root
variable. Thus, there are three kinds of components in d:

Left component. One root variable, x; other variables y1, y2, . . .

Central component. Two root variables, x, y and no other variables.

Right component. One root variable, y; other variables x1, x2, . . .

We write the forbidden query as:

d =dL ∨ dC ∨ dR

where dL, dC , dR consists of all left, central, and right components respectively. In
Example 8.2, gC = S1(x, y), S2(x, y), S3(x, y), S′(x, y), and jC = false.

In the rest of this section we will give a reduction from the #PP2DNF problem
to the problem of computing P (d), for any forbidden query d. In Sect. 8.2 and
Sect. 8.3 we prove some preliminary results about forbidden queries. Section 8.4
refines the #PP2DNF problem to a new problem that we need in the reduction.
The core of the reduction is in Sect. 8.5 and Sect. 8.6: this is where we establish the
connection between logic (the structure of the query d) and algebra (certain mul-
tivariate polynomials associated to d). Finally, Sect. 8.7 proves that the reduction
is indeed in PTIME.

6Their result is for 2CNF; it extends immediately to 2DNF.
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8.2 The Zig-Zag-Zig Block

We start by describing a construction that we need twice during the proof. Given
a forbidden query d and two constants a, b, we define a database instance Dz(a, b),
called the zig-zag-zig block. Let nx be the maximum number of xi variables occur-
ring in any component of d, and ny the maximum number of yi variables.

The block Dz(a, b) has constants a, b, c1, . . . , cnx
and d1, . . . dny

. Dz(a, b) contains
the following tuples:

—R(a), R(ci), i = 1, nx, for every left unary symbol R.

—S(a, di), S(cj , di), S(cj , b), i = 1, nx, j = 1, ny, for every binary symbol S.

—T (dj), j = 1, ny. T (b), for every right unary symbol T .

The binary symbols S form several zig-zag-zig patterns, from a to ci to dj and
to b, hence the name. The size of the zig-zag-zig block depends only on the size of
the query.

We give here the first application of the zig-zag-zig block: a second application
will come at a later point in the proof of Theorem 8.1.

Given a forbidden query d, we classify the relational symbols as follows:

A Left Symbol. is a symbol that occurs in dL.

A Right Symbol. is a symbol that occurs in dR.

A Central Symbol. is a symbol that is neither left nor right.

A central symbol occurrs exclusively in dC . Note that a symbol may be both
left and right; for example, S in h1 = R(x), S(x, y)∨S(x, y), T (y) (Example 4.5) is
both left and right.

Definition 8.5. d is called long if no component ci contains both a left and a
right symbol; in particular, no symbol is both a left and a right symbol. Otherwise,
d is called short.

Queries h1, h2 in Example 4.5 are short; queries hk, k ≥ 3 are long. Our first
transformation is to make any forbidden query long.

Proposition 8.6. If d is a forbidden query, then there exists a long query dz,
over a different vocabulary, such that the computational problem for P (dz) can be
reduced to the computational problem for P (d). In particular, if dz is hard for
FP#P then so is d.

Proof. We first describe how to translate any database D for dz into a database
Dz for d s.t. their tuples are in 1-1 correspondence. Note that dz will be 2-leveled;
call the two levels X and Y . We define Dz to be the union of all zig-zag-zig blocks
Dz(a, b), for every constant a in occurring in an X-attribute, and every constant
b occurring in a Y -attribute in D. Now we define the vocabulary for dz, s.t. the
tuples of D and Dz are in 1-1 correspondence. Referring to the tuples of the block
Dz(a, b) described above, we want to have the following tuples in D:

Left-Unary:. R(a).

Binary-for-Left-Unary:. Ri(a, b), for i = 1, nx.

Binary:. S0j(a, b), Sij(a, b), Si0(a, b), for i = 1, nx, j = 1, ny.
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Binary-for-Right-Unary:. T j(a, b), for j = 1, ny.

Right-binary:. T (b).

That is, during the D 7→ Dz translation, each tuple in this list is mapped precisely
to the corresponding tuple in the list describing the block Dz(a, b). For example,
tuple R3(a, b) in D is mapped to R(c3) in Dz, while tuple S52(a, b) in D is mapped
to S(c5, d2) in Dz. This defines the new vocabulary, and the translation D 7→
Dz. Since the tuples of D and Dz are in 1-1 correspondence, we simply copy
their probabilities too, which allows us to map a probabilistic database D to a
probabilistic database Dz.

It remains to do the following. (1) Construct the query dz s.t. dz over D is
equivalent to d over Dz. More precisely, for any possible world W ⊆ D, if W z ⊆ Dz

is the corresponding possible world in Dz, then W z |= d iff W |= dz. This ensures
PDz (d) = PD(dz). (2) Prove that dz is a forbidden query. (3) Prove that dz is
long. Each of these proofs is rather tedious, but straightforward, and is omitted.
Details are in [Dalvi et al. 2010b]. Here, we prefer to illustrate the main ideas with
examples.

Example 8.7. We illustrate Prop. 8.6 with three examples. First, on h1 =
R(x), S(x, y)∨S(x, y), T (y). The long query obtained through the zig-zag construc-
tion is:

hz
1 =R(x), S01(x, y) ∨ S01(x, y), T 1(x, y)∨

R1(x, y), S11(x, y) ∨ S11(x, y), T 1(x, y)∨

R1(x, y), S10(x, y) ∨ S10(x, y), T (y)

The reader may check that the problem P (dz) can be reduced to the problem P (d).
The second example shows how to handle multiple xi, or multiple yj variables:

d = S1(x, y1), S2(x, y2) ∨ S1(x1, y), S2(x2, y)

Here nx = ny = 2 and therefore the equivalent long query is:

dz =
∨

j,j′∈[2]

S0j
1 (x, y1)S

0j′

2 (x, y2) ∨
∨

i,j∈[2]

S0j
1 (x, y), Sij

2 (x, y) ∨
∨

i,j∈[2]

Sij
1 (x, y), S0j

2 (x, y)

∨
∨

i,j∈[2]

Sij
1 (x, y), Sij

2 (x, y)

∨
∨

i,j∈[2]

Sij
1 (x, y), Si0

2 (x, y) ∨
∨

i,j∈[2]

Si0
1 (x, y), Sij

2 (x, y) ∨
∨

i,i′∈[2]

Si0
1 (x1, y), Si′0

2 (x2, y)

The left symbols are S01
1 , S02

1 , S01
2 , S02

2 and the right symbols are S10
1 , S20

1 , S10
2 , S20

2 .
One can check that the query is forbidden by examining the following subset: S01

1 (x, y1), S
01
2 (x, y2)∨

S01
1 (x, y), S11

2 (x, y)∨S11
1 (x, y), S11

2 (x, y)∨S11
1 (x, y), S10

2 (x, y)∨S10
1 (x, y1), S

10
2 (x, y2):

this subset does not have a separator, hence neither does dz. In this example, we
did not have to choose two intermediate points, i.e. the query dz remains forbidden
if we replace [2] with [1] above.

Finally, we explain why the zig-zag-zig block contains several ci and several dJ

constants: if not, then the translated query may minimize, and be no longer forbid-
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den. This is illustrated by:

d =S1(x, y1), S2(x, y1), S1(x, y2), S3(x, y2), S2(x, y3), S3(x, y3)

∨S1(x, y), S2(x, y), S3(x, y)

∨S1(x1, y), S2(x1, y), S1(x2, y), S3(x2, y), S2(x3, y), S3(x3, y)

Here, if we choose only one copy of intermediate points, then in any new com-
ponent, two of the three yi’s in the left component are equal, and that component
becomes redundant because of the central component S1(x, y), S2(x, y), S3(x, y). In-
stead, by using nx = ny = 3, we allow the three yi’s to map to different intermediate
constants; the translated query dz is a forbidden query.

From now on, in the rest of this section we will assume that the forbidden query
is long.

8.3 Final Forbidden Queries

In our proof of Theorem 8.1 we must first further simplify the forbidden query, and
we do this using three rewrite rules d → d′ described below. We call a forbidden
query final if it can no longer be rewritten to another forbidden query using these
rules. It suffices to prove Theorem 8.1 only for final queries, because whenever
d →+ d′ and d′ is hard for FP#P , then d is also hard for FP#P . In this section
we define the three rules for → formally, and prove some structural properties of
final queries, which we use later in the proof of Theorem 8.1.

The first two rules are:

d → d[S = false]

d → d[S = true]

That is, choose a symbol S (unary or binary) and replace it with false or with
true. We have already defined the first in Def. 4.9; the second rule is similar.
Notice that after substituting with true we may need to minimize the resulting
disjunctive query.

In the third rewriting, we fix a left binary symbol S, choose a set of k constants,
B = {b1, . . . , bk}, no larger than the number of distinct yi variables in any left com-
ponent, and rewrite the query assuming that it is evaluated on database instances
with the following two properties. (a) Every tuple in the relation S has the form
S(x, bi) for some bi ∈ B, i.e. it has a constant in B on its second attribute. (b) The
constants bi do not occur in any tuple of a central or a right symbol. We rewrite d
to a new query, denoted, d[S =L B], which is equivalent to d over these restricted
database instances:

d → d[S =L B]

defined as follows. If d =
∨

i ci, then d[S =L B] =
∨

i ci[S =L B], where ci[S =L B]
is defined as follows. If ci contains at least one central or right symbol, then:

ci[S =L B] =false if ci contains S

ci[S =L B] =ci otherwise
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If ci contains only left symbols, then x is a root variable in ci. Let scX(ci) =
{s1, . . . , sm} be its X-subcomponents (see Sect. 7), thus:

ci =∃x.(∃y1.s1(x, y1) ∧ ∃y2.s2(x, y2), . . . ∧ ∃ym.sm(x, ym))

Assuming w.l.o.g. that S occurs in the first n subcomponents, where 0 ≤ n ≤ m,
ci[S =L B] is defined as:

ci[S =L B] = ∃x.(
∨

i

s1[bi/y1]) ∧ . . . ∧ (
∨

i

sn[bi/yn])∧

(
∨

i

sn+1[bi/yn+1] ∨ ∃yn+1.sn+1) ∧ . . . ∧ (
∨

i

sm[bi/ym] ∨ ∃ym.sm) (14)

This completes the definition of d[S =L B]. Note that in order to obtain its DNF
representation, we need to apply the distributivity law to Eq. 14.

As in the previous rewritings in this paper, we do not view d[S =L B] as a query
with constants, but rather as a query over a new vocabulary, where the left binary
symbol S(x, y) is removed, and replaced with k unary symbols R1(x), . . . , Rk(x),
and every other left binary symbol S′(x, y) is kept and, in addition, k new binary
symbols are introduced on its behalf.

Example 8.8. Consider the query:

d =S(x, y1), S1(x, y1), S1(x, y2), S2(x, y2) ∨ S1(x, y), S3(x, y) ∨ . . .

where S, S1, S2 are left binary symbols and S3 is a central symbol. Let B = {b}.
The rewriting d[S =L b] is such that (a) all tuples in the relation S are of the form
S(x, b), and (b) no tuples of the form S3(x, b) exists in the database. On the other
hand, there may be tuples S1(x, b), S2(x, b) as well as S1(x, y), S2(x, y) with y 6= b.
Thus:

d[S =L a] =S(x, b), S1(x, b), S2(x, b) ∨ S(x, b), S1(x, b), S1(x, y2), S2(x, y2) ∨ S1(x, y), S3(x, y) ∨ . . .

=R(x), R1(x), R2(x) ∨ R(x), R1(x), S1(x, y), S2(x, y) ∨ S1(x, y), S3(x, y)∨

We define similarly a right rewriting, d → d[S =R A], where S is a right symbol
and A a set of constants.

Define
∗
→ the reflexive and transitive closure of →. The following property similar

to Lemma 4.12 holds

Lemma 8.9. If d
∗
→ d′ then the computation problem for P (d′) can be reduced in

polynomial time to the computation problem for P (d). In particular, if d′ is hard
for FP#P , then so is d.

The proof is a straightforward adaptation of the proof of Lemma 4.12 and is
omitted.

Every sequence of rewritings
∗
→ terminates, because it either reduces the number

of total symbols by 1 (the first two rewritings), or reduces the number of binary
symbols by 1 (the third rewriting).

Definition 8.10. A forbidden query d is called final if there exists no rewriting

d
+
→ d′ s.t. d′ is a forbidden query.
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Therefore, it suffices to prove hardness for all final queries: using the lemma
above, this implies the hardness of all forbidden queries.

In the remainder of this section we prove three important properties of final
queries.

8.3.1 Strict Paths. Recall that the co-occurrence graph G(d) of d has a node
for each components ci, and an edge (ci, cj) for each pair of components that share
a common relational symbol. By definition of a forbidden query, G(d) is connected.
A left-right path is a path c0, c1, . . . , ck s.t. c0 is a left component and ck is a right
component. We always have k ≥ 3 because the query d is long. Since c0 consists
only of left symbols, c1 must always contain at least one left symbol, because it
connects to c0. Similarly, both ck−1 and ck contain right symbols. Call a left-
right path strict if (a) forall i ≥ 2, ci does not contain any left symbol, and (b)
forall i ≤ k − 2, ci does not contain any right symbol. Thus, a strict path uses
left and right symbols as sparingly as possible: it uses left symbols only in c0, c1

and right symbols only in ck−1, ck. Furthermore, in a strict path all components
c1, c2, . . . , ck−1 are central components. It is easy to check that every left-right path
of minimal length is a strict path; thus, a forbidden query has at least one strict
path.

Proposition 8.11. Let d be a long, final query (Def. 8.10). Then every strict
path c0, c1, . . . , ck contains all relational symbols in d.

In particular, all the left symbols occur in c0 or in c1 or in both, and, similarly,
all the right symbols occur in ck−1 or ck or both.

Proof. Let S be a symbol that does not occur on the strict path. Then we can
rewrite it to a forbidden query by setting S = false. Indeed, in d[S = false] the
path c0, c1, . . . , ck remains unchanged. The query d[S = false] is not a forbidden
query in general, because it may be symbol-disconnected. However, the symbol-
component that contains the path c0, c1, . . . , ck is a forbidden query, and we can
rewrite d[S = false] to this symbol-component by setting all other symbols to
false.

8.3.2 Type 1 and Type 2. Let d be a long, forbidden query, and let d = dL ∨
dC ∨ dR be its left, central, and right parts.

Proposition 8.12. If d is final, then one of the following two cases holds for
dL:

—There is exactly one left unary symbol, R, and every left component ci in dL has
exactly two variables x, y. We say that dL is of Type 1.

—All left symbols are binary. We say that dL is of Type 2.

The similar statement holds for dR: it can be of type 1 or type 2.

As an example, query g in Example 8.2 is a final query: gL is of type 2 and gR

is of type 1. Query j in the example is not final.

Proof. Step 1 We start by showing that d contains at most one left unary
symbol R. Suppose the contrary, that d has two or more left unary symbols.
Consider any strict path c0, c1, . . . , ck. All left unary symbols must occur in c0,
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therefore c0 contains at least two left unary symbols; let R be one of these left
unary symbols. We claim that in that case d[R = true] rewrites to a forbidden
query, contradicting the fact that d is final. For that, we will prove that d[R = true]
contains the path c0[R = true], c1, . . . , ck (only c0 contains R), i.e. none of these
k queries is redundant in d[R = true]; c0[R = true] is a left component because
it has at least one other unary symbol, therefore this path is a left-right path
in d[R = true], implying that (the symbol-component containing this path) is
a forbidden query, contradicting the fact that d is final. Thus, we only need to
show that none of the components of the new path is redundant. We start with
c0[R = true]. If there exists a homomorphism c[R = true] → c0[Rtrue] then there
exists also a homomorphism c → c0, contradicting the fact that d is minimized.
Thus, c0[R = true] is not redundant. Next, consider ci, i > 0. If there exists
a homomorphism c[R = true] → ci then c must contain R, hence it is a left
component, hence c, ci, ci+1, . . . , ck is a strict path in d, hence c contains all unary
symbols, and therefore c[R = true] has at least one other unary symbol, and
therefore there cannot be a homomorphism c[R = true] → ci. This concludes the
proof of Step 1.

Step 2 We prove that, if a left component c has exactly one left unary symbol
R, then it has a single y-variable. We consider two cases:

—There exists a strict path starting at c: c0 = c, c1, . . . , ck. Suppose c0 has two
or more y-variables. We consider two sub-cases. First, when c1 contains all left
binary symbols. Let S be any left binary symbol. We claim that d[S = true]
rewrites to a forbidden query, contradicting the fact that d is final. Indeed,
all queries in the rewritten path c0[S = true], c1[S = true], c2, . . . , ck are non-
redundant in d[S = true] (the proof is identical to that in step 1, and omitted),
and this is indeed a path, because there exists at least one binary symbol other
than S in c0 (otherwise c0 cannot have two y-variables), and that symbol connects
c0[S = true] and c1[S = true]. Second, when c1 does not contain all left
binary symbols, then we claim that d[R = true] rewrites to a forbidden query.
First we note that c0[R = true] is a left component, because it has two or
more y-variables. Next we show that the path c0[R = true], c1, . . . , ck is non-
redundant. We use the same argument as above to show that c0[R = true]
is non-redundant. We show that c1 is non-redundant: suppose there were a
homomorphism c[R = true] → c1, this implies that c must contain R, hence it
is a left component, and c, c1, . . . , ck is a strict path. Let S be the left binary
symbol missing from c1. Since the path starting at c is strict, S must occur in
either c or c1, implying that it occurs in c. But this contradicts the existence
of the homomorphism c[R = true] → c1. It is easy to check that ci, i ≥ 2 is
non-redundant, because they don’t contain any left symbols.

—There is no strict path starting at c. Consider any strict path, and let c0 be its
first component. By assumption c0 contains the left unary symbol R (since c0, c1

contain all left symbols and c1 is a central component), and we have proved in
the first case that c0 has only one y-variable. All symbols in c are left symbols,
and therefore they must be occur in c0 (none can occur in c1, otherwise we have
a strict path starting at c: c, c1, c2, . . . , ck). But this means that there exist a
homomorphism c → c0 (here we use the fact that c0 has a single y-variable),
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contradicting the fact that d was minimized.

This proves step 2, and completes the proof.

8.3.3 More Properties for Type 1 and Type 2. Finally, we prove two additional
properties.

Proposition 8.13. Let d be a final query and c0, c1, . . . , ck be a strict path.

—If dL is of Type 1, then c1 contains every left binary symbol.

—If dL is of Type 2, if c1 does not contain a left binary symbol U , then U occurs
in every X-subcomponent of c0. We call U ubiquitous.

The similar statement holds for dR.

Notice that, if dL is of Type 2, then there must exists at least one ubiquitous
symbol U . Otherwise, c1 contains all left binary symbols, and we can construct a
homomorphism c0 → c1 (since c0 has only left binary symbols, and c1 has only two
variables, x and y), contradicting the fact that d is minimized.

Proof. Suppose dL is of type 1, and let S be a left binary symbol that does not
occur in c1. Then d[S = true] rewrites to a forbidden query. Indeed, all components
c0[S = true], c1, . . . , ck are non-redundant in d[S = true] (by the same argument
as in the previous proof). Let S′ be the common symbol between c0 and c1. Then
c0[S = true] is a left component, because it contains R(x), S′(x, y), . . . and S′

connects c0[S = true] with c1. Thus, c0[S = true], c1, . . . , ck is a left-right path in
d[S = true], proving that it rewrites to a forbidden query.

Suppose dL is of type 2, and let U be a left binary symbol that does not occur
in c1. Using the notations in Eq. 14, let m be the number of X-subcomponents
of c0, and n the number of subcomponents that contain U . By our assumption,
1 ≤ n < m. Let B = {b1, . . . , bn} be a set of n constants. We claim that the query
d[U =L B] rewrites to a forbidden query, contradicting the fact that d was final.
Start by noting that ci[U =L B] = ci for all i ≥ 1, because ci contains at least one
central symbol. On the other hand, after applying the distributivity law in Eq. 14
we obtain a union of conjunctive queries. (They are all connected, because each
has x as a root variable). From this union, we select only one query, namely:

c′0 =∃x.(s1[b1/y1] ∧ . . . ∧ sn[bn/yn] ∧ (∃yn+1.sn+1) ∧ . . . ∧ (∃ym.sm))

The expression above is minimized, because it is isomorphic to c0 up to the renaming
yi → bi for i = 1, n (this is the reason why we chose n distinct constants in B).
Therefore, c′0 is a left component: indeed s1[b1/y1] has at least one unary symbol
(namely U(x, b1)), and there exists at least one binary symbol coming from sm

(since m > n). Therefore, the path c′0, c1, . . . , ck is a left-right path in d[U =L B]
proving that the latter rewrites to a forbidden query. This contradicts the fact that
d is minimized.

Corollary 8.14. Let d be a final query, c a left component, and c0, c1, . . . , ck

a strict path. Then c, c1, . . . , ck is also a strict path.

Proof. If dL is of Type 1, then we have seen in the last step of the proof of
Prop. 8.12 that every left component can be substituted for the first component of
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any strict path. Suppose dL is of Type 2, and consider any strict path c0, c1, . . . , ck.
For any symbol U in c, U does not occur in c1 (otherwise c, c1, . . . , ck is a strict
path starting at c). We have seen in the proof of Prop. 8.13 that U must be
ubiquitous in c0. Thus, all symbols in c occur ubiquitously in c0, i.e. they oc-
cur in all subcomponents. Thus, the first subcomponent of c0 contains the atoms
U1(x, y1), U2(x, y1), U3(x, y1), . . ., where U1, U2, . . . are the symbols in c, which im-
plies that there exists a homomorphism c → c0 contradicting the fact that d is
minimized.

8.3.4 Example. We illustrate the proof with several examples.

Example 8.15. Consider how we remove extra unary symbols:

d =R(x), R1(x), S1(x, y) ∨ S1(x, y), S2(x, y) ∨ S2(x, y), T (y) ∨ S2(x, y), T1(y)

Rewrite it to d → d[R1 = true, T1 = false] ≡ h2 (from Example 4.5). Clearly h2

is a final query.
Removing mixed type 1-and-2 components requires a careful case analysis. One

simple case is query j in Example 8.2: rewrite it to j → j[S2 = true] and the new
query is equivalent to h1. For a more subtle example, consider:

d =R(x), S1(x, y1), S2(x, y2) ∨ S1(x, y), S2(x, y) ∨ S1(x, y), S(x, y) ∨ S2(x, y), S(x, y) ∨ S(x, y), T (y)

Neither of the simple rewritings d[S2 = true] or d[S2 = false] or d[R = true]
works here, because all these queries minimize to a safe query. Instead, we rewrite
to d[S2 =L {a}], which is:

R(x), S1(x, y1), S2(x, a) ∨ R(x), S1(x, a), S2(x, a) ∨ S1(x, a), S2(x, a) ∨ S1(x, y), S(x, y) ∨ ∨S(x, y), T (y)

=R(x), S1(x, y1), S2(x, a) ∨ S1(x, a), S2(x, a) ∨ S1(x, y), S(x, y) ∨ ∨S(x, y), T (y)

Next, we rewrite by setting S1(x, a) = false and S2(x, a) = true: the result is
equivalent to h2.

Finally, we show why the ubiquitous symbol needs to appear. If there is no ubiq-
uitous symbol, then we can choose one binary symbol and make it unary. For
example:

d =S1(x, y1), S2(x, y2) ∨ S1(x, y), S(x, y) ∨ S2(x, y), S(x, y) ∨ S(x, y), T (y)

Then rewrite to d[S2 =L {a}] and the query becomes equivalent to h2.

8.4 The Signature Counting Problem

The proof of Theorem 8.1 is by reduction from the signature counting problem, SC,
which we introduce here as a generalization of the #PP2DNF problem. The input
to an SC problem is the same as to the #PP2DNF: two numbers n1, n2 > 0 and a
set E ⊆ [n1] × [n2]. The size of the input problem is given by n = n1n2; all other
parameters below are constants.

We are given two numbers m1,m2 ≥ 2, and call the sets LL = [m1], RR = [m2]
the left labels and right labels respectively. Unlike n, the numbers m1,m2 are fixed,
and not part of the input problem.
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Definition 8.16. A labeling is a pair of functions l = (l1, l2), where l1 : [n1] →
LL and l2 : [n2] → RR. There are mn1

1 × mn2

2 labelings.

In the case of #PP2DNF, we have m1 = m2 = 2, and a labeling is a valuation,
associating false or true values to each variable Xi and Yj , i ∈ [n1], j ∈ [n2].

Definition 8.17. A central-, left-, and right- signature, are strings:

kC ∈{0, 1, . . . , n}LL×RR

kL ∈{0, 1, . . . , n}LL

kR ∈{0, 1, . . . , n}RR

Every labeling l = (l1, l2) defines uniquely a central, left, and right signature,
namely:

(kC(l))u,v =|{(a, b) ∈ E | l1(a) = u, l2(y) = v}| ∀(u, v) ∈ LL × RR

(kL(l))u =|{a ∈ [n1] | l1(a) = u}| ∀u ∈ LL

(kR(l))v =|{b ∈ [n2] | l2(b) = v}| ∀v ∈ RR

Definition 8.18. We define four types of signatures:

—A signature of type 1-1 is k = kC .

—A signature of type 1-2 is k = (kC , kR).

—A signature of type 2-1 is k = (kL, kC).

—A signature of type 2-2 is k = (kL, kC , kR).

For fixed parameters m1,m2, and type, let Σ denote the set of all signatures. Note
that |Σ| ≤ (n + 1)m1m2+m1+m2 .

Given a signature k, denote #k the number of labelings that have that signature,
in other words:

#k = |{l | k(l) = k}|

We denote #Σ = {#k | k ∈ Σ} the set of all signature counts.

Definition 8.19. The signature counting problem, SC, is the following. Given
n1, n2 and E ⊆ [n1] × [n2], compute all signature counts #Σ.

Proposition 8.20. SC is hard for FP#P .

Proof. The proof is by reduction from #PP2DNF. We show this only for the
SC problem of type 1-1: the extension to SC problems of types 1-2, 2-1, 2-2 is
straightforward. Consider first the case m1 = m2 = 2, and let Φ =

∧

(i,j)∈E XiYj .

Then a signature k consists of four numbers, k = (k11, k12, k21, k22): where k11

represents the number of clauses XiYj where both Xi, Yj are false, k12 is the number
of clauses where Xi is false and Yj is true, etc. Clearly, Φ is true iff k22 > 0. A
solution to the SC problems gives us, for each k, the number of truth assignments
#k that satisfy this constraint. It follows:

#Φ =
∑

k11=0,n

∑

k12=0,n

∑

k21=0,n

∑

k22=1,n

#k
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(Note that, if k11 + k12 + k21 + k22 6= n1n2, then by definition #k = 0. In other
words the sum above has many redundant terms. We do not care about that.)
Furthermore, we can convert a solution to a SC problem with parameters m1 ≥
2,m2 ≥ 2 into a solution of the SC problem with parameters m1 = m2 = 2 by
marginalizing. Denoting Σ the set of all (2, 2)-signatures and Σ′ the set of all
(m1,m2) signatures, we have:

∀k ∈ Σ : #k =
∑

k′∈Σ′:∀u,v∈[2],k′
uv=kuv

#k′

8.5 The Expansion Formula

Let d be a forbidden query. The proof of Theorem 8.1 for d is a reduction from a
signature counting problem, E ⊆ [n1] × [n2], with signatures Σ. We will construct
a certain databse D from E, then repeatedly vary the probabilities of its tuples and
compute the probability of d on D. From these results we extract #Σ: thus, we
will have shown how an oracle for P (d) can be used to compute #Σ.

There are several steps in the reduction; in this section we show the first step. For
every a ∈ [n1], b ∈ [n2], we construct a certain database D(a, b) (to be described in
in Sect. 8.6), called a block. The constants in D(a, b) are a, b and other constants,
which are assumed to be disjoint from the sets [n1] and [n2]. We will describe
later exactly how to construct this block (as a union of zig-zag-zig blocks). For
the purpose of this section we don’t care about the internal structure of D(a, b).
In addition to D(a, b), if the type of the query is 2,1, or 1,2, or 2,2 then we also
construct blocks D(a, ·) and D(·, b). Here · should be interpreted as a new constant,
unique for a (b respectively): that is D(a, ·) = D(a, da), where da is a fresh constant.
The database D will be the union of all these blocks. The blocks have following
properties, which we need in this section:

—All blocks are isomorphic.

—For a ∈ [n1], b ∈ n2, no binary symbol contains both a and b. That is, every
binary symbols that contains a ∈ [n1] on the first position, has some other
constant 6∈ [n2] on the second position.

—Two blocks D(a, b) and D(a′, b′) do not share any constants, except possibly the
endpoints, e.g. D(a, b),D(a, b′) have in common the constant a. Similarly for the
blocks D(a, ·),D(·, b). In particular, the only tuples that can be shared between
blocks are of the form R(a) and T (b), for a ∈ [n1] and b ∈ [n2].

—For all a ∈ [n1], b ∈ [n2] we set P (R(a)) = P (T (b)) = 1/2. All other probabilities
(of binary tuples, and of unary tuples of the form R(d) and T (c)) will be specified
below.

Based on these assumptions only, we give in this section a formula that relates P (d)
and #Σ, called the expansion formula.

Given two constants a, b, define the query d−a,−b the query obtained from d as
follows: every left component c is replaced with c∧ (x 6= a); every right component
c is replaced with c∧ (y 6= b); and every center component is left unchanged. That
is, d−a,−b is identical to d, except that it does not allow the left components to map
x to a, nor the right components to map y to b.
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8.5.1 Expansion formula of type 1-1. We start with the case when d = dL ∨
dC ∨ dR is of type 1-1. Here the SC problem will be of type 1,1, and m1 = m2 = 2.
Fix two constants a, b, and two labels u ∈ [m1], v ∈ [m2]. Interpret u, v as truth
values for R(a) and T (b) (recall that 1 = false, 2 = true). We will define below
a query duv(a, b) s.t. its probability is exactly the probability of d, conditioned on
the fact that the truth values of R(a), T (b) are u, v respectively:

P (¬duv(a, b)) =P (¬d | R(a) ≡ u, T (b) ≡ v) (15)

For that, first define:

dL
u = dL[R = u] dR

v = dR[T = v]

That is, dL
u is obtained by substituting in dL the relation symbol R with false,

when u = 1, and with true, when u = 2 respectively; obviously, dL
1 ≡ false.

Abbreviating dL
u [a/x] with dL

u (a), we define, for every u ∈ [2], v ∈ [2]:

duv(a, b) =dL
u (a) ∨ d−a,−b ∨ dR

v (b)

yuv =PD(a,b)(¬duv(a, b)) (16)

The reader is invited to check that Eq. 15 holds. Thus, the probability yuv

represents the probability that d is false on the block D(a, b), conditioned on the
fact that the truth values of R(a) and T (b) are u, v respectively. Note that yuv

is the same for all blocks D(a, b), i.e. it does not depend on the constants a, b,
because all blocks are isomorphic.

Recall that for each tuple in the database D, P (t) denotes its probability.. A
possible world W is a subset W ⊆ D, and P (W ) =

∏

t∈W P (t) ·
∏

t∈D−W (1−P (t)).
Then, by definition (Eq. 1):

P (¬d) =
∑

W⊆D:W |=¬d

P (W ) (17)

Fix a labeling l1 : [n1] → [2], l2 : [n2] → [2]. We say that a world W has labeling
l = (l1, l2), if forall a ∈ [n1], b ∈ [n2], W |= (R(a) ≡ l1(a)) and W |= (T (b) ≡ l2(b)).
Let El be the event “W has labeling l = (l1, l2)”. Clearly, P (El) = 1/2n1+n2 .
Conditioned on El, the event W |= ¬d is the conjunction of the independent events
W (a, b) |= ¬dl1(a),l2(b)(a, b), where W (a, b) = W ∩ D(a, b). That is, once we fixed
the truth value for all R(a)’s and all T (b)’s (through the labeling l1, l2), we need
to check that d is false on each block D(a, b) separately; these events are indepen-
dent, because the blocks share only their endpoints, and there the truth values of
R(a), T (b) are already fixed. Furthermore, if (a, b) ∈ E (and edge in the bipartite
graph E ⊆ [n1]× [n2]), then the probability of this event is yl1(a),l2(b); if (a, b) 6∈ E,
then it is 1 (because the block D(a, b) is empty, hence the query is false). Recall
that, forall u ∈ [2], v ∈ [2], kuv(l) denotes the number of edges in E whose endpoints
are labeled with u and v respectively. Then:
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P (¬d|El) =
∏

(a,b)∈E

yl1(a)l2(b) =
∏

u∈[2],v∈[2]

ykuv(l)
uv

P (¬d) =
1

2n1+n2

∑

l

P (¬d|El) =
1

2n1+n2

∑

k∈Σ

#k
∏

u∈[2],v∈[2]

ykuv
uv (18)

We call Eq. 18 the expansion formula for a query d of type 1,1. This is a polyno-
mial in the four variables ȳ = (y11, y12, y21, y22), and it says this. To compute P (¬d),
proceed as follows. Fix a generic block D(a, b). Set the truth values of R(a), T (b)
to all four combinations of false/true, and for each, compute the probability of
¬d conditioned on that setting of R(a), T (b): this probability is yuv. Then compute
the polynomial Eq. 18, where the coefficients #k are exactly the signature counts of
the SC problem. More precisely, the coefficient of a monomial yk11

11 · yk12

12 · yk21

21 · yk22

22

is the number of labelings that have signature k = (k11, k12, k21, k22), i.e. #k. We
want to use this process in reverse: given an oracle for P (¬d), compute the coef-
ficients #k. For that, we vary the probabilities of the block D(a, b), to generate
(n + 1)4 distinct values for ȳ and obtain a linear system with (n + 1)4 equations
and (n + 1)4 unknowns. Let M be the matrix of this system. If M is non-singular,
then we can solve for all #k: then we have used the oracle P (d) to solve the SC
problem, proving that P (d) is hard for FP#P . Notice that if we could choose val-
ues for y11, y12, y21, y22 independently, by choosing n + 1 distinct values for each
variable, then forming all (n + 1)4 combinations, then M is the Kronecker product
of 4 Vandermonde matrices, and is non-singular. In general we cannot choose the
y’s independently, we can only vary probabilities in the block D(a, b). We show in
Sect. 8.6 that the matrix is non-singular.

8.5.2 Expansion formula of type 2-2. Next, we will derive the expansion formula
for a query d of type 2,2. Here there are no unary symbols. For any constant
a ∈ [n1], the query dL[a/x] is a union of conjunctive queries, and similarly dR[b/y].
Denote their CNF lattices LL = L(dL[a/x]), RR = L(dR[b/y]). Let m1 = |LL −
{1̂}|; by renaming the lattice elements, we assume wlog LL = [m1] ∪ {1̂}. The
left labels in our SC problem will be [m1]. Repeating the same for the right end,
we define RR = [m2] ∪ {1̂}. Recall that for each u ∈ [m1], dL

u denotes the query
associated to the lattice element u in LL. Since in this query all atoms are of
the form S(a, y), i.e. there is no x variable, and there is a single y-variable, we
will always write it as du(a), to remind that the constant a appears in all atoms.
Similarly, for each v ∈ [m2], dR

v (b) denotes a query associated to the lattice element
v in RR.

Thus:

dL[a/x] ≡
∧

u∈[m1]

dL
u (a) dR[b/y] ≡

∧

v∈[m2]

dR
v (b) (19)

Define:

duv(a, b) = dL
u (a) ∨ d−a,−b ∨ dR

v (b) du· =dL
u (a) ∨ d−a d·v = d−b ∨ dL

v (b)

yuv = PD(a,b)(¬duv(a, b)) zu· =PD(a,·)(¬du·) z·v = PD(·,b)(¬d·v)
(20)
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The intuition is that duv(a, b) is obtained from d by imposing that the end-points
a and b satisfy the labels dL

u (a) and dR
v (b) respectively.

Example 8.21. We illustrate with two examples. We only show dL in both
cases, since the left labels LL depend only on dL.

dL =S(x, y1)S1(x, y1), S(x, y2)S2(x, y2), S(x, y3)S3(x, y3)

The left labels are:

dL
1 (a) =S(a, y), S1(a, y)

dL
2 (a) =S(a, y), S2(a, y)

dL
3 (a) =S(a, y), S3(a, y)

and their closure under disjunctions. There are m1 = 7 left labels.
Consider a query with two left components:

dL =S(x, y1), S1(x, y1), S(x, y2), S2(x, y2) ∨ S(x, y1), S1(x, y1), S(x, y3), S3(x, y3)

The labels are:

dL
1 (a) =S(a, y), S1(a, y)

dL
2 (a) =S(a, y), S2(a, y) ∨ S(a, y), S3(a, y)

and dL
1 (a) ∨ dL

2 (a). There are 3 left labels.

Let l1 : [n1] → [m1] and l2 : [n2] → [m2] be a labeling. We say that a world
W satisfies this labeling, if forall a ∈ [n1], W |= ¬dL

l1(a)(a) and forall b ∈ [n2],

W |= ¬dR
l2(b)

(b). Let El1l2 denote the event “W satisfies the labeling l1, l2”.

There are two important differences from the case (type 1-1). First, some worlds
do not satisfy any labeling. However, we observe that, if W |= ¬d, then W does
satisfy some labeling. Indeed, let a ∈ [n1]. Since W |= ¬d, we have W |= ¬dL[a/x],
which implies that there exists u ∈ [m1] s.t. W |= ¬dL

u (a) (because of Eq. 19).
Similarly, there exists v ∈ [m2] s.t. W |= ¬dL

v (b). Set l1(a) = u, l2(b) = v, and
repeat this forall a, b: thus, W satisfies the labeling l1, l2. The second difference is
that the events El1l2 are no longer disjoint. However, they form a lattice, and we
will use Mobius’ inversion formula to express the probability, instead of conditioning
on disjoint events. To do that, we need a brief review of lattice theory.

Given two lattices L1, L2, their product L1 × L2 is also a lattice. Furthermore,
µL1×L2

((u, v), (x, y)) = µL1
(u, x) · µL2

(v, y). The strict product of L1 and L2 is:

(L1 × L2)
0 =(L1 − {1̂}) × (L2 − {1̂}) ∪ {1̂}

This is indeed a lattice, because Li − {1̂} is a meet semilattice, for i = 1, 2, hence
(L1−{1̂})×(L2−{1̂}) is a meet semilattice, and after completing with 1̂ it becomes
a lattice. We have:

Lemma 8.22. µ(L1×L2)0((u, v), 1̂) = −µL1
(u, 1̂) · µL2

(v, 1̂).
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Proof.

µ(L1×L2)0((u, v), 1̂) = −
∑

(u,v)≤(x,y)<1̂

µ(L1×L2)0((u, v), (x, y))

= −
∑

u≤x<1̂,v≤y<1̂

µL1
(u, x) × µL2

(v, y) = −µL1
(u, 1̂) · µL2

(v, 1̂)

Here, we used the fact that the interval [(u, v), (x, y)] of the strict product (L1×L2)
0

is isomorphic to the same interval in the regular product L1 × L2, because x < 1̂
and y < 1̂.

Given a lattice L, we denote (Ln)0 the strict cartesian product (L× . . .×L)0. It
follows from the lemma that µ(Ln)0(ū, 1̂) = −(−1)n

∏

i µL(ui, 1̂).

Since each label l1(a) belongs to LL − {1̂}, it follows that the space of all
left labelings l1 is the strict product (LLn1)0. In other words, every element of
(LLn1)0, except 1̂, corresponds7 to a labeling l1. The Mobius function in this lat-
tice is µ(l1, 1̂) = −(−1)n1

∏

a∈[n1]
µ(l1(a), 1̂). Similarly, l2 is in the strict lattice

product (RRn2)0, while (l1, l2) is in the strict product of the two lattices, hence
µ((l1, l2), 1̂) = −µ(l1, 1̂) · µ(l2, 1̂).

The last observation that we need to make is that, for a fixed labeling l1, l2, the
event W |= El1,l2 ∧ ¬d is the conjunction of the following: independent events:

(
∧

a

W (a, ·) |= ¬dl1(a)·) ∧ (
∧

b

W (·, b) |= ¬d·l2(b)) ∧ (
∧

a,b

W (a, b) |= ¬dl1(a)l2(b))

The probabilities of the events above are zl1(a)·, z·l2(b), and yl1(a)l2(b) respectively,
see Eq. 20.

Recall that in the case of a signature counting problem of type 2-2, every signature
k consists of the left-, center-, and right signature, kL, kC , kL. Therefore:

P (¬d) =P (
∨

l1,l2

El1l2 ∧ ¬d) = −
∑

l1,l2

(−1)µ(l1, 1̂) · µ(l2, 1̂)P (El1l2 ∧ ¬d)

=(−1)n1+n2

∑

l1,l2

(
∏

a

µ(l1(a), 1̂) · zl1(a)·) · (
∏

b

µ(l2(b), 1̂) · z·l2(b)) · (
∏

a,b

yl1(a)l2(b))

=(−1)n1+n2

∑

k∈Σ

#k ·
∏

u∈[m1]

(µ(u, 1̂) · zu·)
kL

u ·
∏

v∈[m2]

(µ(v, 1̂) · z·v)kR
v ·

∏

u∈[m1],v∈[m2]

y
kC

uv
uv

Here µ(u, 1̂) is taken in the left lattice LL, while µ(v, 1̂) is in the right lattice RR.
Now it should become clear why we introduced the blocks D(a, ·), D(·, b), and their
associated variables zu·, z·v: they absorb the powers of the mobius function. Note
that when µ(u, 1̂) = 0, then the only terms that contribute to the sum above are
those for which the exponent kL

u = 0. This means that we can simply ignore the
labels u ∈ LL whose Mobius function is zero. Decreasing m1 appropriately, we will
assume that forall u ∈ [m1], µ(u, 1̂) 6= 0. (We no longer need a lattice structure on

7If we took l1 to range over Ln, then we need to exclude many more elements other than 1̂, and

then the Mobius inversion formula no longer applies.
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[m1].) Similarly for m2. Thus, denoting:

yu· =µ(u, 1̂) · zu· for u ∈ [m1]

y·v =µ(v, 1̂) · z·v for v ∈ [m2]

we obtain the following expansion formula for P (¬d) in the case when d is of type
2-2:

P (¬d) =(−1)n1+n2

∑

k∈Σ

#k ·
∏

u∈[m1]

y
kL

u
u· ·

∏

v∈[m2]

y
kR

v
·v ·

∏

u∈[m1],v∈[m2]

y
kC

uv
uv (21)

Thus, as in the 1-1 case, we have expressed P (¬d) in terms of m1m2 + m1 + m2

variables ȳ. As before, we will probe D(a, b) with different probabilities, and form
a system of linear equations, with unknowns #k. Its matrix is M . We will show in
the next two sections that this matrix is non-singular.

8.5.3 Expansion formula of types 2-1 and 1-2. If the query d is of type 2-1 or
1-2, then we use a mixed expansion formula, which is a straightforward comination
of the previous two, and omitted.

8.6 Non-Zero Jacobian

This section is at the core of our hardness proof for forbidden queries. So far, we
have only assumed that both dL and dR are non-empty. In a forbidden query d, they
must also be symbol-connected, i.e. connected in the co-occurrence graph: other-
wise the query is not forbidden; for example, the left and right in R(x), S1(x, y) ∨
S2(x, y), T (y) are not connected, and this query is safe. We have not assumed so
far that the left and right are connected. The step we describe in this section works
if and only if dL and dR are connected. In other words, here is where we assume
that d is forbidden.

Let m be the number of y-variables in the expansion formula (m = 4 for type
1-1, m = m1m2 + m1 + m2 for type 2-2, etc). We sometimes write these variables
as ȳ = (y1, . . . , ym) instead of their official index yuv, and will switch back and
forth between the two notations. Each yi is a probability of a query, ¬duv(a, b),
on the block D(a, b), see Eq. 16 and Eq. 20. For each tuple tj ∈ D(a, b), denote
xj = P (¬tj), then yi = Fi(x1, x2, . . .) is a multi-linear polynomial. Denote F̄ =
(F1, . . . , Fm).

In this section we show how to construct the block D(a, b) (and D(a, ·) and
D(·, b)) and choose m distinguished tuples in D(a, b) with probabilities x̄ = (x1, . . . , xm)
(i.e. xi = P (¬ti)), with the following property: the Jacobian of the function x̄ 7→ F̄
is non-zero. That is, we will construct D(a, b) such that:

Proposition 8.23. There are m tuples in D(a, b) with associated probabilities
x̄, such that the Jacobian of the function x̄ 7→ ȳ is non-zero at some point in
x̄ ∈ [0, 1]m.

We use this proposition in Sect. 8.7 to prove that M is non-singular: the idea
is that the image of the function x̄ 7→ ȳ contains an open hypercube of dimension
m, hence we can vary each dimension yi independently, to obtain (n + 1)m values
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in a grid in this hypercube: for these points, M is the Kronecker product of Van-
dermonde matrices, hence is non-singular. Thus, it is important that the Jacobian
x̄ 7→ ȳ be non-zero: otherwise the points ȳ may lie in a space of lower dimension
and then the matrix M is always singular. In the remainder of this section we prove
Prop. 8.23.

8.6.1 The Parallel Sub-blocks D(a, b) =
⋃

i Di(a, b). The m1m2 variables yuv

depend only on the probabilities in the block D(a, b), while the variables yu· and
y·v depend on the blocks D(a, ·) and D(·, b). Thus, there are three functions x̄ 7→ ȳ.
It suffices to prove separately that each of these three functions has a non-zero
Jacobian: then the combined function also has a non-zero Jacobian. Hence, for
the rest of this subsection we will focus only on yuv, and their corresponding block
D(a, b); the variables yu· and y·v are treated similarly and omitted.

We construct D(a, b) = D1(a, b) ∪ D2(a, b) ∪ . . . ∪ Dm1m2
(a, b), to be a union of

“sub-blocks”. All sub-blocks are disjoint, except for the endpoints a and b: that is,
they share the unary symbols R(a), T (b) (if such symbols exists). All sub-blocks
are isomorphic. We will choose one distinguished tuple t1 in D1(a, b) and assign
probability x1 = P (¬t1). (We show below how to choose t1.) Let t2, . . . , tm the
tuples in D2(a, b), . . . ,Dm1m2

(a, b) that correspond to t1 through the isomorphism,
and let xi = P (¬ti), for i = 1,m1m2. That is, each sub-block has one distinguished
tuple, which correspond through the isomorphism, and their probabilities are given
by different variables. For every other tuple, its probability will be the same in
all sub-blocks (and its value chosen in a way we show below). Recall that yuv =
PD(a,b)(¬duv(a, b)). For any world W ⊆ D(a, b), the event W |= ¬duv(a, b) is
the conjunction of the m1m2 events W ∩ Di(a, b) |= ¬duv(a, b), and these are
independent. This is because each component of the query duv(a, b) has at most
one x- and at most one y-variable, hence every valuation maps its atoms to tuples
that belong to a single block W ∩ Di(a, b). Denote fuv(xi) = PDi(a,b)(¬duv(a, b)).
Since all probabilities except for the distinguished tuples are fixed, this function is
a linear function in xi, fuv(xi) = auvxi + buv, where auv, buv are real constants.
Thus, based on our discussion so far:

yuv =PD(a,b)(¬duv(a, b)) =
∏

i

PDi(a,b)(¬duv(a, b)) =
∏

i

fuv(xi) (22)

Thus, each yuv is the product of linear functions. We show that the Jaobian of
such products is non-zero.

8.6.2 The Jacobian of a Product of Linear Functions. Two polynomials f, g
are called equivalent if there exists a constant c 6= 0 s.t. f = c · g. Call a linear
polynomial ax+b non-degenerate if it is not equivalent to 1 (in other words, a 6= 0).
We prove the following:

Proposition 8.24. Let fi(x) = aix + bi, i = 1,m be m inequivalent, non-
degenerate linear polynomials. Define the following m multivariate polynomials,
where x1, . . . , xm are m distinct variables:

Fi(x1, . . . , xm) = fi(x1) · fi(x2) · · · fi(xn)

Let J(x̄) = D(F̄ )/D(x̄) be the Jacobian. Let v̄ = (v1, . . . , vm) ∈ Rm be any m
distinct values (i.e. vi 6= vj for i 6= j). Then det(J(v̄)) 6= 0.
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Proof. We can assume w.l.o.g. that a1 = . . . = am = 1. Then the polynomials
can be written as fi(x) = x + yi, where y1, . . . , yn are distinct values (because the
polynomials are inequivalent), and the Jacobian J is:

J =





∏

k 6=j

(xk + yi)





ij

Its determinant can be computed from Cauchy’s double alternant [Krattenthaler
1999]. Its value is:

det(J) =
∏

i<j

(xi − xj)(yi − yj)

To prove Prop. 8.23 it suffices to show that the linear functions fuv(xi) are non-
equivalent, and non-degenerate. Then the Jacobian of Eq. 22 is non-zero for any
choice of distinct probabilities xi 6= xj , for i 6= j.

8.6.3 Form Multilinear to Linear and the Role of Irreducible Factors. Now we
revisit our assumption that all tuples in D1(a, b) have fixed probabilities. We will
let them vary as follows. For each tuple t in D1(a, b), we choose a distinct variable
to denote P (¬t). Then we fix the same probability for all isomorphic copies of t in
D1(a, b),D2(a, b), . . . Thus, there are |D1(a, b)| free variables, one of which is our
distinguished variable. We ask the following question: to what values do we need
to set the other |D1(a, b)| − 1 variables such that the resulting linear polynomials
fuv are non-equivalent and non-degenerate.

Given m multilinear polynomials F1, . . . , Fm, over the same set of variables, call
a variable x distinguished if one can substitute the other variables with some values
(same value in all polynomials) such that all resulting linear polynomials are non-
degenerate and non-equivalent. For example, in F1 = x1x2 and F2 = x1x2 +x1 the
variable x2 is distinguished: setting x1 = 1 results in the linear polynomials x2 and
x2 + 1, which are non-equivalent. But x1 is not distinguished: setting, say, x2 = 1
gives us x1 and 2x1, which are equivalent.

Recall that a multi-variate polynomial F is irreducible if whenever F = G · H
then it is equivalent to either G or H. A classical theorem in algebra is that every
multi-variate polynomial over a field admits a unique factorization as a product of
irreducible polynomials.

Proposition 8.25. Let F1, . . . , Fm multi-linear polynomials over the same set
of variables. Then a variable x is distinguished iff each Fi depends on x, and,
denoting Gi the irreducible factor in Fi that contains x, the polynomials G1, . . . , Gm

are non-equivalent.

In the example above, the factorization is x1x2 and x1(x2 + 1). The factors con-
taining x1 are identical (hence x1 is not distinguished) while the factors containing
x2 differ (hence x2 is distinguished).

Proof. The “only if” direction is trivial: if two factors Gi, Gj are equivalent,
then for any substitution of the variables other than x, the two polynomials Fi and
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Fj are also equivalent. For the “if” direction, write Gi(x) = ai ∗ x − bi where ai,
bi are polynomials that depend on all variables other than x: denote these other
variables ȳ. We have ai 6≡ 0 because Gi depends on x. We prove that for any
distinct i, k, the polynomials aibk and akbi are not identical. Suppose otherwise,
i.e. aibk ≡ akbi. Then we can factorize them like this:

ai =u · v

bk =w · z

ak =u · z

bi =v · w

Then Gi(x) = u · v · x + v ·w = v · (u · x + w) and Gk(x) = z · (u · x + w). We know
that u 6≡ 0, because ai 6≡ 0 (and ak 6≡ 0). Since both Gi and Gk are irreducible,
both v and z must be constants. But then Gi and Gk are equivalent, which is a
contradiction. This proves the claim that aibk 6≡ akbi.

Consider the following polynomial:

H(ȳ) =(
∏

i

ai) × (
∏

ik

(ai ∗ bk − ak ∗ bi))

Here H(ȳ) is a multivariate polynomial in variables ȳ (that is, all variables except
x), which is not identically zero. Hence there are values ȳ = v̄ ∈ (0, 1)n s.t.
H[v̄/ȳ] 6= 0. (Otherwise, if H is zero on an open set, then it is identically zero). We
check that these values satisfy the two conditions in the theorem. Indeed, we have
ai[v̄/ȳ] 6= 0, hence ai[v̄/ȳ] · x − bi[v̄/ȳ] is not degenerate. Next, note that, forall
i 6= k, ai[v̄/ȳ]bk[v̄/ȳ] 6= ai[v̄/ȳ]bi[v̄/ȳ], which means that the two polynomials i, k
are inequivalent.

Thus, in order to prove Prop. 8.23, it remains to show that we can choose in the
sub-block D1(a, b) a distinguish tuple s.t., denoting x = P (¬t) (we drop the index i
from xi from now on), the variable x is distinguished in the set of polynomials fuv,
u ∈ [m1], v ∈ [m2]. Before we do this, we remark that, if d is not a forbidden query,
then we cannot satisfy the condition in this proposition. For example, consider the
query d = R(x), S1(x, y) ∨ S2(x, y), T (y) = dL ∨ dR. Since dL and dR do not share
any common symbols, one can see that fuv is expressed as gu ·hv, where gu depends
only on dL and hv depends only on dR. Any irreducible factor of gu will occur in
both fuv1

and fuv2
; any irreducible factor of hu will occur in both fu1v and fu2v.

8.6.4 Positive Boolean Expressions and Irreducible Polynomials. Here we make
a short detour to establish some background on the connection between positive
Boolean expressions and irreducible polynomials. Let Φ be a positive Boolean
expression in CNF, over variables Xi, i = 1, n. Thus, Φ is a conjunction of clauses
Ci, and each clause is a disjunction of variables Xi1 ∨ Xi2 ∨ . . .. We assume no
clause is redundant. The primal graph, G(Φ) has a node for each variable Xi, and
an edge (Xi,Xj) whenever the two variables co-occur in a clause. The primal graph
is sometimes also called the co-occurrence graph, but we prefer to reserve the latter
term for DNF expressions. A connected component C of G(Φ) corresponds to the
Boolean expression ΦC , namely the conjunction of all clauses whose variables are
in C. If each Xi is set independently to true with probability xi ∈ [0, 1], then P (Φ)
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is given by a multilinear polynomial denoted FΦ(x1, . . . , xn).

Proposition 8.26. F is irreducible iff G(Φ) is connected. More generally, for
each variable xi, let C be the connected component in G(Φ) that contains Xi. Then
the irreducible factor of F that contains xi is FΦC .

Proof. If G(Φ) is disconnected, then we can write Φ = Φ1∧Φ2 where Φ1,Φ2 do
not share any variables. Hence, FΦ = F1 ·F2, where Fi = FΦi

, i = 1, 2. Conversely,
if FΦ = F1 · F2, then define Φ1 to be the obtained from Φ by substituting all
variables in F2 with true; similarly Φ2 is obtained from Φ by substituting all
variables in F1 with true. We claim Φ ⇒ Φ1 ∧ Φ2. For the converse, consider a
truth assignment s.t. Φ1 = true and Φ2 = true, and suppose Φ = false. Assign
to the real variables xi the values 0 or 1 according to this truth assignment. Hence
FΦ = F1 · F2 = 0. Assume wlog F1 = 0. Then set all variables occurring in F2

to true (and 1 respectively): in the new assignment we sill have FΦ = F1F2 = 0,
hence Φ = false, and now by definition Φ = Φ1, contradiction. This proves the
first part. For the second part, let C1, . . . , Cm be all connected components of the
graph, then Φ = ΦC1 ∧ . . .∧ΦCm . Then FΦ =

∏

i FΦCi and each FΦCi is irreducible,
proving our claim.

Next, consider Φ to be a positive formula in DNF, over variables Xi. We call
its DNF co-occurrence graph to be the graph where the variables are nodes, and
edges a pair of variables that co-occur in a minterm. The dual of Φ is the following
formula, over new variables Xd

i : Φd = ¬Φ[¬Xd
i /Xi; i = 1, n]. That is, we negate

each variable, and negate the expression too. Clearly, the dual is also positive,
and the primal graph of Φd is isomorphic to the co-occurrence graph of Φ (because
the CNF of Φd can be obtained from the DNF of Φ by replacing ∧ → ∨ and
∨ → ∧). In our problem, the probabilities yi given by Eq. 16 and Eq. 20 are
the probability of dual expressions of the DNF lineage formulas. Thus, to reason
about the irreducibles of the polynomials yi, it suffices to examine the co-occurrence
graphs of lineage expressions, which are naturally given in DNF.

8.6.5 Constructing the Sub-block D1(a, b). Finally, we show how to construct
the sub-block D1(a, b) (recall that all other sub-blocks D2(a, b), . . . ,Dm(a, b) are
isomorphic, where m = m1m2). We take D1(a, b) to be the zig-zag-zig block defined
in Sect. 8.2. Denoting nx, ny the maximum number of x-, and y-variables in every
component, the set of constants in zig-zag-zig block is {a} ∪ C ∪ D ∪ {b}, where
C = {c1, . . . , cnx

} and D = {d1, . . . , dny
}, and there are three kinds of binary

tuples: Zig-tuples S(a, dj); Zag-tuples S(ci, dj); and Zig-tuples S(ci, b), for i = 1, nx

and j = 1, ny. Furthermore, if dL has type 1, then there exists also the unary
tuple R(c) (in this case nx = 1, and we denote c1 = c). Similarly, if dR has type
1, then the zig-zag-zig block contains T (d). We choose a Zag-tuple t0 = S(ci, dj)
arbitrarily, and designated it as distinguished tuple in D1(a, b). Let x0 = P (¬t0) be
its probability.

Let Yuv be the lineage of duv(a, b) on D1(a, b) (Eq. 4). The lineage is defined over a
set of Boolean variables Xt, one for each tuple t ∈ D1(a, b). To simplify the notation,
we will denote the Boolean variable Xt with t; thus, we will refer to tuples in D(a, b)
and Boolean variables interchangeably. Then yuv = PD1(a,b)(¬duv) = FY d

uv
. In

other words, yuv is the multi-linear polynomial associated to the dual of Yuv. For
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each u, v, denote Cuv the connected component of the co-occurrence graph of the
DNF expression Yuv that contains the distinguished tuple t0, and let Y Cuv

uv denote
the DNF expression Yuv restricted to tuples in Cuv. To prove that the variable x0

is distinguished for the polynomials yuv, u ∈ [m1], v ∈ [m2] (Prop. 8.25) we need to
show that the Boolean expressions Y Cuv

uv , for u ∈ [m1], v ∈ [m2] are inequivalent:
then, by Prop. 8.26, the irreducible factors in Fuv that contain x0 are inequivalent,
and therefore we can apply Prop. 8.25.

We examine the linage Yuv closer. Recall that duv(a, b) = dL
u (a)∨d−a,−b ∨dR

v (b),
for both Type 1,1 queries (Eq. 16) and Type 2,2 queries (Eq. 20). All components
in dL

u (a) have a single variable, y; d−a,−b is the same as d, except that all left
components have the additional predicate x 6= a and all right components have the
additional predicate y 6= b; and the components in dR

v (b) have a single variable, x.
For any component c in duv(a, b), let X denote the set of its x-variables and Y the
set of its y variables: define c(C,D) =

∨

θ1,θ2
c[θ1, θ2], where θ1 : X → C maps all

X variables to constants in C, and θ2 : Y → D maps all Y variables to constants
in D. We extend this notation to unions of components. Then the lineage is:

Yuv = dL
u (a,D) ∨dC(a,D) ∨dR({a} ∪ C,D)

∨dC(C,D)
∨ dL(C,D ∪ {b}) ∨dC(C, b) ∨dR

v (C, b)

The reader can verify that this is indeed the correct lineage expression, by tracing
where the variables in duv(a, b) can be mapped to the zig-zag-zig block D(a, b).

We start by proving that any two Boolean expressions in the set {Yuv | u ∈ [m1], v ∈ [m2]}
are in-equivalent.

Proposition 8.27. Let u1, u2 ∈ [m1] and v1, v2 ∈ [m2]. If the logical impli-
cation Yu1v1

⇒ Yu2v2
holds, then the following implications hold between Boolean

expressions: dL
u1

(a,D) ⇒ dL
u2

(a,D) and dR
v1

(C, b) ⇒ dR
v2

(C, b). Furthermore, the
following implications hold between queries: dL

u1
(a) ⇒ dL

u2
(a) and dR

v1
(b) ⇒ dR

v2
(b).

In particular, if Yu1v1
≡ Yu2v2

then the following queries are equivalent: dL
u1

(a) ≡
dL

v1
(a). Hence u1 = u2. Similarly, v1 = v2.

Proof. We keep unchanged all tuples of the form S(a, ci) where S is a left
symbol, set all other tuples t = false in both Yu1v1

and Yu2v2
. Recall that dC is

the union of all central components of d, i.e. where both x and y are root variables.
Denote dLC the union of all central components consisting only of left symbols8.
We have:

Yu1v1
≡ dL

u1
(a,D) ∨ dLC(a,D) ⇒Yu2v2

≡ dL
u2

(a,D) ∨ dLC(a,D)

Every minterm on the left must imply a minterm on the right. However, a minterm
si(a, dj) in dL

u1
is some X-subcomponent si(x, y) of dL, with x, y substituted with a

and dj respectively. This minterm cannot imply any minterm ck(a, cj) in dLC(a,D)
(otherwise we have a homomorphism ck → si contradicting the fact that d is

8The query dLC is not necessarily empty. For example in
U(x, y1), S1(x, y1), U(x, y2), S2(x, y2), U(x, y3), S3(x, y3) ∨ U(x, y), S1(x, y), S2(x, y) ∨
S1(x, y), S2(x, y), S3(x, y), C(x, y) ∨ . . . where C is a central symbol, we have dLC =

U(x, y), S1(x, y), S2(x, y).
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minimized), hence it must imply some minterm in dL
u2

(a,D). This proves that
dL

u1
(a,D) ⇒ dL

u2
(a,D). To prove that the implication dL

u1
(a) ⇒ dL

u2
(a) holds be-

tween queries, we use minterms in dL
u1

(a,D) that correspond to injective mappings
of the y-variables to the set D; we leave the details to the reader.

We need to prove something stronger: that the Boolean expressions Y Cuv
uv are

inequivalent, where Cuv is the connected component that contains the distinguished
tuple t0. We start with a technical lemma:

Lemma 8.28. If ci[θ1, θ2] belongs to one of dR({a}∪C,D) or dC(C,D) or dL(C,D∪
{b}), and θ1, θ2 are injective functions, then ci[θ1, θ2] is a minterm, i.e. it is not
redundant.

Proof. Suppose all tuples of some other minterm cj [θ
′
1, θ

′
2] are contained in

ci[θ1, θ2] (making the latter redundant). Then cj [θ
′
1, θ

′
2] cannot belong to dL

u (a,D),
because all tuples in the latter are of the form S(a, di) where S is a left symbol, and
ci[θ1, θ2] does not contain any such tuples. Similarly, it cannot belong to dR

v (C, b).
This means that cj is a component of d, and we obtain a homomorphism cj → ci

(since θ1, θ2 are injective) contradicting the fact that d was minimized.

Next, we show:

Lemma 8.29. Cuv contains all the following tuples:

—R(c) (if dL is of Type 1).

—S(ci, b) and S(ci, dj), for every left symbol S, and forall ci ∈ C, dj ∈ D.

—S(ci, dj), for every central symbol S, and forall ci ∈ C, dj ∈ D.

—S(a, dj) and S(ci, dj), for every right symbol S, and forall ci ∈ C, dj ∈ D.

—T (c) (if dR is of Type 2)

Proof. Let c0, c1, . . . , ck be a strict path in the co-occurrence graph of d. That
is, c0 is a left component, ck is a right component, all the others are central compo-
nents. We have seen Prop. 8.11 that all relational symbols appear on this path. In
particular, c1, . . . , ck−1 contain all central symbols: call it the “central part” of the
path. Recall that the distinguished tuple is t0 = S(ci, dj), for two constants ci, dj .
Instantiate the central part of the path by setting θ1(x) = ci, and θ2(y) = dj ; ab-
breviated x = ci and y = dj . We obtain that all tuples of the form S(ci, dj) where
S is any central symbol belong to Cuv. Now consider the left component c0, and
let S be a left binary symbol common to both c0 and c1; clearly S(ci, dj) belongs
to Cuv, because this tuple occurs in the instantiation c1[ci/x, dj/y]. We consider
two cases, depending on the type of the query d.

Case 1 d is of Type 1-1. Then c0 has only two variables x, y. In this case there is
a single constant ci and a single constant dj , we denote them c, d, and consider the
instantiation c0[c/x, d/y]: it contains the tuple S(c, d), hence all its tuples belong
to Cuv. This proves that for all left symbols S, the tuple S(c, d) belongs to Cuv.
Also, R(c) is in Cuv, where R is the unique left unary symbol. Finally, for every
left symbol S, the tuple S(c, b) belongs to some minterm of the form c′[c/x, b/y],
where c′ is a left component. Since the latter contains the tuple R(c), all its tuples,
including S(c, b), belong to Cuv. Similarly we prove that for all right symbols S,
the tuples S(c, d), T (d), and S(a, d) belong to Cuv.
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Case 2 d is of Type 2-2. Consider an instantiation c0[θ1, θ2] of c0 s.t. θ1 maps
x to ci, θ2 is injective and maps some atom with the symbol S to S(ci, dj). By
Lemma 8.28 we know that c0[θ1, θ2] is a minterm, and therefore all its tuples belong
to Cuv. So far θ2 mapped the y-variables in c0 to the constants d1, . . . , dny

. Next,
we consider all substitutions θ′2 that map the y-variables to b, d1, . . . , dny

. Since
we have one more constants than variables, by changing the mapping for only one
y-variable at a time, we can construct a sequence of θ′2 and prove that for all
left binary symbols S occurring in c0, all tuples of the form S(ci, dp) and S(ci, b)
belong to the connected component Cuv, for every p = 1, . . . , ny. For a fixed p, we
can instantiate again the central part of the strict path, to x = ci, y = dp, and
obtain that for all central symbols S, the tuples of the form S(ci, dp) belong to
Cuv. Finally, we repeat the same argument at the right end, and conclude that for
every right symbol S, all tuples S(cq, dp) and S(a, dp) belong to Cuv, and for every
central symbol S the tuples S(cq, dp) belong to Cuv.

We now prove our claim, that all Boolean expressions Y Cuv
uv are in-equivalent.

We do this separately for queries of type 1-1 and of type 2-2. We start with the
latter.

Proposition 8.30. If the query d is of type 2-2, then for every u, v, the co-
occurrence graph of Yuv is connected.

The proposition implies that Yuv = Y Cuv
uv , and our claim follows from Prop. 8.27.

Proof. We need to prove that all symbols occurring in dL
u (a,D)∨ dC(a,D) be-

long to the connected component Cuv, and similarly for dC(C, b) ∨ dR
v (C, b). Con-

sider any strict path c0, c1, . . . , ck−1, ck in d; its central part, c1, . . . , ck−1, contains
all central symbols. Instantiate the central path to x = a, y = dj , for some fixed
constant dj . First, we need to show that all resulting sets of tuples (one for each of
c1, c2, . . . , ck−1) is a minterms in Yuv. Suppose otherwise, that ci[a/x, dj/y] is not
a minterm, i.e. it is implied by another minterm. The latter can only come from
dL

u (a,D) (otherwise, if it is of the form c′[θ′1, θ
′
2] where c′ is a component in d, then

we obtain a homomorphism ci → c′ contradicting the fact that d was minimized),
but each such minterm corresponds to an X-subcomponent in dL, which has a
ubiquitous left binary symbol U (Prop. 8.13), which (by definition) does not occur
in c1, and does not occur in any of c2, . . . , ck−1 either because the latter do not
contain any left symbols. Hence, all sets of tuples obtained from by instantiating
the central path are minterms (i.e. non-redundant) and, therefore, all their tuples
belong the connected component Cuv. Any central symbol S occurs in the central
part of the path, hence S(a, dj) belongs to Cuv. It remains to show that for a left
symbol S, the tuple S(a, dj) is in Cuv. There are two cases. Either S occurs in
c1, in which case it follows immediately that S(a, dj) belongs to Cuv. Or it does
not occur in c1: in that case it is a ubiquitous symbol, and we denote it U . Then
we trace U in dL

u (a,D). Recall that every component of dL
u (a) corresponds to an

X-subcomponent of dL of some left component c. By Corollary 8.14, c, c1, . . . , ck

is also a strict path. Consider the subcomponent s of c that occurs in dL
u (a): in

other words, dL
u (a) = s[a/x] ∨ . . . Clearly, s contains the symbol U , because U is

ubiquitous. We claim that it contains at least one left binary symbol S in common
with c1; otherwise, s consists only of ubiquitous symbols, and, if s′ is any other
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subcomponent of c, then there exists a homomorphism s → s′ (since s′ contains
all ubiquitous symbols by definition), contradicting the fact that c is minimized.
Thus, there exists a left binary symbol S that is common to s and c1. Instantiate
s by setting x = a and y = dj . This is a minterm s[a, dj ] in Yuv, containing both
tuples U(a, dj) and S(a, dj): since the latter belongs to the connected component
Cuv, so does the former. This completes the proof that Yuv is connected.

Next, we prove the claim for queries of type 1-1.

Proposition 8.31. If d is of type 1-1, then all four Boolean expressions Y Cuv
uv ,

u ∈ [2], v ∈ [2] are in-equivalent.

Proof. Recall that u = 1 means false and u = 2 means true. Furthermore,
dL
1 (a) ≡ false and dR

1 (b) ≡ false. This implies that the co-occurrence graph of
Y11 is connected: indeed, all sets of tuples in dC(a, c) are minterms (i.e. they are
not redundant), and for any strict path c0, c1, . . . , ck, the component c1 contains
all left symbols (Prop. 8.13) and therefore, all tuples occurring in dC(a, c) belong
to the same large connected component Cuv; similarly for dC(d, b). However, when
u = 2, then in the expression dL

u (a, c) ∨ dC(a, c) some of the components in dC

may become redundant, and as a consequence some tuples of the form S(a, c) for a
left symbol S may become disconnected from the large connected component Cuv.
Let CL

u denote the set of tuples that become disconnected (this set may consists
of several connected components), and similarly CR

v the set of tuples of the form
S(c, b) where S is a right binary symbol, that become disconnected from the big
component Cuv. We have CL

1 = CR
1 = ∅, while CL

2 and CR
2 may be empty or not.

Thus:

Yuv =Y
CL

u
uv ∨ Y Cuv

uv ∨ Y
CR

v
uv

where Y
CL

u
uv , Y Cuv

uv , and Y
CR

v
uv do not share any common tuples (Boolean variables),

and Y
CL

1

1v ≡ false, Y
CR

1

u1 ≡ false.

To prove our claim, suppose the contrary, that Y
Cu1v1

u1v1
≡ Y

Cu2v1

u2v2
. The pair of

labels u1, v1 is distinct from u2, v2, so assume w.l.o.g. that u1 = 1 and u2 = 2.

There are two cases. First, CL
2 6= ∅. Then Y

C1v1

1v1
depends on all Boolean variables

in CL
2 , while Y

C2v2

2v2
does not depend on these variables, hence they cannot be

equivalent. Second, CL
2 = ∅. Then

Y1v1
=Y

C1v1

1v1
∨ Y

CR
v1

1v1

Y2v2
=Y

C2v2

2v2
∨ Y

CR
v2

2v2

Since Y1v1
6≡ Y2v2

, we must have v1 6= v2, so assume w.l.o.g. that v1 = 1 and v2 = 2.

Thus, Y
CR

v1

1v1
≡ false. Here there are also two cases. Either CR

2 6= ∅: in this case

Y C11

11 depends on strictly more Boolean variables than Y C22

22 . Or CR
2 = ∅. In that

case we obtain that Y11 ≡ Y22, which is a contradiction.

8.7 Solving for det(M) 6= 0

Finally, we show here that, if the Jacobian of x̄ 7→ ȳ is non-zero, then M is non-
singular and, moreover, once can choose in polynomial time values for x̄ s.t. the re-
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sulting matrix M is non-singular. For the first part we apply the Vandermonde/Kronecker-
product principle that we alluded to. For the second part, we note that the matrix
M consists of powers of the polynomials yuv (see Eq. 18 and Eq. 21), and therefore,
its determinant is a polynomial too. Given that this polynomial is not identically
zero (which follows from the first part), we need to find in polynomial time some
values for its variables such that the polynomial at those values is not zero. Here, we
apply a simple principle. Given a polynomial in a single variable x, f(x) =

∑

k akxk,
one can find in PTIME in n a value v s.t. f(v) 6= 0: indeed, simply choose n + 1
distinct real values v0, v1, . . . , vn and compute f(vj) for j = 0, . . . , n. At least one
6= 0, otherwise the polynomial is identical zero.

Proposition 8.32. Let x̄ = (x1, . . . , xm) be m variables, and Ḡ(x̄) = (G1(x̄), . . . , Gn(x̄))
be n multivariate polynomials in x̄. Consider n distinct copies of x̄, denoted x̄i,
i = 1, n, and let X̄ = (x̄i)i=1,n be the set of m · n distinct variables. Define the
matrix of polynomials:

M(Ḡ) = (Gj(x̄i))i,j=1,n (23)

Then there exists an algorithm that runs in time (n + 1)O(m) and either deter-
mines that det(M) ≡ 0 (as a multivariate polynomial in X̄) or finds values V̄ s.t.
det(M(Ḡ)[V̄ /X̄]) 6= 0.

The second proposition is:

Proposition 8.33. Let F̄ (x̄) = (F1(x̄), . . . , Fm(x̄)) be m multivariate polyno-
mials, each in m variables x̄. For each n > 0, define (n + 1)m polynomials Ḡ(x̄) as
follows:

Ḡ = (
∏

i=1,m

F ji

i (x̄))0≤j1,...,jm≤n (24)

Thus, for each m-tuple (j1, j2, . . . , jm) ∈ {0, . . . , n}m there is one polynomial in Ḡ.
Suppose that the Jacobian of the function x̄ → F̄ (x̄) is not identically zero. Then
det(M(Ḡ)) 6≡ 0, where M(Ḡ) is the matrix of polynomials defined by Eq. 23.

Together, these two propositions prove the following. Fix m = O(1), and suppose
we are given m polynomials F1(x̄), . . . , Fm(x̄) in m variables x̄ with a non-zero
Jacobian. Define Ḡ as in Eq. 24 and M = M(G) as in Eq. 23. Then the determinant
of polynomials det(M) is not zero, and one can find in PTIME (n + 1)m values V̄
for x̄ s.t.the determinant of numbers det(M)[V̄ ] 6= 0.

In the remainder of this section we prove the two propositions.
To prove Prop. 8.32 we need the following two lemmas.

Lemma 8.34. Let P (x1, . . . , xm) be a multivariate polynomial of degree n, with
m = O(1) variables. Suppose we have an Oracle that, given values v1, . . . , vm,
computes P (v1, . . . , vm) in time T . Then there exists an algorithm that runs in
time O((n + 1)mT ) and either determines that P ≡ 0 or returns a set of values
v̄ = (v1, . . . , vm) s.t. P (v̄) 6= 0.

Proof. By induction on m. Choose n + 1 distinct values for the last variable:
xm = v0

m, xm = v1
m, . . ., xm = vn

m. For each value vi
m we substitute xm = vi

m

in P . We obtain a new polynomial, Q = P [xm/vi
m], with m − 1 variables. By
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induction, we can find in time O((n + 1)m−1T ) a set of values v1, . . . , vm−1 s.t.
Q[x1/v1, . . . , xm−1/vm−1] 6= 0, or determine that none exists. If for some i we
find such values, then augment them with vi

m and return (v1, . . . , vm−1, v
i
m). If

Q = P [vi
m/xm] ≡ 0 for all i = 0, n, then P is divisible by

∏

i(xm−vi
m), by Hilbert’s

Nullstellensatz. Since the degree of xm in P is at most n, it follows P ≡ 0.

Recall that n multivariate polynomials G1, . . . , Gn are called linearly independent
if, for any constants c1, . . . , cn, if c1G1 + . . . + cnGn ≡ 0 then c1 = . . . = cn = 0.

Lemma 8.35. The polynomials G1, . . . , Gn are linearly dependent iff det(M(Ḡ)) ≡
0, where M is given by Eq. 23.

Proof. The “if” direction follows immediately from the fact that the columns
in M are linearly dependent. For the “only if” direction, we prove by induction
on n that, if n polynomials G1, . . . , Gn are linearly independent, then det(M) 6≡ 0.
Let M ′ be the (n−1)× (n−1) upper-left minor of M . Since G1, . . . , Gn−1 are also
linearly independent, det(M ′) 6≡ 0. Hence, there exists values V̄ ′ = (v̄1, . . . , v̄n−1)
s.t. det(M ′)[V̄ ′] 6≡ 0. Consider now det(M)[V̄ ′]: that is, we substitute x̄1, . . . , x̄n−1

with the values V̄ ′, and keep only the variables x̄N . Then det(M(V̄ ′)) has in the
last row the polynomials G1(x̄n), . . . , Gn(x̄n), and has constants in all other rows.
Its value is a linear combination of the polynomials in the last row: det(M) =
c1 · G1 + . . . + cn · Gn. The last coefficient, cn = det(M ′)[V̄ ′], is non-zero, hence
det(M) 6≡ 0, because the polynomials are linearly independent.

We can now prove Prop. 8.32.

Proof. (of Prop. 8.32) We proceed by induction on n. Consider the upper left
minor M ′ of dimensions (n − 1) × (n − 1). Apply induction to the matrix M ′. If
we determine that det(M ′) ≡ 0, then this implies that G1, . . . , Gn−1 are linearly
dependent, and therefore so are G1, . . . , Gn, which implies det(M) = 0. Otherwise,
we have computed a set of values V̄ ′ = (v̄1, . . . , v̄n−1) that make the upper left minor
M ′ non-singular. Then det(M) is a polynomial P (x̄n) in m = O(1) variables x̄n.
We also have an oracle for computing P in time O(n3): given values v̄, substitute
them in last row of M , then compute det(M) using Gaussian elimination. Apply
Lemma 8.34 to compute in time O((n + 1)m+3) a set of values v̄ for which this
polynomial is non-zero. Return the vector consisting of V̄ ′ concatenated with v̄.
The total running time is O(nO(m) for the first n− 1 steps (induction) on M ′, plus
O((n + 1)m+3) for the n’th step.

Next, we prove Prop. 8.33. Recall that a Vandermonde matrix of dimensions
n × n is:

V (y1, . . . , yn) =
(

yj−1
i

)

i,j=1,n

The Kronecker product of two matrices A = (aij), B = (bkl) of dimensions n1 × n1

and n2 × n2 respecitvely, is the following matrix of dimensions n1n2 × n1n2:

A ⊗ B = (aij · bkl)(i,k)∈[n1]×[n2];(j,l)∈[n1]×[n2]

It is known that det(A) 6= 0 and det(B) 6= 0 implies det(A ⊗ B) 6= 0.
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Proof. (of Prop. 8.33) Note that here the matrix M(Ḡ) has dimension (1 +
n)m × (1 + n)m. Consider row i of the matrix: its entries are products of the form
F j1

1 · · ·F jm
m for all possible values j1, . . . , jm ∈ {0, . . . , n}, and all over the same set

of variables x̄i.
Since the Jacobian of F̄ (x̄) is non-zero, the image of F̄ includes a closed, m-

dimensional cube C =
∏

i=1,m[ai, bi]. For each i = 1,m choose a set Yi =

{yi,0, yi,1, . . . , yi,n} s.t. ai < yi,0 < yi,1 < yi,2 < . . . < yi,n < bi. Then Ȳ =
Y1 × . . . × Ym has (n + 1)m points and Ȳ ⊆ C. Note that Ȳ is in the image of
F̄ , hence for every ȳ ∈ Ȳ there exists values x̄i s.t. F̄ (x̄) = ȳ. By choosing these
(n + 1)m values for x̄i in the definition of M(Ḡ) in Eq. 24 we obtain the following
matrix:

M(Ḡ) =
(

yj1
1 · · · yjm

m

)

(y1,...,ym)∈Ȳ ,(j1,...,jm)∈{0,...,n}m

= V (y1,0, y1,1, . . . , y1,n) ⊗ · · · ⊗ V (ym,0, y1,1, . . . , ym,n)

Each Vandermonde matrix is non-singular, implying that M is non-singular.

8.8 Summary of the Proof of the Main Theorem

We summarize now proof of Theorem 8.1. Let d be a forbidden query. Given an
oracle for computing P (d), we show how to use it to solve an SC-problem (of the
same type as the query). Let the SC problem be given by the bipartite graph E ⊆
[n1]× [n2]. Start by constructing a generic sub-block D1(a, b) as a zig-zag-zig block.
Choose any zag-tuple t = S(ci, dj) arbitrarily and designate it as distinguished
tuple. Its negated probability is a variable x. Each other tuple will be a separate
variable. For each u ∈ [m1], v ∈ [m2], consider the multi-linear polynomial fuv =
PD1(a,b)(¬duv(a, b)). We have shown in Section 8.6.5 that x is a distinguished
variable for this set of polynomials. Choose values of all variables other than x
as per Prop. 8.25: now the polynomials fuv are linear (they only depend on x),
non-degenerate, and non-equivalent. Next, make copies D1(a, b), . . . ,Dm1m2

(a, b)
of this block, keeping all probabilities equal (they are constants), except for the
distinguished tuples, where the probabilities will be given by distinct variables
x1, . . . , xm1m2

. This completes the construction of the block D(a, b). If the type of
the query is 2-1 or 2-2, then also construct a generic block D(a, ·) with m1 distinct
tuples whose probabilities are given by m1 variables; if its type is 1-2 or 2-2 then also
construct a block D(·, b) with m2 distinct tuples, depending on m2 variables. The
entire database D is the union of blocks D(a, b), D(a, ·), D(·, b), for (a, b) ∈ E: it
is a probabilistic database that depends on m variables9 x̄ = (x1, . . . , xm). Choose
(n+1)m values for x̄ as explained Sect. 8.7 (essentially by trial and error) to ensure
that the matrix M is non-singular. Call the oracle for P (d) repeatedly, (n + 1)m

times. P (d) is given by Eq. 18 or Eq. 21, and the matrix of the corresponding
system of linear equations is M , which is non-singular. Solve the system using
Gaussian elimination, and obtain the solution to the SC-problem. This proves that
computing P (d) is hard for FP#P

9m is either m1m2 or m1m2 + m1 or m1m2 + m2 or m1m2 + m1 + m2, depending on the type

of the query d.
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9. CONCLUSIONS

In this paper we have studied a fundamental computational problem connecting
logic an probability theory: given a query and a probabilistic database, compute
the probability of the query on that database. We have established a dichotomy
for unions of conjunctive queries (also known as the positive, existential fragment
of First Order logic): for every query Q, either P (Q) can be computed in PTIME
in the size of the database, or it hard for FP#P . We call the query safe in the first
case, and unsafe in the second case. Safety/unsafety can be decided solely on the
syntax of the query, where “syntax” includes, unexpectedly, the Mobius function
of a certain lattice derived from the query. For safe queries we have given a simple,
yet quite non-obvious algorithm, which alternates between an inclusion/exclusion
step over the CNF representation of the query, and an elimination step of one
existential variable. For the hardness proof, we have developed two distinct sets of
techniques. One simplifies any unsafe query until it has only two types of attributes:
this is called a forbidden query. The other set of techniques prove the hardness of
every forbidden query directly, using a reduction from Provan and Ball’s Positive
Partitioned 2 CNF counting problem. The reduction is highly non-trivial, and
involves arguments about irreducible multivariate polynomials.

As future work, we identify the following open problems. The first is a sharpening
of the hardness result, to replace our current oracle construction with a parsimo-
nious reduction. Second, an extension to full First Order Logic. Third, extensions
to richer data models, such as disjoint-independent probabilistic databases, or func-
tional dependencies.
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