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Abstract. We propose a framework in which query sizes can be es-
timated from arbitrary statistical assertions on the data. In its most
general form, a statistical assertion states that the size of the output
of a conjunctive query over the data is a given number. A very simple
example is a histogram, which makes assertions about the sizes of the
output of several range queries. Our model also allows much more com-
plex assertions that include joins and projections. To model such complex
statistical assertions we propose to use the Entropy-Maximization (EM)
probability distribution. In this model any set of statistics that is consis-
tent has a precise semantics, and every query has an precise size estimate.
We show that several classes of statistics can be solved in closed form.

1 Introduction

Modern database query optimizers are the result of thousands of man years
worth of work from very talented individuals, and so are extremely sophisticated.
Although the optimizers themselves are sophisticated, the heuristics they employ
are often not: When estimating the selectivity of two predicates, the optimizer
might make an independence assumption and so, assume that the selectivities of
two predicates are independent. When estimating the size of the intersection of
two columns, the optimizer might make a containment assumption and assume
that the values in one column are contained in the other. The cleverness of the
optimizer is in how and when to apply these rules. In spite of this intense effort
and the fundamental importance of the problem, there is no general theory that
explains how the optimizer should make these choices or when such choices are
consistent. In this paper, we take a first step towards such a general, principled
theory of how optimizers should make use of statistics.

The lack of a principled framework is likely to become an even more critical
problem as new sources of statistics become available to the query optimizer. For
example, several proposals [3,17] advocate acquiring query feedback and incorpo-
rating this statistical feedback into the optimizer. It is easy to collect cardinality
statistics from each query as it is executed by the database engine. The diffi-
culty lies in combining this newfound plethora of statistics to produce a single,
principled estimate. The lack of such a principled framework is a major reason
that execution feedback has not been widely adopted in commercial database
engines.

The key object of our study is a statistical program, which is a set of pairs
(v,d), where v is a query (also called a view) and d > 0 is a number. Each pair
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Fig. 1. An example of a Statistical Program and a query, ¢ whose cardinality we would
like to estimate.

(v,d) is called a statistical assertion, and means intuitively that the answer to
v has expected size d; we write it as #v = d and say simply that “the size of
v s d”. A statistical program encodes the information that is available to an
optimizer. The primary use of this information is to estimate the expected result
size of other queries during query optimization.

Ezxample 1. Figure 1 illustrates a statistical program that asserts the sizes of
4 views and 2 base relations. The program also asks for the estimated size of
another query. This program asserts that the expected number of distinct tuples
in the relation R is 3000. The program also asserts (via V3) that the second at-
tribute of .S contains 150 values. Our proposal also allows complex assertions that
involve joins and arithmetic predicates, such as V. In addition to statistical as-
sertions, our model also allows specifies inclusion constraints. These constraints
are hard constraints and must hold in every instance I the distribution considers
possible, i.e., for which P[I] > 0. For example, 7, says that each value in the
second column of R is also in the S relation.

In this paper, we study the probability distribution over database instances
that satisfy a given statistical program X.

1.1 Ouwur Approach: Entropy Maximization

In this paper we define a model for a statistical program using the Entropy
Maximization principle. We assume that the relations in the database are drawn
from a finite domain D, of size N, and that each database instance I has some
probability P(I). P is chosen to fit the statistics X' and without making any
other assumptions on the data. More precisely (1) for each assertion #v = d
in X, the expected size of v under P is d, and (2) the probability distribution
P has the maximum entropy among those that satisfy (1) (formal definition
given in Sec. 2). The EM model for a statistical program X' is an instance of the



general EM principle in probability theory, discussed for example by Jaynes [12,
Ch.9,11], and which has also been applied to consistent use and construction of
histograms [14, 16].

The EM framework has many attractive features. First, any combination of
statistical assertions has a well-defined semantics (except, of course, when it is
inconsistent); thus, a statistical program is treated as a whole, as opposed to
a set of separate synopses. Second, every query has a well defined cardinality
estimate; there is no restriction on the query, and the query estimate no longer
depends on which heuristics are used to do the estimation. A third reason is
that the EM framework has an interesting property that allows us to add a new
statistical assertion smoothly: if the estimate of a query ¢ under a statistical
program X is d, then after adding the assertion #q = d the new EM probability
distribution is identical to the previous one. In practice this means that if we
add a small correction to the model, #q = d’ where d’ =~ d, then the model
will change smoothly. The final, and most important conceptual reason is that
in a precise sense the probability distribution given by entropy maximization
depends only on the provided statistics and makes no additional assumptions
beyond this. We return to this point when we formally define our model and
state its properties in Sec. 2.1.

In this paper, we study the following model computation problem: given a
statistical program X and a set of full inclusion constraints I', find a solutions
to the EM model. (We explain below the reason for introducing constraints.)
Since an EM solution is tied to the particular domain D, we seek to remove
the dependency by letting the domain size N grow to infinity as is done, for
example in random graphs [9], knowledge representation [2], or asymptotic query
probability [5]. Since we seek an analytic understanding of the model, our goal is
to find analytic (asymptotic) solutions to the EM model. Solving the EM model
in general is, however, a very hard problem. We report in this paper several
partial results on the asymptotic solutions for statistical programs. While our
results do not add up to a comprehensive solution to statistical programs they
do offer explicit solutions in several cases, and shed light on the nature of the
EM model for database statistics.

1.2 Main Technical Results

In this paper, we introduce classify programs according to two axes. First,
whether the statistical assertions are on base tables only, or on both base tables
and views: we say that X is in normal form (NF) if all statistical assertions are
on base tables; otherwise it is in non-NF. The program in Fig 1 is in non-NF.
Second, whether the views in X', I' have joins or are join-free: we call the pro-
gram composite if all views have joins, and atomic if all are join-free (we do not
consider mixed atomic/composite programs). All four combinations are possi-
ble, e.g., an NF, composite program means that all statistical assertions are on
base tables and the inclusion constraints are composite views. In this paper, we
consider only composite programs>.
3 Tt turns out that atomic and mixed programs require an entirely different set of more
complex, analytic techniques. In the full version of this paper [13], we discuss our



We give a complete solution for composite, NF programs: given statistics on
the base tables and a set of full inclusion constraints, the EM model is described
by an explicit formula. We prove this by using techniques from [6]. Second, we
prove a more limited result for non-NF programs, by giving an explicit formula
when the views are restricted to project-semi-joins. This explicit formula gives
an important insight into the nature of difficulty of the non-NF programs, as we
explain below.

In addition to these explicit solutions, we discuss a generic technique that we
encapsulate as the conditioning theorem (Sec. 3.1); this reduces a more complex
program to a simpler program plus additional inclusion constraints; this is what
has motivated us to study statistical programs together with constraints.

The conditioning theorem states that every solution P to the EM model
can be expressed as a conditional probability P(—) = Po(— | I'), where Py
is a tuple-independent distribution called the prior, and I is a set of inclusion
and set-equality constraints. Since Pg is tuple-independent, it is specified by a
number p; € (0,1), one for each relation R;, representing the probability that
a generic tuple in the domain belongs to R;; the corresponding odds is denoted
a; = p;/(1 — p;). Understanding the quantity Po(I") is a key component to
understanding the EM model. This quantity converges to 1 for composite NF
programs, and to 0 for composite NNF programs, suggesting that the techniques
used to solve composite, NF programs (which turn out to be simpler) do not
extend to the other cases.

The EM model computation that we study in this paper is the first step in
our program of using the EM framework for query size estimation. The second
step is to use the model in order to do query size estimation, which we leave for
future work, noting that it has been solved for the special case of independent
distributions [6].

The rest of the paper is organized as follows. We describe the EM model in
Sec. 2, discuss composite programs in Sec. 3, and discuss how to handle range
predicates in Sec. 4. We conclude in Sec. 6.

2 The EM Model

We introduce basic notations then review the EM model. CQ denotes the class
of conjunctive queries over a relational schema Ry, ..., R,,. We define a project-
join query as a conjunctive query without constants and where no subgoal has
repeated variables, and write PJ for the class of project-join queries. For example
R(z,y), S(y, z,u) is a project-join query, but neither R(a, ) nor S(z,x,y),T(y, )
are. An arithmetic predicate, or range predicate, has the form z op ¢, where
op € {<,<,>,>} and c is a constant; we denote by PJ< the set of project-join
queries with range predicates.

Let I' be a set of full inclusion constraints, i.e., statements of the form
Vz.w(Z) = R;(Z), where w € PJS and R; is a relation name.

preliminary results for atomic programs. We show for example that any program can
be transformed to a normal form program. Interestingly, this normalization process
also introduces additional inclusion constraints.



2.1 Background: The EM Model

For a fixed domain D and constraints I" we denote Z(I") the set of all instances
over D that satisfy I'; the set of all instances over D is Z((}), which we abbreviate
7. A probability distribution on Z(I") is a set of numbers p = (pr)rez(r) in [0,1]
that sum up to 1. We use the notations p; and P[I] interchangeably in this
paper.

A statistical program is a pair X = (v, d), where v = (vy,...,vs) are project-
join queries, v; € PJ, and (dy,...,ds) are positive real numbers. A pair (v;, d;) is
a statistical assertion that we write informally as #v; = d;; in the simplest case it
can just assert the cardinality of a relation, #R; = d;. A probability distribution
I(I) satisfies a statistical program X if E[|v;|] = d;, for all i = 1, m. Here E[|v;]]
denotes the expected value of the size of the view v;, i.e., > ;o7 |vi(1)[pr. We will
also allow the domain size N to grow to infinity. For fixed values d we say that a
sequence of probability distributions (px)nso satisfies X = (v, d) asymptotically
if imy oo En[|vs|]] = di, for i =1, m.

Given a program Y, we want to determine the most “natural” probability
distribution p that satisfies X' and use it to estimate query cardinalities. In
general, there may not exist any probability distribution that satisfies X; in this
case, we say that X is unsatisfiable. On the other hand, there may exist many
solutions. To choose a canonical one, we apply the Entropy Maximization (EM)
principle.

Definition 1. A probability distribution p = (pr)rez(ry is an EM distribution
associated to X if the following two conditions hold: (1) p satisfies X', and (2)
it has the mazximum entropy among all distributions that satisfy X, where the

entropy is H = — ZIeI(F) prlogpr.

With slight abuse, we refer to an EM distribution as the EM model, assuming
it is unique. For a simple illustration, consider the following program on the
relation R(A, B,C): #R = 200, #R.A = 40, #R.B = 30, #R.C = 20. Thus,
we know the cardinality of R, and the number of distinct values of each of the
attributes A, B,C. We want to estimate #R.AB, i.e., the number of distinct
values of pairs AB. Clearly this number can be anywhere between 40 and 200,
but currently there does not exists a principled approach for query optimizers to
estimate the number of distinct pairs AB from the other four statistics. The EM
model gives such a principled approach. According to this model, R is a random
instance over a large domain D of size N, according to a probability distribution
described by the probabilities py, for I C D3. The distribution p; is defined
precisely: it satisfies the four statistical assertions above, and is such that the
entropy is maximized. Therefore, the estimate we seek also has a well defined
semantics, as E[#R.AB] = ) ,cps pr|I.AB|. This estimate will certainly be
between 40 and 200; it will depend on N, which is an undesirable property, but
a sensible thing to do is to let N grow to infinity, and compute the limit of
E[#R.AB]. Thus, the EM model offers a principled and uniform approach to
query size estimation. Of course, in order to compute any estimate we must first
find the EM distribution py; this is the goal in this paper.

To describe the general form of an EM distribution, we need some definitions.
Fix the set of constraints I" and the views v = (vq, ..., vs).



Definition 2. The partition function for I' and v is the following polynomial
T with s variables T = (xq,...,2s):

TF’E(i'): Z m|1U1(I)|._.x|”s(I)|

S

IeZ(I)
Let a = (a1,...,a5) be s positive real numbers. The probability distribution
associated to (I',v, @) is:
pr = wal Dl gl (1)

where w = 1/TT%(a).

We write T instead of T7” when I, ¥ are clear from the context. The partition
function can be written more compactly as:

T(j): Z CF(N,kh...,ks)xlfl...x’;s
k1,..,ks

where Cr(N, kq,...,ks) denotes the number of instances I over a domain of size
N that satisfy I" and for which |v;(I)| = k;, for all ¢ = 1, s.

The following is a key characterization of EM distributions.
Theorem 1. [12, page 355] Let X = (v,d) be a statistical program. For any
probability distribution p that satisfies the statistics X the following holds: p is
an EM distribution iff there exist parameters & s.t. p is given by the Equation
(1) (equivalently: p is associated to (I, v, @) ).

The message of this theorem is that the weight of an instance I under the EM
distribution only depends on |v;(I)|. That is, the distribution depends exactly on
the provided statistics and makes no additional assumptions. It is this property
that makes the EM distribution the natural model for database statistics. In
a Bayesian sense, for a fixed set of statistics the EM model yields the optimal
estimate. We refer to Jaynes [12, page 355] for a full proof and further discussion
of this point; the “only if” part of the proof is both simple and enlightening, and
we include in the Appendix for completeness.

We illustrate the utility of this theorem with two simple examples:

Ezample 2. The Binomial-Model Consider a relation R(A, B) and the sta-
tistical assertion #R = d with I' = (). The partition function is the binomial,
T(z) = > hon2 (Z\,’:)xk = (1 + 2)™ and the EM model turns out to be the
probability model that randomly inserts each tuple in R independently, with
probability p = d/N?2. We need to check that this is an EM distribution: given
an instance I of size k, P[I] = p*(1 — p)¥"~*, which we rewrite as P[I] = wak.
Here a = p/(1 — p) is the odds of a tuple, and w = (1 —p)N2 = P[I = 0]. This
is indeed an EM distribution by Theorem 1. Asymptotic query evaluation on a
generalization of this distribution to multiple tables was studied in [5]. ]



Ezample 3. Overlapping Ranges Consider two views®:

vi(z,y) = R(z,y),z < .60N and vy(z,y) :- R(z,y),.25N <z

and the statistical program #vi; = dj, #vo = ds (again I' = (). Assuming
N = 100, the views partition the domain into three buckets, D; = [1,24],
Dy = [25,59], D3 = [60,100], of sizes Ni, N3, N3. Here we want to say that
we observe d; tuples in D1 U Dy and ds tuples in Dy U D3. The EM model
gives us a precise distribution that represents only these observations and noth-
ing more. The partition function is (1 + 1) (1 + x122)V2(1 + 22)™2, and the
EM distribution has the form P[I] = wa®*a%?  where k; = |I N (D; U Dy)| and
ko = |I N (D2 U Dj3)|; we show in Sec. 4 how to compute the parameters oy, as.

In this paper we study the model computation problem: given a statistical
program X' find the parameters & for the EM model. The ultimate goal of our
program is to further use these parameters to estimate the size of arbitrary
queries, but we will not treat the latter problem in this paper. The model de-
pends on the size of the domain, N, and this is an undesirable property, since
in practice N has no meaning other than that it is large. For that reason, we
study the asymptotic model computation problem in this paper: find a sequence
of parameters ay s.t. the distribution associated to (I, U, &) satisfies X' asymp-
totically.

To simplify our discussion we present our results for the case when the queries
in the statistical program have no range predicates, and show in Sec. 4 how to
handle range predicates. Thus, from now on, until Sec. 4, we will assume all
conjunctive queries to be without range predicates.

2.2 A Taxonomy for Statistical Programs

Recall that PJ denotes the class of project-join queries. We define here two sub-
classes. First, a project query is a single subgoal query without constants or re-
peated variables; denote P the class of project queries. Second, a single component
join query is a project-join query with the following properties: it is minimized,
has at least two subgoals, and has a single connected component; denote PJ¢ the
class of single component join queries. Queries V3, Vy in Fig. 1 are in P; queries
Vs is in PJC. P and PJC are two disjoint subclasses of PJ that do not cover PJ.
Some queries in PJ are not in either class, e.g. v(z,y) := R(x,y), R(z,v),S(u)
is a query that minimizes to R(x,y), S(u), which is neither in P nor in PJ¢ (it
has two connected components): we do not treat such queries in this paper.

We classify statistical programs X = (7, d) and constraints I" along two axes:

Definition 3. X' is in normal form (NF) if all statistical assertions are on base
tables; otherwise, it is in non-normal form (NNF).

Definition 4. (1) X is composite if for every statistical assertion #v =d, v is
either a base table or is in PJC. I is composite if for every constraint VZ.w(z) =
Ri(Z), w is in PJ°. We say that X, T is composite if both are composite. (2)
Y. I' is atomic if all their views are in P.

4 We represent range predicates as fractions of N so we can allow N to go to infinity.



Thus, there are four combinations of programs: NF/NNF and composite/atomic.
For example, referring to Fig. 1, the program (X1, ) X1 = {#R = 3000, #T = 42000}
with I'T1 = {71} is an atomic, NF program; if we add the statistical assertion
(Vi,dy), then the program is still atomic, but no longer in normal form. On
the other hand, (X4, I") with I = {~3} is composite and in normal form; if we
add the statistic (V5, ds) then this becomes a composite program, not in normal
form. We do not treat mixed atomic/composite programs.

3 Composite Programs

We start by discussing the case when all queries are composite. First, we intro-
duce the two main techniques used in this section, conditioning on the prior, and
the asymptotic probabilities from [5], then we give our results.

3.1 From Conditionals to EM Models

Recall that Z denotes the set of all database instances, without any constraints.
Define a prior probability distribution to be any tuple-independent probability
distribution Py on Z. As seen in Example 2, this is an EM distribution for a
very simple NF program, which just asserts the cardinalities of each relation,
#R; = d;, and has no constraints. Each tuple ¢ into R; has probability Py[t] =
d; /N*ty() “and the EM parameters are a; = p; /(1 —p;) ~ p;. Now let’s add a
set of constraints Y/, i.e., consider the NF program consisting both of cardinality
assertions #R; and constraints Y. Its EM model is obtained as follows:

Theorem 2 (Conditioning). Let P be the EM model for a NF program X, I
Then there exists a prior probability distribution Py such that:

VIeZ(I), P[] =Pyl

Moreover, the expected values are obtained through the following transfer equa-
tion: Ellq|] = Eollql | I'].

Proof. Let & be the parameters of P. Define the tuple-independent prior as
follows: for each relation R;, define Pyt € R;] = p; = a;/(1 + ;). (Thus, the

I
odds of p; are precisely «;.) Then Py[I] = wy HaLRil (follows by generalizing

I
Example 2) and P[I] = w ][] aLRi | (by definition). Thus, P and P are essentially
the same expression, only P is defined over a restricted domain Z(I") C 7.

For a simple illustration, consider the statistical program X: #R(A, B) =
dy, #T(B,C) = da, and the constraints I': R(x,y),R(y,2) = R(z,z) and
T(z,y),R(y,z) = T(z,x). To solve it, first solve a different, simpler program
#R(A, B) = by, #T(B, C) = by, without constraints. This is a tuple-independent
probability distribution Pg. Then the solution to X, I is given as P[I]| = Py[I |
I']. The difficulty lies in choosing the statistics by, bo of the simpler model: we
need to ensure that Eg[|R| | I'] = dy, Eo[|T| | I'] = da.



V(q) = the number of distinct variables in ¢
a(q) =Y {arity(g) | g € goals(q)}
D(q) = a(q) = V(q)
b(q) = [ [{b(9) | g € goals(q)}
UQ(q) = {n(q) | n = a substitution of variables}

E(g) = min D(g0)g0 € UQ(q)

UQ"(a) = {ao | a0 € UQ(a), D(q0) = E(q)}
cla) = az(t%(;i)

20€UQ%(q)

Fig. 2. Notations for Theorem 3 from [5].

3.2 Background: Asymptotic Query Probabilities

Based on our discussion, we need to study prior probabilities that have the form
P[t € R] = b(R)/N (1) where b(R) is a constant that depends only on the
relation symbol R. These tuple-independent distributions were studied in [5]. It
was shown that for any Boolean conjunctive query ¢ € CQ, there exists two
constants E(q) and C(g), which can be computed only from the constants b(R)
and the query expression, s.t. P[q] = C(q)/NF(@ 4 O(1/NF@+1) We give the
expressions for C(¢q) and E(q) in Fig. 2.

Ezample 4. We illustrate the notations in Fig. 2 on the query ¢ = R(x,y), R(y, 2),
and b(R) = b. D(q) = 4 —3 = 1 and is called the degree of ¢; and b(q) = b°.
UQ(q) is obtained by substituting variables in ¢ and contains four queries (up
to isomorphism): ¢ itself, then R(x,z), R(z,y), then R(x,y), R(y,y), and finally
R(z, ). Their degrees are 1,2,2, 1 respectively, thus F(g) = 1 and is called the
exponent of ¢. UQ(q) consists of the first and last queries (those that have
D = 1), and aut(qp) is the number of automorphisms for ¢g, and is 1 for both
queries in UQ%(q). Finally, C(q) = b* + b is called the coefficient of q. Thus,
Plg] = (b + b)/N + O(1/N?).

We consider here only conjunctive queries where all connected components
have E > 0; this rules out some degenerate queries, whose treatment is more
complex [4]. All PJ® queries satisfy this property, since they have a single com-
poment and £ > 0.

Theorem 3. [5] For any conjunctive query q € CQ, Po(q) = C(q)/NF@ +
O(1/NE@+1),

3.3 Composite NF Programs

Theorem 4 (Composite, NF). Consider a statistical program in normal
form X: #R; = dj, for j = 1,m. Consider a set of inclusion constraints I’
where all queries are composite. Then an asymptotic solution to the EM model
is given by aj = dj/NTt(R)



The proof uses Theorem 3 and is given in the full version of the paper; it uses
Theorem 3 as well as specific properties of the expressions D and F in Fig. 2. At
a high level, the proof exploits the fact that limy Po[I"] = 1 (i.e., the constraints,
I', almost surely hold), where Py is the prior associated to the same statistical
program (X, I"): that is, the constraints I" holds almost certainly in the prior,
and hence the statistics are not affected by conditioning.

Ezample 5. Consider the constraints R(z,y), R(y, z) = R(x, z), and T(z,y, 2), R(y,u) =
S(y), and the statistical assertions |R| = dy, |T| = da, |S| = d3. An asymptotic
solution to the EM model is given by a; = d1/N?, ay = do /N3, a3 = d3/N.

3.4 Composite Non-NF Programs

Let X' be a statistical program that consists of assertions on all relations, #R; =
d;, as well as assertions over composite views, #¢; = d;. Create a new relation
symbol T; for each statistical assertion of the same arity as the view, and define
the set equality constraints Vz.(3y.q;(Z,y) < T;(Z)). Each set equality con-
straint is expressed as y; A d;, where ; is a full inclusion constraint and ¢; is a
reverse inclusion constraint:

=Vz.q;(Z) = T;(T)
6; =vVa.Ty(z) = (3y.¢:(7, 9))

Denote A and I" the set of all inclusion- and all reverse inclusion constraints. As
before, the EM solution is given by a conditional P[I] = Po[l | A A I'], where
Py is some tuple-independent prior. However, it is now more difficult to transfer
the expected sizes, and we provide a closed form solution only for a restricted
class of views.

3]

Definition 5. A query q € PJ is a project-semi-join query if the following con-
ditions hold. Let T = (1, ...,xk) be its head variables:

— q has no self-joins (i.e., no repeated relation symbol).
— If two different subgoals in q share a variable y, then y € T.
— For every subgoal g, if g contains x; then it also contains x;41.

A core subgoal is a subgoal that contains the smallest number of head vari-
ables. The core of ¢ is the set of core subgoals and denoted G. In what follows,
a transfer equation is an equation that relates a size estimate under the prior
distribution to the size estimate of the distribution under constraints.

Lemma 1. Let ¢ be an inverse inclusion constraint Vz.T(T) = 34.q(Z,§) where
q is a project-semi-join query. Define the prior:

b(R;)
Po(t = RJ) = Narity(R;)
Po(t S T) =1- b(T)

NEG)



(Here E(G) denotes the exponent of the core, see Fig. 2.) Let Ry, ..., Ry, be all
subgoals in q, m > 1. Then the transfer equation for the view is:

HREgoals(q) b(R)

(2)
The transfer equation for any other relation in R is as follows. If the query
consists only of the core, then:
c(G)
Eol|R;i| | 0] = b(R;) + —== 3
oI 8] = MR + G 3)
(C(Q) is the coefficient of G, see Fig. 2.) If the query has subgoals other than

the core, then the expected cardinalities are unchanged.

We prove the lemma in the full version of the paper. From the lemma we
derive:

Theorem 5 (Composite, non-NF). Let X be a statistical program where all
queries are project-semi-join queries, and do not share common subgoals. Then
an EM model for X has the following parameters:

— For every base relation R, the parameter is o; = bj /N (i)
— For every view assertion vj, the parameter is o; = NE(G)/bj, where G is
the core of v;.

where the numerical values b; are obtained by solving a system of equations (2)
and (3).

It is interesting to compare the solution to an NF program to that of a non-
NF program (Theorems 4 and 5). For NF programs all parameters have the form
a; = d/N9, for integer a > 0. For non-NF programs some parameters have the
form N®/d and, thus, go to infinity.

Ezample 6. Consider the following statistical program?®:

#BR1 =d1 #Ry =do
v(x) = Ry(z), Ra(z) #v=d3

Thus, we are given the sizes of Ry, R2, and of their intersection. We introduce a
new relation symbol T and the constraint § = T'(z) < Ry(z), Ra(z), then define
the program in normal form:

#R =di #Ro =ds #T =d3

The theorem gives us the EM solution as follows. The core is the entire query,
hence we define the prior:

Po(Rl(a)) = el/N Po(RQ(a)) = 62/N Po(T(a)) =1- eg/N

5 Its partition function is (1 4+ z1 + x2 + xlmz)N. Intuitevely, this is because each of
the n tuples is in R; and so pays x1, is in R2 and so pays z2 or is in both R; and
R2 and so pays x1x2.



where P(R1(a)) denotes the marginal probability of the tuple R;(a). Note that
T has a very large probability. This gives us an EM model to our initial statistical
program if we solve e, es, e3 in:

€1€2
d3 =
€3
€1€2
di=e +—=
€3
€1€2
d3 = ey + ——
€3

Ezxample 7. A more complex example is a statistical program that uses the fol-
lowing project-semi-join view:

ve(x1,22,23) = Ry(x1,%2,23,Y), Ro(x2, x3), R3(r2, 23, 2),
Ry(x1,x2,23), Rs(x1, 22, 3)

The core consists of Ry and R3, and so we define Py[t € T] = er/N?, where er
is chosen such that dads/er = dg.

4 Bucketization

Finally, we re-introduce range predicates like © < ¢, both in the constraints and
in the statistical assertions. To extend the asymptotic analysis, we assume that
all constants are expressed as fractions of the domain size IV, e.g., in Ex. 3 we
have v (z,y) :- R(z,y),z < 0.25N.

Let R = Ry,..., R, be a relational schema, and consider a statistical pro-
gram X, I" with range queries, over the schema R. We translate it into a buck-
etized statistical program X% I'°, over a new schema R, as follows. First, use
all the constants that occur in the constraints or in the statistical assertions to
partition the domain into b buckets, D = Dy U Dy U ... U Dy. Then define as
follows:

— For each relation name R; of arity a define b* new relation symbols, R;.l'“i“ =
Ré-, where i1,...,i, € [b]; then RO is the schema consisting of all relation
names R7 "

— For each conjunctive query ¢ with range predicates, denote buckets(q) =

{q" | i € [p]/Vers(@I} the set of queries obtained by associating each variable
in ¢ to a unique bucket, and annotating the relations accordingly. Each
query in buckets(q) is a conjunctive query over the schema R°, without
range predicates, and ¢ is logically equivalent to their union.

— Let BV = [J{buckets(v) | (v,d) € X'} (we include in BV queries up to
logical equivalence), and let ¢, denote a constant for each u € BV, s.t. for
each statistical assertion #v = d in X' the following holds

Z cy=d (4)
uEbuckets(v)

Denote X0 the set of statistical assertions #u = ¢,, u € BV.



— For each inclusion constraint w = R in I', create bV *(®)| new inclusion

constraints, of the form w? = R*: call I'? the set of new inclusion constraints.
Then the following holds:

Proposition 1. Let X°, I'° be the bucketized program for X, I". Let 3 = (Bx) be
the EM model of the bucketized program. Consider some parameters & = (o).
Suppose that for every statistical assertion #v; = d; in X condition (4) holds,
and the following condition holds for every query uy € BV :

Br = 11 o (5)

jiug Ebuckets(v;)
Then @ is a solution to the EM model for X, I".

This gives us a general procedure for solving the EM model for programs with
range predicates: introduce new unknowns ¢ and add Equations (4) and (5),
then solve the EM model for the bucketized program under these new constraints.

Ezample 8. Recall Example 3: we have two statistics #04<o.60n(R) = d1, and
#04>0.25N (R) = dy. The domain D is partitioned into three domains, Di =
[1,0.25N), Dy = [0.25N,0.60N), and D3 = [0.60N, N, and we denote N1, N, N3
their sizes. The bucketization procedure is this. Define a new schema R', R%, R3,
with the statistics #R' = ¢!, #R? = ¢, #R3 = ¢, then solve it, subject to the
Equations (5):

B =
52 = Q102
B3 =

We can solve for R', R?, R®, since each R’ is given by a binomial distribution
with tuple probability 3;/(1+ 3;) = ¢!/N;. Now use Equations (4), ¢! +¢? = d;
and ¢ + ¢ = dy to obtain:

a1 109

1+OZ1+ 21+a1a2:
Qa2 1002

N. N. =

31+O&2+ 21+061042

Ny

Solving this gives us the EM model. Consistent histograms [16] had a similar goal
of using EM to capture statistics on overlapping intervals, but use a different,
simpler probabilistic model based on frequencies.

5 Related Work

There are two bodies of work that are most closely related to this paper. The first
consists of the work in cardinality estimation. As noted above, while a variety of
synopses structures have been proposed for cardinality estimation [1, 8,10, 15],
they have all focused on various sub-classes of queries and deriving estimates for



arbitrary query expressions has involved ad-hoc steps such as the independence
and containment assumptions which result in large estimation errors [11]. In
contrast, we ask the question what is the framework for performing cardinality
estimation over arbitrary expressions in the presence of incomplete information.
We approach this task via the EM principle.

The EM model has been applied in prior work to the problem of cardinality
estimation [14,16]. However, the focus was restricted to queries that consist of
conjunctive selection predicates over single tables. In contrast, we explore a full-
fledged EM model that can incorporate statistics involving arbitrary first-order
expressions.

Another body of related work consists of the work in probabilistic databases [7]
which focuses on efficient query evaluation over a probabilistic database. The in-
put statistics impose many possible distributions over the possible worlds and
we choose the distribution that has maximum entropy. Our focus in this paper
is in deriving the parameters of this EM distribution. The related problem of
query estimation for a given model is not addressed in this paper. This is closely
related to the problem of evaluating queries over probabilistic databases.

Finally, we observe that entropy-maximization is a well-established princi-
ple in statistics for handling incomplete information [12]. As with probabilistic
databases, new challenges emerge in the context of database systems, in our case
the nature of statistics.

6 Conclusion

In this paper we propose to model arbitrary database statistics using an Entropy-
Maximization probability distribution. This model is attractive because any
query has a well-defined size estimate, all statistics are treated as a whole rather
than as individual synopses, and the model extends smoothly when new statistics
are added. We reported in this paper several results that give explicit asymp-
totic solutions to statistical programs in several cases. As part of our technical
development we described a technique encapsulated as the conditioning theorem
(Theorem 2) that is of independent interest and are likely to be applicable to
other statistical programs.

We are leaving for future work the second part: using an EM model to obtain
query size estimates. This has been solved in the past only for the independent
case [6].
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A Proof of Theorem 1

The “only if” direction is very simple to derive by using the Lagrange multipliers
for solving:

Fo=)» pr—1=0 (6)

IeT

Vi=1,...,s: F;=>Y |vi(D)lpr —di =0 (7)
IeT

H = maximum, where H = Zpl log pr (8)
IeT

According to that method, one has to introduce s + 1 additional unknowns,
A AL,y Asr an EM distribution is a solution to a system of |Z|+ s+ 1 equations
consisting of Eq.(6), (7), and the following |Z| equations:

O(H — >0, NiGi)
Opr

VIeT: =logpr — (Ao + »_ Ailvi(D)]) =0

1=1,s

This implies p; = exp(Ao +>_,_; , Aivi({)]), and the claim follows by denot-
ing w = exp(Ng), and o; = exp(N;), i = 1,s.



