
The Complexity of Causality and Responsibility for
Query Answers and non-Answers

Alexandra Meliou Wolfgang Gatterbauer Katherine F. Moore Dan Suciu
Department of Computer Science and Engineering,

University of Washington, Seattle, WA, USA
{ameli,gatter,kfm,suciu}@cs.washington.edu

ABSTRACT
An answer to a query has a well-defined lineage expression (alter-
natively called how-provenance) that explains how the answer was
derived. Recent work has also shown how to compute the lineage
of a non-answer to a query. However, the cause of an answer or
non-answer is a more subtle notion and consists, in general, of only
a fragment of the lineage. In this paper, we adapt Halpern, Pearl,
and Chockler’s recent definitions of causality and responsibility to
define the causes of answers and non-answers to queries, and their
degree of responsibility. Responsibility captures the notion of de-
gree of causality and serves to rank potentially many causes by their
relative contributions to the effect. Then, we study the complexity
of computing causes and responsibilities for conjunctive queries. It
is known that computing causes is NP-complete in general. Our
first main result shows that all causes to conjunctive queries can
be computed by a relational query which may involve negation.
Thus, causality can be computed in PTIME, and very efficiently so.
Next, we study computing responsibility. Here, we prove that the
complexity depends on the conjunctive query and demonstrate a di-
chotomy between PTIME and NP-complete cases. For the PTIME
cases, we give a non-trivial algorithm, consisting of a reduction to
the max-flow computation problem. Finally, we prove that, even
when it is in PTIME, responsibility is complete for LOGSPACE,
implying that, unlike causality, it cannot be computed by a rela-
tional query.

1. INTRODUCTION
When analyzing complex data sets, users are often interested in

the reasons for surprising observations. In a database context, they
would like to find the causes of answers or non-answers to their
queries. For example, “What caused my personalized newscast to
have more than 50 items today?” Or, “What caused my favorite un-
dergrad student to not appear on the Dean’s list this year?” Philoso-
phers have debated for centuries various notions of causality, and
today it is still studied in philosophy, AI, and cognitive science.
Understanding causality in a broad sense is of vital practical im-
portance, for example in determining legal responsibility in multi-
car accidents, in diagnosing malfunction of complex systems, or in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 28th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

Database schema

Query

Query answers

?	

SELECT DISTINCT g.genre
FROM Director d, Movie Directors md,

Movie m, Genre g
WHERE d.lastName LIKE ‘Burton’
AND g.mid=m.mid
AND m.mid=md.mid
AND md.did=d.did
ORDER BY g.genre

Director(did, firstName, lastName)
Movie(mid, name, year, rank)
Movie Directors(did, mid)
Genre(mid, genre)

genre
. . .
Drama
Family
Fantasy
History
Horror
Music
Musical
Mystery
Romance
Sci-Fi
. . .

Figure 1: A SQL query returning the genres of all movies di-
rected by Burton, on the IMDB dataset (www.imdb.org). The
famous director Tim Burton is known for dark, gothic themes,
so the genres Fantasy and Horror are expected. But the genres
Music and Musical are quite surprising. The goal of this paper
is to find the causes for surprising query results.

scientific inquiry. A formal, mathematical study of causality was
initiated by the recent work of Halpern and Pearl [13] and Chock-
ler and Halpern [5], who gave mathematical definitions of causality
and its related notion of degree of responsibility. These formal defi-
nitions lead to applications in knowledge representation and model
checking [9, 10, 5]. In this paper, we adapt the notions of causality
and responsibility to database queries, and study the complexity
of computing the causes and their responsibilities for answers and
non-answers to conjunctive queries.

EXAMPLE 1.1 (IMDB). Tim Burton is an Oscar nominated
director whose movies often include fantasy elements and dark,
gothic themes. Examples of his work are “Edward Scissorhands”,
“Beetlejuice” and the recent “Alice in Wonderland”. A user wishes
to learn more about Burton’s movies and queries the IMDB dataset
to find out all genres of movies that he has directed (see Fig. 1).
Fantasy and Horror are quite expected categories. But Music and
Musical are surprising. The user wishes to know the reason for
these answers. Examining the lineage of a surprising answer is a
first step towards finding its reason, but it is not sufficient: the com-
bined lineage of the two categories consists of a total of 137 base
tuples, which is overwhelming to the user.

Causality is related to provenance, yet it is a more refined no-
tion: Causality can answer questions like the one in our example
by returning the causes of query results ranked by their degree of
responsibility. Our starting point is Halpern and Pearl’s definition
of causality [13], from which we borrow three important concepts:

(1) Partitioning of variables into exogenous and endogenous: Ex-
ogenous variables define a context determined by external, uncon-

1

www.imdb.org

1	

6-‐30-‐2010	

23456 David Burton

23468 Humphrey Burton

23488 Tim Burton

Director Movie

Musical

565577 The Melody Lingers On 1935

359516 Let’s Fall in Love 1933

389987 Manon Lescaut 1997

173629 Flight 1999

6539 Candide 1989

526338 Sweeney Todd: . . . 2007

Query answer

Fig_musicalsGraph	

(a) Lineage from Directors and Movies of the Musical tuple

ρt Answer tuple

0.33 Movie(526338, “Sweeney Todd”, 2007)
0.33 Director(23456, David, Burton)
0.33 Director(23468, Humphrey, Burton)
0.33 Director(23488, Tim, Burton)
0.25 Movie(359516, “Let’s Fall in Love”, 1933)
0.25 Movie(565577, “The Melody Lingers On”, 1935)
0.20 Movie(6539, “Candide”, 1989)
0.20 Movie(173629, “Flight”, 1999)
0.20 Movie(389987, “Manon Lescaut”, 1997)

(b) Responsibility rankings for Musical

Figure 2: Lineage (a) and causes with their responsibilities (b) for the Musical tuple in Example 1.1.

cerned factors, deemed not to be possible causes, while endogenous
variables are the ones judged to affect the outcome and are thus
potential causes. In a database setting, variables are tuples in the
database, and the first step is to partition them into exogenous and
endogenous. For example, we may consider Director and Movie

tuples as endogenous and all others as exogenous. The classifica-
tion into endogenous/exogenous is application-dependent, and may
even be chosen by the user at query time. For example, if erroneous
data in the directors table is suspected, then only Director may
be declared endogenous; alternatively, the user may choose only
Movie tuples with year>2008 to be endogenous, for example in
order to find recent, or under production movies that may explain
the surprising outputs to the query. Thus, the partition into endoge-
nous and exogenous tuples is not restricted to entire relations. As a
default, the user may start by declaring all tuples in the database as
endogenous, then narrow down.

(2) Contingencies: an endogenous tuple t is a cause for the ob-
served outcome only if there is a hypothetical setting of the other
endogenous variables under which the addition/removal of t causes
the observed outcome to change. Therefore, in order to check that
a tuple t is a cause for a query answer, one has to find a set of en-
dogenous tuples (called contingency) to remove from (or add to)
the database, such that the tuple t immediately affects the answer
in the new state of the database. In theory, in order to compute
the contingency one has to iterate over subsets of endogenous tu-
ples. Not surprisingly, checking causality is NP-complete in gen-
eral [9]. However, the first main result in this paper is to show that
the causality of conjunctive queries can be determined in PTIME,
and furthermore, all causes can be computed by a relational query.

(3) Responsibility, a notion first defined in [5], measures the de-
gree of causality as a function of the size of the smallest contin-
gency set. In applications involving large datasets, it is critical to
rank the candidate causes by their responsibility, because answers
to complex queries may have large lineages and large numbers of
candidate causes. In theory, in order to compute the responsibility
one has to iterate over all contingency sets: not surprisingly, com-
puting responsibility in general is hard for FPΣP

2 (logn) [5].1 How-
ever, our second main result, and at the same time the strongest re-
sult of this paper, is a dichotomy result for conjunctive queries: for
each query without self-joins, either its responsibility can be com-
puted in PTIME in the size of the database (using a non-obvious al-
gorithm), or checking if it has a responsibility below a given value
is NP-hard.

EXAMPLE 1.2 (IMDB CONTINUED). Continuing Example 1.1,
we show in Fig. 2b the causes for Musical ranked by their responsi-
bility score. (We explain in Sect. 2 how these scores are computed.)

1This is the class of functions computable by a poly-time Turing
machine which makes logn queries to a Σp2 oracle.

At the top of the list is the movie “Sweeney Todd”, which is, indeed,
the one and single musical movie directed by Tim Burton. Thus,
this tuple represents a surprising fact in the data of great inter-
est to the user. The next three tuples in the list are directors, whose
last name is Burton. These tuples too are of high interest to the user
because they indicate that the query was ambiguous. Equally inter-
esting is to look at the bottom of the ranked list. The movie “Manon
Lescaut” is made by Humphrey Burton, a far less known director
specialized in musicals. Clearly, the movie itself is not an inter-
esting explanation to the user; the interesting explanation is the
director, showing that he happens to have the same last name, and
indeed, the director is ranked higher while the movie is (correctly)
ranked lower. In our simple example Musical has a small lineage,
consisting of only ten tuples. More typically, the lineage can be
much larger (Music has a lineage with 127 tuples), and it is critical
to rank the potential causes by their degree of responsibility.

We start by adapting the Halpern and Pearl definition of causality
(HP from now on) to database queries, based on contingency sets.
We define causality and responsibility both for Why-So queries
(“why did the query return this answer?”) and for Why-No queries
(“why did the query not return this answer?”). We then prove two
fundamental results. First, we show that computing the causes to
any conjunctive query can be done in PTIME in the size of the
database, i.e. query causality has PTIME data complexity; by con-
trast, causality of arbitrary Boolean expressions is NP-complete
[9]. In fact we prove something stronger: the set of all causes can be
retrieved by a query expressed in First Order Logic (FO). This has
important practical consequences, because it means that one can re-
trieve all causes to a conjunctive query by simply running a certain
SQL query. In general, the latter cannot be a conjunctive query, but
must have one level of negation. However, we show that if the user
query has no self joins and every table is either entirely endogenous
or entirely exogenous, then the Why-So causes can be retrieved by
some conjunctive query. These results are summarized in Fig. 3.

Second, we give a dichotomy theorem for query responsibility.
This is our strongest technical result in this paper. For every con-
junctive query without self-joins, one of the following holds: either
the responsibility can be computed in PTIME or it is provably NP-
hard. In the first case, we give a quite non-obvious algorithm for
computing the degrees of responsibility using FordFulkerson’s max
flow algorithm. We further show that one can distinguish between
the two cases by checking a property of the query expression that
we call linearity. We also discuss conjunctive queries with self-
joins, and finally show that, in the case of Why-No causality, one
can always compute responsibility in PTIME. These results are also
summarized in Fig. 3.

Causality and provenance: Causality is related to lineage of
query results, such as why-provenance [7] or where-provenance [2].
Recently, even explanations for non-answers have been described

2

Causality Why So? Why No?

w/o SJ PTIME (CQ)
PTIME (FO)

with SJ PTIME (FO)

Responsibility Why So? Why No?

w/o SJ
linear PTIME

non-linear NP-hard PTIME

with SJ NP-hard

Figure 3: Complexity of determining causality and responsibil-
ity for conjunctive queries. For queries with no self-joins we
provide a complete dichotomy result. Queries with self-joins
are NP-hard in general, but a similar dichotomy is not known.

in terms of lineage [15, 3]. We make use of this prior work because
the first step in computing causes and responsibilities is to deter-
mine the lineage of an answer or non-answer to a query. We note,
however, that computing the lineage of an answer is only the first
step, and is not sufficient for determining causality: causality needs
to be established through a contingency set, and is also accompa-
nied by a degree (the responsibility), which are both more difficult
to compute than the lineage.

Contributions and outline. Our three main contributions are:
• We define Why-So and Why-No causality and responsibility

for conjunctive database queries (Sect. 2).
• We prove that causality has PTIME data complexity for con-

junctive queries (Sect. 3).
• We prove a dichotomy theorem for responsibility and con-

junctive queries (Sect. 4).
We review related work (Sect. 5) before we conclude (Sect. 6). All
proofs are provided in the Appendix.

2. QUERY CAUSE AND RESPONSIBILITY
We assume a standard relational schema with relation names

R1, . . . , Rk. We write D for a database instance and q for a query.
We consider only conjunctive queries, unless otherwise stated. A
subset of tuples Dn ⊆ D represents endogenous tuples; the com-
plement Dx = D − Dn is called the set of exogenous tuples. For
each relationRi, we writeRn

i andRx
i to denote the endogenous and

exogenous tuples in Ri respectively. If ā is a tuple with the same
arity as the query’s answer, then we write D |= q(ā) when ā is an
answer to q on D, and write D 6|= q(ā) when ā is a non-answer to
q on D.

DEFINITION 2.1 (CAUSALITY). Let t∈Dn be an endogenous
tuple, and ā a possible answer for q.
• t is called a counterfactual cause for ā inD ifD |= q(ā) and
D − {t} 6|= q(ā)

• t ∈ D is called an actual cause for ā if there exists a set Γ ⊆
Dn called a contingency for t, such that t is a counterfactual
cause for ā in D − Γ.

A tuple t is a counterfactual cause, if by removing it from the
database, we remove ā from the answer. The tuple is an actual
cause if one can find a contingency under which it becomes a cou-
nterfactual cause: more precisely, one has to find a set Γ such that,
after removing Γ from the database we bring it to a state where
removing/inserting t causes ā to switch between an answer and a

non-answer. Obviously, every counterfactual cause is also an ac-
tual cause, by taking Γ = ∅. The definition of causality extends
naturally to the case when the query q is Boolean: in that case, a
counterfactual cause is a tuple that, when removed, determines q to
become false.

EXAMPLE 2.2. Consider the query q(x) :−R(x, y), S(y) on
the database instance shown below, and assume all tuples are en-
dogenous: R = Rn, S = Sn. Consider the answer a2. The tuple
S(a1) is a counterfactual cause for this result, because if we re-
move this tuple from S then a2 is no longer an answer. Now con-
sider the answer a4. Tuple S(a3) is not a counterfactual cause: if
we remove it from S, a4 is still an answer. But S(a3) is an actual
cause with contingency {S(a2)}: once we remove S(a2) we reach
a state where a4 is still an answer, but further removing S(a3)
makes a4 a non-answer.

R
X Y
a1 a5
a2 a1
a3 a3
a4 a3
a4 a2

S
Y
a1
a2
a3
a4
a6

q(x) :−R(x, y)S(y)
X
a2
a3
a4

For a more subtle example, consider the Boolean query q :−
R(x, a3), S(a3) (where a3 is a constant), which is true on the given
instance. Suppose only the first three tuples in R are endogenous,
and the last two are exogenous: Rx = {(a4, a3), (a4, a2)}. Let’s
examine whether Rn(a3, a3) is a cause for the query being true.
This tuple is not an actual cause. This is because {Sn(a3)} is not a
contingency forRn(a3, a3): by removing Sn(a3) from the database
we make the query false, in other words the tupleRn(a3, a3) makes
no difference, under any contingency. Notice that {Rx(a4, a3)} is
not contingency because Rx(a4, a3) is exogenous.

In this paper we discuss two instantiations of query causality.
In the first, called Why-So causality, we are given an actual an-
swer ā to the query, and would like to find the cause(s) for this
answer. Definition 2.1 is given for Why-So causality. In this case
D is the real database, and the endogenous tuples Dn are a given
subset, while exogenous are Dx = D−Dn. In the second instanti-
ation, called Why-No causality, we are given a non-answer ā to the
query, i.e. would like to know the cause why ā is not an answer.
This requires some minor changes to Definition 2.1. Now the real
database consists entirely of exogenous tuples, Dx. In addition, we
are given a set of potentially missing tuples, whose absence from
the database caused ā to be a non-answer: these form the endoge-
nous tuples, Dn, and we denote D = Dx ∪Dn. We do not discuss
in this paper how to compute Dn: this has been addressed in recent
work [15]. In this setting, the definition of the Why-No causality
is the dual of Def. 2.1 and we give it here briefly: a counterfactual
cause for the non-answer ā in Dx is a tuple t ∈ Dn s.t. Dx 6|= q(ā)
and Dx ∪ {t} |= q(ā); an actual cause for the non-answer ā is a
tuple t ∈ Dn s.t. there exists a set Γ ⊆ Dn called contingency set
s.t. t is a counterfactual cause for the non-answer of ā in Dx ∪ Γ.

We now define responsibility, measuring the degree of causality.

DEFINITION 2.3 (RESPONSIBILITY). Let ā be an answer or
non-answer to a query q, and let t be a cause (either Why-So, or
Why-No cause). The responsibility of t for the (non-)answer ā is:

ρt =
1

1 + minΓ |Γ|
where Γ ranges over all contingency sets for t.

Thus, the responsibility is a function of the minimal number of
tuples that we need to remove from the real databaseD (in the case

3

of Why-So), or that we need to add to the real database Dx (in the
case of Why-No) before it becomes counterfactual. The tuple t is a
counterfactual cause iff ρt = 1, and it is an actual cause iff ρt > 0.
By convention, if t is not a cause, ρt = 0.

EXAMPLE 2.4 (IMDB CONTINUED). Figure 2a shows the lin-
eage of the answer Musical in Example 1.1. Consider the movie
“Sweeney Todd”: its responsibility is 1/3 because the smallest
contingency is: {Director(David, Burton), Director(Humphrey,
Burton)} (if we remove both directors, then “Sweeney Todd” be-
comes counterfactual). Consider now the movie “Manon Lescaut”:
its responsibility is 1/5 because the smallest contingency set is
{Director (David, Burton), Movie(“Flight”), Movie(“Candide”),
Director(Tim, Burton)}.

We now define formally the problems studied in this paper. Let
D = Dx ∪Dn be a database consisting of endogenous and exoge-
nous tuples, q be a query, and ā be a potential answer to the query.
Causality problem Compute the set C ⊆ Dn of actual causes for

the answer ā.
Responsibility problem For each actual cause t ∈ C, compute its

responsibility ρt.
We study the data complexity in this paper: the query q is fixed,

and the complexity is a function of the size of the database instance
D. In the rest of the the paper we restrict our discussion w.l.o.g.
to Boolean queries: if q(x̄) is not Boolean, then to compute the
causes or responsibilities for an answer ā it suffices to compute the
causes or responsibilities of the Boolean query q[ā/x̄], where all
head variables are substituted with the constants in ā.

3. COMPLEXITY OF CAUSALITY
We start by proving that causality can be computed efficiently;

even stronger, we show that causes can be computed by a rela-
tional query. This is in contrast with the general causality problem,
where Eiter [9] has shown that deciding causality for a Boolean ex-
pression is NP-complete. We obtain tractability by restricting our
queries to conjunctive queries. Chockler et al. [6] have shown that
causality for “read once” Boolean circuits is in PTIME. Our results
are strictly stronger: for the case of conjunctive queries without
self-joins, queries with read-once lineage expressions are precisely
the hierarchical queries [8, 20], while our results apply to all con-
junctive queries. The results in this section apply uniformly to both
Why-So and Why-No causality, so we will simply refer to causality
without specifying which kind. Also, we restrict our discussion to
Boolean queries only.

We write positive Boolean expressions in DNF, like Φ = (X1 ∧
X3)∨(X1∧X2∧X3)∨(X1∧X4); sometimes we drop∧, and write
Φ = X1X3∨X1X2X3∨X1X4. A conjunct c is redundant if there
exists another conjunct c′ that is a strict subset of c. Redundant con-
juncts can be removed without affecting the Boolean expression.
In our example, X1X2X3 is redundant, because it strictly contains
X1X3; it can be removed and Φ simplifies to X1X3 ∨ X1X4. A
positive DNF is satisfiable if it has at least one conjunct; otherwise
it is equivalent to false and we call it unsatisfiable.

Next, we review the definition of lineage. Fix a Boolean conjunc-
tive query consisting of m atoms, q = g1, . . . , gm, and database
instance D; recall that D = Dx ∪Dn (exogenous and endogenous
tuples). For every tuple t ∈ D, let Xt denote a distinct Boolean
variable associated to that tuple. A valuation for q is a mapping,
θ : Var(q) → Adom(D), where Adom(D) the active domain of
the database, such that the instantiation of every atom is a tuple in
the database: ti = θ(gi) ∈ D for i = 1, . . . ,m. We associate to
the valuation θ the following conjunct: cθ = Xt1 ∧ . . .∧Xtm . The

lineage of q is:

Φ =
_

θ:q→D

cθ

We will assume w.l.o.g. that Dx 6|= q and (Dx ∪Dn) |= q (oth-
erwise we have no causes).

DEFINITION 3.1 (n-LINEAGE). The n-lineage of q is:

Φn = Φ[Xt := true, ∀t ∈ Dx]

Here Φ[Xt := true,∀t ∈ Dx] means substituting Xt with true,
for all Boolean variables Xt corresponding to exogenous tuples t.
Thus, the n -lineage is obtained as follows. Compute the standard
lineage, over all tuples (exogenous and endogenous), then set to
true all exogenous tuples: the remaining expression depends only
on endogenous tuples. The following technical result allows us to
compute the causes to answers of conjunctive queries.

THEOREM 3.2 (CAUSALITY). Let q be a conjunctive query,
and t be an endogenous tuple. Then the following three conditions
are equivalent:

1. t is an actual cause for q (Def. 2.1).
2. There exists set of tuples Γ ⊆ Dn such that the lineage

Φ[Xu = false, ∀u ∈ Γ] is satisfiable, and Φ[Xu = false,
∀u ∈ Γ;Xt = false] is unsatisfiable.

3. There exists a non-redundant conjunct in the n-lineage Φn

that contains the variable Xt.

We give the proof in the Appendix. The theorem gives a PTIME
algorithm for computing all causes of q: compute the n-lineage Φn

as described above, and remove all redundant conjuncts. All tuples
that still occur in the lineage are actual causes of q.

EXAMPLE 3.3. Consider q :−R(x, y), S(y), y = a3 over the
database of Example 2.2. Its lineage is Φ = XR(a3,a3)XS(a3) ∨
XR(a4,a3) XS(a3). AssumeR(a4, a3) is exogenous andR(a3, a3),
S(a3) are endogenous. Then the n-lineage Φn is obtained by set-
ting XR(a4,a3) = true: Φn = XR(a3,a3)XS(a3) ∨ XS(a3). Af-
ter removing the redundant conjunct, the n-lineage becomes Φn =
XS(a3); hence, S(a3) is the only actual cause for the query.

In the rest of this section we prove a stronger result. Denote CR
the set of actual causes in the relation R; that is, CR ⊆ Rn, and
every tuple t ∈ CR is an actual cause. We show that CR can be
computed by a relational query. In particular, this means that the
causes to a (non-)answer can be computed by a SQL query, and
therefore can be performed entirely in the database system.

THEOREM 3.4 (CAUSALITY FO). Given a Boolean query q
over relationsR1, . . . Rk, the set of all causes of q {CR1 , . . . , CRk}
can be expressed in non-recursive stratified Datalog with negation,
with only two strata.

Theorem 3.4, shows that causes can be expressed in a language
equivalent to a subset of first order logic [1] and that, moreover,
only one level of negation is needed. The proof is in the appendix.

EXAMPLE 3.5. Continuing with the query q : −R(x, y), S(y)
from Example 3.3), suppose all tuples in S are endogenous. Thus,
we have Rx, Rn, Sn, but Sx = ∅. The complete Datalog program
that produces the causes for q is:

I(y) :−Rx(x, y), Sn(y)

CR(x, y) :−Rn(x, y), Sn(y),¬I(y)

CS(y) :−Rn(x, y), Sn(y),¬I(y)

CS(y) :−Rx(x, y), Sn(y)

4

The role of ¬I(y) is to remove redundant terms from the lineage.
To see this, consider the database R = {(a4, a3), (a3, a3)}, S =
Sn = {a3}, and assume that Rn = {(a3, a3)}, Rx = {(a4, a3)},
thus, q’s lineage and n-lineage are:

Φ = XR(a4,a3)XS(a3) ∨XR(a3,a3)XS(a3)

Φn = XS(a3) ∨XR(a3,a3)XS(a3) ≡ XS(a3)

Thus, the only actual cause of q is S(a3). Consider CR, which
computes causes in R. Without the negated term ¬I(y), CR would
returnR(a3, a3) (which would be incorrect). The role of the negated
term ¬I(y) is to remove the redundant terms in Φn: in our exam-
ple, CR returns the empty set (which is correct). Similarly, one can
check that CS returns S(a3). Note that negation is necessary in
CR because it is non-monotone: if we remove the tuple R(a4, a3)
from the database then R(a3, a3) becomes a cause for the query q,
thusCR is non-monotone. Hence, in general, we must use negation
in order to compute causes.

EXAMPLE 3.6. Consider q :−S(x), R(x, y), S(y), and assume
that S is endogenous and R is exogenous: in other words, S = Sn,
R = Rx. The following Datalog program computes all causes:

I(x) :−Sn(x), Rx(x, x)

CS(x) :−Sn(x), Rx(x, y), Sn(y),¬I(x),¬I(y)

CS(y) :−Sn(x), Rx(x, y), Sn(y),¬I(x),¬I(y)

Here, too, we can prove that CS is non-monotone and, hence, must
use negation. Consider the database instance R = {(a4, a3),
(a3, a3)}, S = {a3, a4}. Then S(a4) is not a cause; but if we
remove R(a3, a3), then S(a4) becomes a cause.

As the previous examples show, the causality query C is, in
general, a non-monotone query: by inserting more tuples in the
database, we determine some tuples to no longer be causes. Thus,
negation is necessary in order to express C. The following corol-
lary gives a sufficient condition for the causality query to simplify
to a conjunctive query.

COROLLARY 3.7. Suppose that each relation Ri is either en-
dogenous or exogenous (that is, either Rn

i = Ri or Rx
i = Ri).

Further, suppose that, if Ri is endogenous, then the relation sym-
bol Ri occurs at most once in the query q. Then, for each relation
name Ri, the causal query CRi is a single conjunctive query (in
particular it has no negation).

The two examples above show that the corollary is tight: Ex-
ample 3.5 shows that causality is non-monotone when a relation
is mixed endogenous/exogenous, and Example 3.6 shows that cau-
sality is non-monotone when the query has self-joins, even if all
relations are either endogenous or exogenous.

To illustrate the corollary, we revisit Example 3.5, where the
query is q :−R(x, y), S(y), and assume that Rx = ∅ and Sx = ∅.
Then the Datalog program becomes:

CR(x, y) :−Rn(x, y), Sn(y)

CS(y) :−Rn(x, y), Sn(y)

4. COMPLEXITY OF RESPONSIBILITY
In this section, we study the complexity of computing respon-

sibility. As before, we restrict our discussion to Boolean queries.
Thus, given a Boolean query q and an endogenous tuple t, compute
its responsibility ρt (Def. 2.3). We say that the query is in PTIME if
there exists a PTIME algorithm that, given a databaseD and a tuple
t computes the value ρt; we say that the query is NP-hard, or sim-
ply hard, if the problem “given a database instanceD and a number

v, check whether ρt > v” is NP-hard. The strongest result in this
section and the paper is a dichotomy theorem for Why-So queries
without self-joins: for every query, computing the responsibility is
either in PTIME or NP-hard (Sect. 4.1). The case of non-answers
(Why-No) turns out to be a simpler problem as Sect. 4.2 shows.

4.1 Why So?
We assume that the conjunctive query q is without self-joins,

i.e. every relation occurs at most once in q; we discuss self-joins
briefly at the end of the section. W.l.o.g. we further assume that
each relation is either fully endogenous or exogenous (Rn

i = Ri
or Rx

i = Ri). Recall that computing the Why-So responsibility of
a tuple t requires computing the smallest contingency set Γ, such
that t is a counterfactual cause in D − Γ. We start by giving three
hard queries, which play an important role in the dichotomy result.

THEOREM 4.1 (CANONICAL HARD QUERIES). Each of the
following three queries is NP-hard:

h∗1 :−An(x), Bn(y), Cn(z),W (x, y, z)

h∗2 :−Rn(x, y), Sn(y, z), T n(z, x)

h∗3 :−An(x), Bn(y), Cn(z), R(x, y), S(y, z), T (z, x)

If the type of a relation is not specified, then the query remains hard
whether the relation is endogenous or exogenous.

We give the proof in the Appendix: we prove the hardness of h∗1
and h∗2 directly, and that of h∗3 by using a particular reduction from
h∗2. Chockler and Halpern [5] have already shown that computing
responsibility for Boolean circuits is hard, in general. One may in-
terpret our theorem as strengthening that result by providing three
specific queries whose responsibility is hard. However, the theo-
rem is much more significant. We show in this section that every
query that is hard can be proven to be hard by a simple reduction
from one of these three queries.

Next, we illustrate PTIME queries, and start with a trivial ex-
ample q :−R(a, y) where a is a constant. If t = R(a, b), then its
minimum contingency is simply the set of all tuples R(a, c) with
c 6= b, and one can compute t’s responsibility by simply counting
these tuples. Thus, q is in PTIME. We next give a much more subtle
example.

EXAMPLE 4.2 (PTIME QUERY). Let q :−R(x, y), S(y, z), let
both R and S be endogenous, and w.l.o.g. let t be a tuple in R. We
show how to compute the size of the minimal contingency set Γ for
t with a reduction to the max-flow/min-cut problem in a network.
Given the database instance D, construct the network illustrated
in Fig. 4. Its vertices are partitioned into V1 ∪ . . . ∪ V5. V1 con-
tains the source, which is connected to all nodes in V2. There is one
edge (x, y) from V2 to V3 for every tuple (x, y) ∈ R, and one edge
(y, z) from V3 to V4 for every tuple (y, z) ∈ S. Finally, every node
in V4 is connected to the target, in V5. Set the capacity of all edges
from the source or into the target to∞. The other capacities will
be described shortly. Recall that a cut in a network is a set of edges
Γ that disconnect the source from the target. A min-cut is a cut of
minimum capacity, and the capacity of a min-cut can be computed
in PTIME using Ford-Fulkerson’s algorithm. Now we make an im-
portant observation: any mincut Γ in the network corresponds to
a set of tuples2 in the database D = R ∪ S, such that q is false
on D − Γ. We use this fact to compute the responsibility of t as
follows: First, set the capacity of t to 0, and that of all other tuples
in R,S to 1. Then, repeat the following procedure for every path p
2In other words, the mincut cannot include the extra edges con-
nected to the source or the target as they have infinite capacity.

5

x1

x2

x3

xn

y1

y2

ym

z1

z2

z3

...
...

...

y3

∞
∞
∞
∞
∞

∞
∞
∞
∞
∞

zl

source target

t

1

1

1

1
1

∞
1

1

1

1

V1 V2 V3 V4 V5

0

Figure 4: Flow transformation for q :−R(x, y), S(y, z).

2	

Fig_ExampleCo-‐QueryHypergraph	 6-‐30-‐2010	

x yv

u

z

w

A S1 S2 S3 BTR

(a) q

W
x

y z

6-‐30-‐2010	 Fig_HardCornerQuery	

A

B C

(b) h∗1
Figure 5: Dual query hypergraphs for easy query
q :−A(x), S1(x, v), S2(v, y), R(y, u), S3(y, z), T (z, w), B(z),
and hard query h∗1 :−A(x), B(y), C(z),W (x, y, z)

from the source to the target that goes through t: set the capacities
of all edges3 in p − {t} to∞, compute the size of the mincut, and
reset their capacities back to 1. In Fig. 4 there are two such paths
p: the first is x1, y2, z1 (the figure shows the capacities set for this
path), the other path is x1, y2, z2. We claim that for every mincut
Γ, the set Γ − {t} is a contingency set for t. Indeed, q is false on
D − Γ because the source is disconnected from the target, and q
is true on (D − Γ) ∪ {t}, because once we add t back, it will join
with the other edges in p − {t}. Note that Γ cannot include these
edges as their capacity is ∞. Thus, by repeating for all paths p
(which are at most |S|), we can compute the size of the minimal
contingency set as min |Γ| − 1.

We next generalize the algorithm in Example 4.2 to the large
class of linear queries. We need two definitions first.

DEFINITION 4.3 (DUAL QUERY HYPERGRAPH HD).The dual
query hypergraphHD(V, E) of a query q :− g1, . . . , gm is a hyper-
graph with vertex set V = {g1, . . . , gm} and a hyperedge Ei for
each variable xi ∈ Var(q) such that Ei = {gj |xi ∈ Var(gj)}.

Note that nodes are the atoms, and edges are the variables. This
is the “dual” of the standard query hypergraph [11], where nodes
are variables and edges are atoms.

DEFINITION 4.4 (LINEAR QUERY). A hypergraph H(V, E) is
linear if there exists a total order SV of V , such that every hyper-
edge e ∈ E is a consecutive subsequence of SV . A query is linear
if its dual hypergraph is linear.

In other words a query is linear if its atoms can be ordered such
that every variable appears in a continuous sequence of atoms. For
example, the query q in Fig. 5a is linear. Order the atoms as A,S1,
S2, R, S3, T,B, and every variable appears in a continuous se-
quence, e.g. y occurs in S2, R, S3. On the other hand, none of
the queries in Theorem 4.1 is linear. For example, the dual hyper-
graph of h∗1 is shown in Fig. 5b: one cannot “draw a line” through
the vertices and stay inside hyperedges. Note that the definition of
linearity ignores the endogenous/exogenous status of the atoms.
3In our example, p − {t} contains a single other edge (namely a
tuple in S). For longer queries, it may contain additional edges. For
the query R(x, y), S(y, z), T (z, u), for example, p − {t} always
contains two edges. Hence we refer to edges in p−{t} in the plural.

Algorithm 1: Calculating responsibility for linear queries
Input: q :− g1, . . . , gm, D and t, Output: ρt
G = flowGraph(dualHypergraph(q), D) ;
forall source-target paths p = {e1, . . . , em} ∈ G, t ∈ p do

capacity(ei)←∞, capacity(t)← 0 ;
Γj ← maxFlow(G) ;

return ρt = 1
1+(minj |Γj |−1)

;

Function: flowGraph(H, D)
L = {g1(x̄1), . . . , gm(x̄m)} linearization ofH ;
V = {{source}, V ′1 , V1, V ′2 , V2 . . . , V ′m, Vm, {target}} ;
forall gi do

V ′i ← {tj | tj ∈ q(x̄′i) :− gi−1, gi}, x̄′i ← x̄i−1 ∩ x̄i ;
∀u ∈ Vi−1, v ∈ V ′i , add edge e(u, v) if u(x̄′i) = v(x̄′i) ;
capacity(e)←∞ ;
forall tj ∈ gi do

Vi ← V ′i ∪ {tj} ;
∀u ∈ V ′i , v ∈ Vi, add edge e(u, v) if u(x̄′i) = v(x̄′i) ;
if tj ∈ Dn then capacity(e)←1 else capacity(e)←∞ ;

∀v ∈ Vm, capacity(e(v, target))←∞ ;
∀v ∈ V ′1 , capacity(e(source, v))←∞ ;

For every linear query, the responsibility of a tuple can be com-
puted in PTIME using Algorithm 1. The algorithm essentially ex-
tends the construction given Example 4.2 to arbitrary linear queries.
Note that it treats endogenous relations differently than exogenous
by assigning to them weight∞. Thus, we have:

THEOREM 4.5 (LINEAR QUERIES). For any linear query q and
any endogenous tuple t, the responsibility of t for q can be com-
puted in PTIME in the size of the database D.

So far, Theorem 4.1 has described some hard queries, and Theo-
rem 4.5 some PTIME queries. Neither class is complete, hence we
do not yet have a dichotomy yet. To close the gap we need to work
on both ends. We start by expanding the class of hard queries.

DEFINITION 4.6 (REWRITING ;). We define the following re-
writing relation on conjunctive queries without self-joins: q re-
writes to q′, in notation q ; q′, if q′ can be obtained from q by
applying one of the following three rules:
• DELETE x (q ; q[∅/x]): Here, q[∅/x] denotes the query

obtained by removing the variable x ∈ V ar(q), and thus
decreasing the arity of all atoms that contained x.
• ADD y (q ; q[(x, y)/x]): Here, q[(x, y)/x] denotes the

query obtained by adding variable y to all atoms that contain
variable x, and thus increasing their arity, provided there ex-
ists an atom in q that contains both variables x, y.
• DELETE g (q ; q − {g}): Here, g denotes an atom and
q − {g} denotes the query q without the atom g, provided
that g is exogenous, or there exists some other atom g0 s.t.
Var(g0) ⊆ Var(g).

Denote ∗; the transitive and reflexive closure of ;. We show
that rewriting always reduces complexity:

LEMMA 4.7 (REWRITING). If q ; q′ and q′ is NP-hard, then
q is also NP-hard. In particular, q is NP-hard if q ∗; hi, where hi
is one of the three queries in Theorem 4.1.

EXAMPLE 4.8 (REWRITING). We illustrate how one can prove
that the query q :−R(x, y), S(y, z), T (z, u),K(u, x) is hard, by

6

rewriting it to h2:

q ; R(x, y), S(y, z), T (x, z, u),K(u, x) (add x)

; R(x, y), S(y, z), T (x, z, u),K(u, x, z) (add z)

; R(x, y), S(y, z), T (x, z, u) (delete K)

; R(x, y), S(y, z), T (x, z) (delete u)

With rewriting we expanded the class of hard queries. Next we
expand the class of PTIME queries. As notation, we say that two
atoms gi, gj of a conjunctive query are neighbors if they share a
variable: Var(gi) ∩ Var(gj) 6= ∅.

DEFINITION 4.9 (WEAKENING (). We define the following
weakening relation on conjunctive queries without self-joins: q
weakens to q′, in notation q (q′, if q′ can be obtained from q
by applying one of the following two rules:
• DISSOCIATION If gx is an exogenous atom and vi a variable

occurring in some of its neighbors, then let q′ be obtained by
adding vi to the variable set of gx (this increases its arity).
• DOMINATION If gn is an endogenous atom and there exists

some other endogenous atom gn
0 s.t. Var(gn

0) ⊆ Var(gn), then
let q′ be obtained by making g exogenous, gx.

Intuitively, a minimum contingency never needs to contain tu-
ples from a dominated relation, and thus the relation is effectively
exogenous. Along the lines of Lemma 4.7, we show the following
for weakening:

LEMMA 4.10 (WEAKENING). If q (q′ and q′ is in PTIME,
then q is also in PTIME.

Thus, weakening allows us to expand the class of PTIME queries.
We denote ∗(the transitive and reflexive closure of (. We say that
a query q is weakly linear if there exists a weakening q ∗(q′ s.t. q′

is linear. Obviously, every linear query is also weakly linear.

COROLLARY 4.11 (WEAKLY LINEAR QUERIES). If q is weakly
linear, then it is in PTIME.

Lemma 4.10 is based on the simple observation that a weakening
produces a query q′ over a database instance D′ that produces the
same output tuples as query q on database instance D. Weakening
only affects exogenous and dominated atoms, which are not part of
minimum contingencies, and therefore responsibility remains unaf-
fected. This also implies an algorithm for computing responsibility
in the case of weakly linear queries: find a weakening of q that is
linear and apply Algorithm 1.

EXAMPLE 4.12. We illustrate the lemma with two examples.
First, we show that q :−Rn(x, y), Sx(y, z), T n(z, x) is in PTIME
by weakening with a dissociation:

q (Rn(x, y), Sx(x, y, z), T n(z, x) (dissociation)

The latter is linear. Query q should be contrasted with h∗2 in Theo-
rem 4.1: the only difference is that here Sx is exogenous, and this
causes q to be in PTIME while h∗2 is NP-hard. Second, consider
q :−Rn(x, y), Sn(y, z), T n(z, x), V n(x). Here we weaken with a
domination followed by a dissociation:

q (Rx(x, y), Sn(y, z), T x(z, x), V n(x) (domination)

(Rx(x, y, z), Sn(y, z), T x(z, x, y), V n(x) (dissociation)

The latter is linear with the linear order Sn, Rx, T x, V n.

We say that a query q is final if it is not weakly linear and for
every rewriting q ; q′, the rewritten query q′ is weakly linear. For
example, each of h∗1, h∗2, h∗3 in Theorem 4.1 is final: one can check
that if we try to apply any rewriting to, say, h∗1 we obtain a linear
query. We can now state our main technical result:

THEOREM 4.13 (FINAL QUERIES). If q is final, then q is one
of h∗1, h

∗
2, h
∗
3.

This is by far the hardest technical result in this paper. We give
the proof in the appendix. Here, we show how to use it to prove the
dichotomy result.

COROLLARY 4.14 (RESPONSIBILITY DICHOTOMY). Let q be
any conjunctive query without self joins. Then:
• If q is weakly linear then q is in PTIME.
• If q is not weakly linear then it is NP-hard.

PROOF. If q is weakly linear then it is in PTIME by Corol-
lary 4.11. Suppose q is not weakly linear. Consider any sequence
of rewritings q = q0 ; q1 ; q2 ; . . . Any such sequence must
terminate as any rewriting results in a simpler query. We rewrite as
long as qi is not weakly linear and stop at the last query qk that is
not weakly linear. That means that any further rewriting qk ; q′

results in a weakly linear query q′. In other words, qk is a final
query. By Theorem 4.13, qk is one of h∗1, h∗2, h∗3. Thus, we have
proven q ∗; hj , for some j = 1, 2, 3. By Lemma 4.7, the query q
is NP-hard.

Extensions. We have shown in Sect. 3 that causality can be com-
puted with a relational query. This raises the question: if the re-
sponsibility of a query q is in PTIME, can we somehow compute it
in SQL? We answer this negatively:

THEOREM 4.15 (LOGSPACE). Computing the Why-So respon-
sibility of a tuple t ∈ Dn is hard for LOGSPACE for the following
query: q :−Rn(x, u1, y), Sn(y, u2, z), T

n(z, u3, w)

Finally, we add a brief discussion of queries with self-joins. Here
we establish the following result:

PROPOSITION 4.16 (SELF-JOINS). Computing the responsibil-
ity of a tuple t for q :−Rn(x), Sx(x, y), Rn(y) is NP-hard. The
same holds if one replaces Sx with Sn.

We include the proof in the appendix. Beyond this result, however,
queries with self-joins are harder to analyze, and we do not yet have
a full dichotomy. In particular, we leave open the complexity of the
query Rn(x, y), Rn(y, z).

4.2 Why No?
While the complexity of Why-So responsibility turned out to be

quite difficult to analyze, the Why-No responsibility is much easier.
This is because, for any query q with m subgoals and non-answer
ā, any contingency set for a tuple t will have at most m− 1 tuples.
Since m is independent on the size of the database, we obtain the
following:

THEOREM 4.17 (WHY-NO RESPONSIBILITY). Given a query
q over a database instance D and a non-answer ā, computing the
responsibility of t ∈ Dn over Dn is in PTIME.

7

5. RELATED WORK
Our work is mainly related to and unifies ideas from work on

causality, provenance, and query result explanations.
Causality. Causality is an active research area mainly in logic

and philosophy with its own dedicated workshops (e.g. [23]). The
idea of counterfactual causality (if X had not occurred, Y would
not have occurred) can be traced back to Hume [19], and the best
known counterfactual analysis of causation in modern times is due
to Lewis [16]. Halpern and Pearl [13] define a variation they call
actual causality which relies upon a graph structure called a causal
network, and adds the crucial concept of a permissive contingency
before determining causality. Chockler and Halpern [5] define the
degree of responsibility as a gradual way to assign causality. Our
definitions of Why-So and Why-No causality and responsibility for
conjunctive queries build upon the HP definition, but simplify it and
do not require a causal network. A general overview of causality in
a database context is given in [17], while [18] introduces functional
causality as an improved, more robust version of the HP definition.

Provenance. Approaches for defining data provenance can be
mainly classified into three categories: how-, why-, and where-
provenance [2, 4, 7, 12]. We point to the close connection between
why-provenance and Why-So causality: both definitions concern
the same tuples if all tuples in a database are endogenous4. How-
ever, our work extends the notion of provenance by allowing users
to partition the lineage tuples into endogenous and exogenous, and
presenting a strategy for constructing a query to compute all causes5.
In addition, we can rank tuples according to their individual respon-
sibilities, and determine a gradual contribution with counterfactual
tuples ranked first.

Missing query results. Very recent work focuses on the prob-
lem of explaining missing query answers, i.e. why a certain tuple
is not in the result set? The work by Huang et al. [15] and the
Artemis [14] system present provenance for potential answers by
providing tuple insertions or modifications that would yield the
missing tuples. This is equivalent to providing the set of endoge-
nous tuples for Why-No causality. Alternatively, Chapman and Ja-
gadish [3] focus on the operator in the query plan that eliminated a
specific tuple, and Tran and Chan [22] suggest an approach to au-
tomatically generate a modified query whose result includes both
the original query’s results as well as the missing tuple.

Our definitions of Why-So and Why-No causality highlight the
symmetry between the two types of provenance (“positive and neg-
ative provenance”). Instead of considering them in separate man-
ners, we show how to construct Datalog programs that compute all
Why-So or Why-No tuple causes given a partitioning of tuples into
endogenous and exogenous. Analogously, responsibility applies to
both cases in a uniform manner.

6. CONCLUSIONS
In this paper, we introduce causality as a framework for explain-

ing answers and non-answers in a database setting. We define
two kinds of causality, Why-So for actual answers, and Why-No
for non-answers, which are related to the provenance of answers
and non-answers, respecitively. We demonstrate how to retrieve all
causes for an answer or non-answer using a relational query. We
give a comprehensive complexity analysis of computing causes and
their responsibilities for conjunctive queries: whereas causality is

4Note that why-provenance (also called minimal witness basis) de-
fines a set of sets. To compare it with Why-So causality, we con-
sider the union of tuples across those sets.
5Note that, in general, Why-So tuples are not identical to the subset
of endogenous tuples in the why-provenance.

shown to be always in PTIME, we present a dichotomy for respon-
sibility within queries without self-joins.

7. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.
[2] P. Buneman, S. Khanna, and W. C. Tan. Why and where: A

characterization of data provenance. In ICDT, 2001.
[3] A. Chapman and H. V. Jagadish. Why not? In SIGMOD,

2009.
[4] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in

databases: Why, how, and where. Foundations and Trends in
Databases, 1(4):379–474, 2009.

[5] H. Chockler and J. Y. Halpern. Responsibility and blame: A
structural-model approach. J. Artif. Intell. Res. (JAIR),
22:93–115, 2004.

[6] H. Chockler, J. Y. Halpern, and O. Kupferman. What causes
a system to satisfy a specification? ACM Trans. Comput.
Log., 9(3), 2008.

[7] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of
view data in a warehousing environment. ACM Trans.
Database Syst., 25(2):179–227, 2000.

[8] N. Dalvi and D. Suciu. Management of probabilistic data:
Foundations and challenges. In PODS, pages 1–12, Beijing,
China, 2007. (invited talk).

[9] T. Eiter and T. Lukasiewicz. Complexity results for
structure-based causality. Artif. Intell., 142(1):53–89, 2002.
(Conference version in IJCAI, 2002).

[10] T. Eiter and T. Lukasiewicz. Causes and explanations in the
structural-model approach: Tractable cases. Artif. Intell.,
170(6-7):542–580, 2006.

[11] G. Gottlob, N. Leone, and F. Scarcello. The complexity of
acyclic conjunctive queries. J. ACM, 48(3):431–498, 2001.

[12] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance
semirings. In PODS, 2007.

[13] J. Y. Halpern and J. Pearl. Causes and explanations: A
structural-model approach. Part I: Causes. Brit. J. Phil. Sci.,
56:843–887, 2005. (Conference version in UAI, 2001).

[14] M. Herschel, M. A. Hernández, and W. C. Tan. Artemis: A
system for analyzing missing answers. PVLDB,
2(2):1550–1553, 2009.

[15] J. Huang, T. Chen, A. Doan, and J. F. Naughton. On the
provenance of non-answers to queries over extracted data.
PVLDB, 1(1):736–747, 2008.

[16] D. Lewis. Causation. The Journal of Philosophy,
70(17):556–567, 1973.

[17] A. Meliou, W. Gatterbauer, J. Halpern, C. Koch, K. F.
Moore, and D. Suciu. Causality in databases. IEEE Data
Engineering Bulletin, Sept. 2010.

[18] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. Why
so? or Why no? Functional causality for explaining query
answers. In MUD, 2010.

[19] P. Menzies. Counterfactual theories of causation. Stanford
Encylopedia of Philosophy, 2008.

[20] D. Olteanu and J. Huang. Secondary-storage confidence
computation for conjunctive queries with inequalities. In
SIGMOD, 2009.

[21] P. Senellart and G. Gottlob. On the complexity of deriving
schema mappings from database instances. PODS, 2008.

[22] Q. T. Tran and C.-Y. Chan. How to conquer why-not
questions. In SIGMOD, 2010.

[23] International multidisciplinary workshop on causality. IRIT,
Toulouse, June 2009. (www.irit.fr/MICRAC/colloque/
articles/extended_abstract_Micrac.pdf).

8

www.irit.fr/MICRAC/colloque/articles/extended_abstract_Micrac.pdf
www.irit.fr/MICRAC/colloque/articles/extended_abstract_Micrac.pdf

APPENDIX
A. PROOFS CAUSALITY

PROOF THEOREM 3.2. Assume Φq(ā) the lineage of ā in D.
We construct the endogenous lineage Ψq(ā) = Φq(ā)(X̄Dx = true),
and Ψ′ a DNF with all the non-redundant clauses of Ψ. We will
show that a variable Xt is a cause of ā, iff Xt ∈ Ψ′, which means
thatXt is part of a non-redundant clause in the endogenous lineage
of ā.

Case A: (Why-So, answer ā): First of all, ifXt is not in Ψ′, then
Xt is not a cause of ā, as there is no assignment that makes Xt
counterfactual for Ψ′ (and therefore Ψ), because of monotonicity.
If Xt ∈ Ci, where Ci a clause of Ψ′, we select Γ = {Xj |Xj ∈
Ψ′ andXj /∈ Ci} (Γ ⊆ Dn since ∀Xj ∈ Ψ′, Xj ∈ Dn). Then,
if we write Ψ′ = Ci ∨ Ψ′′, we know that Ψ′′(XΓ = false) =
false, because Ψ′ contains only non-redundant terms. That means
that every clause Cj has at least one variable that is not in Ci, and
therefore can be negated by the above choice of Γ. This makes
Xt counterfactual for Ψ′ (and also Ψ) with contingency Γ. Since
Γ∩Dx = ∅Xt is also counterfactual for Φq(ā) with contingency Γ,
meaning that Φq(ā)(XΓ = false) is satisfiable, and Φq(ā)(XΓ =
false, Xt = false) is unsatisfiable. Therefore, conditions 1, 2,
and 3 are equivalent.

Case B: (Why-No, non-answer ā): First of all, ifXt is not in Ψ′,
thenXt is not a cause of ā, as there is no assignment that makesXt
counterfactual for Ψ′ (and therefore Ψ), because of monotonicity.
If Xt ∈ Ci, where Ci a clause of Ψ′, we select Γ′ = {Xj |Xj ∈
Ci andXj 6= Xt}, and assign Γ = Dn − Γ′ ∪ {t}. Γ,Γ′ ⊆ Dn

since ∀Xj ∈ Ψ′, Xj ∈ Dn. Then, if we write Ψ′ = Ci ∨ Ψ′′, we
know that Ψ′′(XΓ = false) = false, because Ψ′ contains only
non-redundant terms. That means that every clause Cj has at least
one variable that is not in Ci, and therefore can be negated by the
above choice of Γ. This makesXt counterfactual for Ψ′ (and there-
fore Ψ) with contingency Γ′. Since Γ′∩Dx = ∅Xt is also counter-
factual for Φq(ā) with contingency Γ′, meaning that Φq(ā)(XΓ =

false) is unsatisfiable, and Φq(ā)(XΓ = false, Xt = false) is
satisfiable. Therefore, conditions 1, 2, and 3 are equivalent.

PROOF (THEOREM 3.4). To describe the relational query we
need a number of technical definitions. Recall that Rn

i , R
x
i denote

the endogenous/exogenous tuples in Ri. Given a Boolean con-
junctive query q :− g1(x̄1), . . . , gm(x̄m) we define a refinement to
be a query of the form r :− gε11 (x̄1), . . . , gεm

m (x̄m), where each
εi ∈ {n, x}. Thus, every atom is made either exogenous or en-
dogenous, and we call it an n- or an x-atom; there are 2m refine-
ments. Clearly, q is logically equivalent to the union of the 2m

refinements, and its lineage is equivalent to the disjunction of the
lineages of all refinements. Consider any refinement r. We call
a variable x ∈ V ar(r) an n-variable if it occurs in at least one
n-atom. We apply repeatedly the following two operations: (1)
choose two n-variables x, y and substitute y := x; (2) choose any
n-variable x and any constant a occurring in the query and substi-
tute x := a. We call any query s that can be obtained by applying
these operations any number of times an image query; in particular,
the refinement r itself is a trivial image. There are strictly less than
2k

2
images, where k is the total number of n-variables and con-

stants in the query. Note that k is bounded by query size and thus
irrelevant to data complexity. We always minimize an image query.

Fix a refinement r. We define an n-embedding for r as a function
e : r → s that maps a strict subset of the n-atoms in r onto all n-
atoms of s, where s is the image of a possibly different refinement
r′. Intuitively, an n-embedding is a proof that a valuation for r
results in a redundant conjunct, because it is strictly embedded in

r1

r2

s1

s2

r3 s3

t1

t2

R S T

(a)

R S T W
X Y Z X Y Z
x0 y0 z0 x0 y0 z0

x1 y1 z1 x1 y1 z2

x2 y2 z2 x1 y2 z1

x3 y3 x2 y1 z1

x3 y3 z2

(b)

Figure 6: (a) Example 3-partite 3-uniform hypergraph. (b)
Database instance created from the hypergraph of (a).

the conjunct of a valuation of r′.
We now describe in non-recursive, stratified Datalog the rela-

tional query that computes all causes

Is,e(e(e
−1(ȳ))) :− atoms(s) (1)

CRi(x̄j) :− atoms(r) ∧
^

e:r→s

¬Is(e−1(ȳ)) (2)

There is one IDB predicate Is,e(e(e−1(ȳ))), for each possible
embedding e : r → s, and it appears in one single rule, whose
left hand side the same as s. The head variables are all n-variables
ȳ in s, where each y is repeated |e−1(y)| times: this is the pur-
pose of the e ◦ e−1 function. For example, if the embedding is
e : Rn(x1, x2, x3)→ Rn(y, y, y), then e−1(y) = (x1, x2, x3) and
e(e−1(y)) = (y, y, y), hence the IDB is I(y, y, y). Next, there is
one IDB predicate CRi for every relation name Ri, and there are
one or more rules forCRi : one rule Eq. 2 for each refinement r and
each n-atom gn

j(x̄j) in r that refers to the relation Rn
i .

Therefore, the Datalog program consisting of Eq. 1 and Eq. 2
computes the set of all causes to the Boolean query q and returns
them in the IDB predicates C1, . . . , Ck.

PROOF (COROLLARY 3.7). The proof is immediate: there ex-
ists a single refinement, which has no embedding.

B. CANONICAL HARD QUERIES
PROOF (THEOREM 4.1 h∗1 :−R(x), S(y), T (z),W (x, y, z)).

We demonstrate hardness of q1 with a reduction from the minimum
vertex cover problem in a 3-partite 3-uniform hypergraph: Given an
3-partite, 3-uniform hypergraph and constantK, determine if there
exists a vertex cover of size less or equal to K. This problem is
shown to be hard in [21].

Take a 3-partite 3-uniform hypergraph such as the one from Fig. 6a.
The nodes can be divided into 3 partitions (R, S and T), such that
every edge contains exactly one node from each partition. We con-
struct 4 database relations R(x), S(y), T (z) and W (x, y, z). For
each node in the R partition of the hypergraph, we add a tuple in
R(x), and equivalently for S and T . Also, for each edge of the
hypergraph, we add a tuple in W (x, y, z). Finally, we add an addi-
tional tuple to each relation: r0 = (x0), s0 = (y0), t0 = (z0) and
w0 = (x0, y0, z0).

The database instance corresponding to the hypergraph of Fig. 6a
is shown in Fig. 6b. Now consider the join query

Q(x, y, z) :−R(x), S(y), T (z),W (x, y, z)

The responsibility of tuple r0, (equivalently s0, t0 or w0), is equal
to 1

1+|S| , where S is the minimum contingency set for tuple r0.
Therefore, S contains the minimum number of tuples that make r0

counterfactual. Note that s0, t0 and w0 cannot be contained in S,

9

as they are the only tuples that join with r0. If S a minimum con-
tingency, then if wi ∈ S, then ∃S ′ = {S \ {wi}} ∪ {rj}, where
rj .x = wi.x, and S ′ is also a contingency of the same size as S and
therefore minimum. Therefore, there exists minimum contingency
S that only contains tuples from relations R, S and T. The tuples of
R, S and T correspond to hypergraph nodes, and a contingency cor-
responds to a cover: if an edge was not covered, then there would
exist a corresponding tuple that was not eliminated. Also the cover
is minimum: if there existed a smaller cover, then there would exist
a smaller contingency. Therefore, computing responsibility for h∗1
is hard.

LEMMA B.1. Computing the minimum vertex cover in a 3-partite
3-uniform hypergraph H(V, E) where ∀i 6= j ∧ Ei, Ej ∈ E :
|Ei ∩ Ej | ≤ 1, is NP-hard.

PROOF LEMMA B.1. We will demonstrate this using a reduc-
tion from 3SAT. The proof is basically a modification of the 3-
partite 3-uniform hypergraph vertex cover hardness result presented
in [21]. Let φ

Vn
i=1 ci be an instance of 3SAT, where ci are 3-

clauses over some set X of variables. We build a 3-partite 3-
uniform hypergraph (with vertex partitions V = V1 ∪ V2 ∪ V3)
as follows: for each variable x ∈ X we add 12n nodes and 6n
hyperedges to H. 6n out of the 12n nodes are anonymous nodes
appearing in only one hyperedge, and denoted by •. Note the dif-
ference between this reduction and the one in [21]: [21] uses 12
nodes per variable, so for variable x it creates nodes x1, x̄1, x2, x̄2,
x3, x̄3, as well as 6 anonymous nodes. In our case, we replicate
these to the number of all clauses n, so if we have 2 clauses, we
would create the variables nodes x11, x̄11, x21, x̄21, x31, x̄31, x12,
x̄12, x22, x̄22, x32, x̄32, and 12 anonymous nodes.

Note that ∀j, xij and x̄ij belong to partition Vi (i = {1, 2, 3}).
The subscript j in xij corresponds to clause j, therefore j ∈ [1, n].
We add local edges between same variable nodes according to the
rules in Lemma B.

V1 V2 V3

x1j • x̄3j′ (j′=(j mod n)+1)

• x2j x̄3j

x̄1j x2j •
x̄1j • x3j

• x̄2j x3j

x1j x̄2j •

Figure 7: Local hyperedges for variable x.

We add a global hyperedge for each clause cj containing vertices
that correspond to the variables in cj , taking into account their po-
sition in the clause, and whether they are negated. For instance if
cj = z̄∨x∨y, we add the hyperedge (z̄1j , x2j , y3j), which leaves
the graph 3-partite. Our construction ensures that any two hyper-
edges will only have up to 1 node in common. An example of the
reduction is given at Fig. 8 for the formula (z̄∨x∨y)∧(x∨ ȳ∨z).
φ is satisfiable iff there is a vertex cover in H of size less than

or equal to 3nm, where m the cardinality of X and n the number
of clauses. From this point the proof follows exactly the proof of
Lemma 14 in [21] and is not repeated.

PROOF (THEOREM 4.1 h∗2 :−R(x, y), S(y, z), T (z, x)). We
show hardness with a reduction from the 3-partite 3-uniform hy-
pergraph vertex cover where ∀i 6= j∧Ei, Ej ∈ E : |Ei∩Ej | ≤ 1,
which was shown to be NP-hard in Lemma B.1.

Assume a 3-partite 3-uniform hypergraph H(V, E) such that no
two hyperedges share more than one node. Name the partitions
VR, VS and VT . For each node in VR, VS , VT create a unique tu-
ple in relations R, S and T respectively. We will create a graph

x11

x̄11

x̄21

x̄31

x̄12

x̄22

x̄32

x32

x22

x12

x31

x21

•

•

•
•

•

•
•

•

•

•
•

•
•

•

•
•

•

•
•

•

•

•
•

•

•

•

•
•

•

•
•

•

•

•
•

•

y11

y21

y31

y12

y22

y32

ȳ32

ȳ22

ȳ12

ȳ31

ȳ21

ȳ11

z̄11

z̄21

z̄31

z̄32

z̄22

z̄12

z12

z22

z32

z31

z21

z11

c1

c2

Figure 8: 3-partite 3-uniform graph transformation for 3SAT
formula (z̄ ∨ x ∨ y) ∧ (x ∨ ȳ ∨ z)

G as follows: For each node in ri ∈ VR create two nodes rxi and
ryi . Similarly create nodes syj , szj for each sj ∈ VS , and txk , tzk for
each tk ∈ VT . For each edge (ri, sj , tk) ∈ E create in G edges
(ryi , s

y
j), (szj , t

z
k) and (rxi , t

x
k). Each connected component in G

contains nodes of equivalent variable types: x, y or z. Assign the
same unique value across all the nodes of each connected compo-
nent, which will reflect the assignment of the x, y and z variables
of the R, S, T tuples. For every two tuples in the same relation,
e.g ri(xi, yi) and rj(xj , yj), it is not possible that xi = xj and
yi = yj , because hyperedges ofH do not have more than one node
in common. That means that all created tuples are distinct, and each
join result of q2 corresponds to a hyperedge in H. Finally, add tu-
plesR(x0, y0), S(y0, z0) and T (z0, x0), such that x0, y0 and z0 do
not match any x, y or z values respectively in the database. Com-
puting the responsibility of tuple R(x0, y0) corresponds to finding
the minimum set of R, S, T tuples that remove all join results
which is equivalent to a vertex cover in H. Therefore, computing
responsibility for query q2 is NP-hard.

PROOF (THEOREM 4.1 h∗3). We prove hardness of h∗3 by a sim-
ple reduction from h∗2. We start by writing the two queries as

h∗2 :−R(x, y), S(y, z), T (z, x)

h∗3 :−R′(x′, y′), S′(y′, z′), T ′(z′, x′), A′(x′), B′(y′), C′(z′)

Now we transform a database instance for h∗2 into one of h∗3 as
follows: For every tuple ri in R(x, y), insert ri as new tuple into
A(x′). Repeat analogously for each si, ti from S(y, z), T (z, x)
and B′(x′), C′(z′). Then, for each valuation θ = [a/x, b/y, c/z]
that makes h2 true over D, insert (ri, si), (si, ti), and (ti, ri) into
R′, S′, and T ′, respectively, where (ri, si, ti) represent the tuples
in the original R, S, and T corresponding to θ. Now we have a
one-to-one correspondence between a tuples in R and A′, S and
B′, and T and C′. Comparing the lineages for these two queries,
one sees that R′, S′, and T ′ are dominated by A′, B′, and C′,
and that the minimal lineages are identical. Hence causes and their
responsibility are identical.

C. RESPONSIBILITY DICHOTOMY
PROOF (THEOREM 4.5). It is straightforward from Algorithm 1.

The flow graph constructed has one edge per database tuple. The
capacities of exogenous tuples are∞ and all other tuples have ca-
pacity one. Every unit of s-t flow corresponds to an output tuple of

10

D R S T
X Y Y Z Z X

r1 1 1 s1 1 1 t1 1 1
r2 1 2 s2 1 2 t2 2 1

r3 1 1

D’ A’ B’ C’ R’ S’ T’
X’ Y’ Z’ X’ Y’ Y’ Z’ Z’ X’
r1 s1 t1 r1 s1 s1 t1 t1 r1
r2 s2 t2 r1 s2 s2 t2 t2 r1

s3 r2 s3 s3 t1 t1 r2

Figure 9: Example instance D for query h∗2 and corresponding
instance D′ for query h∗3.

q. It is impossible that a flow does not correspond to a valid output
tuple, as the partitions are ordered based on the linearization. This
means that if a variable is chosen it will not occur again later in the
flow, and therefore we can’t have invalid flows going through one
value of x in one partition and another in a later one. The steps of
the algorithm: construction of the hypergraph, linearization, flow
transformation, and computation of the maximum flow are all in
PTIME and therefore responsibility of linear queries can be com-
puted in PTIME.

PROOF (LEMMA 4.7). Case 1: q′ resulted from variable dele-
tion (q ; q[∅/x]). Then we can polynomially reduce q′ to q by
setting variable x to the constant a. Therefore, if q is in PTIME, q′

is also in PTIME.
Case 2: q′ resulted from rewrite (q ; q[(x, y)/x]). Assume

q :− g1(x, . . .)g2(x, y, . . .)q0, then q′ :− g′1(x, y, . . .)g′2(x, y, . . .)q′0.
Reduce q′ to q as follows: For each subgoal g′1 ∈ q′, create a unique
value (xi, yj) for each tuple g′1(xi, yj), and assign these as the tu-
ples of g1(x) in q. Similarly, create a unique value (xi, yj) for
each tuple g′2(xi, yj), and assign each as a tuple g2((xi, yj), yj) to
form relation g2. Both queries have the same output and the same
contingencies. Therefore, if q is easy, q′ also has to be easy.

Case 3: q′ resulted from atom deletion (q ; q − {g}). As-
sume q :− g1, . . . , gm and q′ :− g1, . . . gj−1, gj+1, . . . , gm. q′ dif-
fers from q in that it misses atom gj(ȳ). The atom can be deleted
with a rewrite only if it is exogenous, or ∃gi(x̄), with x̄ ⊆ ȳ.

We will reduce responsibility for q′ to q: Take the output tuples
of q′ and project on ȳ. Assign the result to gj . If gj is exogenous or
if x̄ ⊂ ȳ, then tuples from gj are never picked in the minimum con-
tingency. If x̄ = ȳ, no minimum contingency will have the same
tuple from gi and gj . Therefore the contingency tuples from the 2
subgoals can be mapped to one of them, creating a contingency set
for q′ Therefore, if q is in PTIME, q′ is also in PTIME.

PROOF LEMMA 4.10. A weakening q (q̂ also results in a
new database instance D̂. A weakening does not create any new
result tuples, and does not alter the number of tuples of any endoge-
nous non-dominated atoms. Therefore contingencies in q̂, D̂ only
contain tuples from non-weakened atoms making any contingency
for q is also a contingency for q̂ and vice versa. If any weakening
results in a linear query q̂, Algorithm 1 can be applied to solve it in
PTIME, meaning that weakly linear queries are in PTIME.

LEMMA C.1 (CONTAINMENT). If q is final, then ∀x, y, sg(x) 6⊆
sg(y), where sg(x) the set of subgoals of q that contain x.

PROOF. Due to space restrictions, only a sketch of the proof is
given here. For the full proof see [submit and cite arxiv!]

We show the result by contradiction. Assume that sg(x) ⊆
sg(y). The rewrites q1 :− q ; q[∅/x], q2 :− q ; q[∅/y], q3 :− q2 ;

q2[∅/x], all have to be weakly linear. Also, because sg(x) ⊆ sg(y),
the connected components of q3 are subsets of the connected com-
ponents of q1 and q2. Using the linear orderings of the 3 rewritten

queries we can produce a valid linear order for q, which would
mean that q cannot be final, leading to a contradiction.

LEMMA C.2. If q is final, then it has exactly 3 variables.

PROOF. Due to space restrictions, only a sketch of the proof is
given here. For the full proof see [submit and cite arxiv!]

First of all, if q has 2 or fewer variables, then it is linear, and
therefore cannot be final. So, q must have at least 3 variables. As-
suming that Var(q) > 3 leads to a contradiction. Since q is final,
it cannot be linear. There are 2 cases: (i) ∀gi ∈ q, Var(gi) ≤ 2,
and (ii) ∃gi ∈ q, Var(gi) ≥ 3. Case (i) is further subdivided into
queries with corner points in their dual hypergraph, and those with
cyclic dual hypergraphs. Since q is final, no rewrite can lead to a
hard query. However, there exist rewrites that lead to one of h∗1,
h∗2, h∗3. Because of the assumption Var(q) > 3, it is in all cases
guaranteed that at least one rewrite will occur, which means that q
cannot be final.

Case (ii) is treated in the same manner. Using Lemma C.1 we
identify 2 possible cases for q: (a)A(x, y, . . .), B(y, z, . . .), C(z, x, . . .),
z 6∈ A, x 6∈ B and y 6∈ C and (b) A(x, . . .), B(y, . . .), C(z, . . .),
y, z 6∈ A, x, z 6∈ B and x, y 6∈ C, which can also be rewritten to hard
queries and therefore cannot be final.

PROOF (THEOREM 4.13). From Lemma C.2, since q is final, it
has exactly 3 variables and it is not weakly linear. Let x, y, z be the
3 variables. An atom in q can be in one of the following 7 forms:

A(x), B(y), C(z), R(x, y), S(y, z), T (x, z), W (x, y, z)

Note that because of the third rewrite rule, and since q is final, we
only need to consider queries with at most one atom of each type
(e.g. a query containing R1(x, y) and R2(x, y) cannot be final).
There are 7 possible atom types, and therefore 127 possibilities for
queries. We do not need to analyze all of those, as most of them are
trivially weakly linear (queries with less that 3 atoms, or less than
3 variables) and therefore cannot be final.

We will show that out of all the possible queries made up as
combination of the 7 basic atoms, only h∗1, h∗2, h∗3 are final. The
rest are either weakly linear or can be rewritten into the hard queries
(and therefore are not final). Note that any query q whose atoms are
a subset of the atoms of h∗1 or h∗2 is linear. Therefore, we only need
to check supersets of h∗1 and h∗2, and subsets of h∗3. Any query
where A,B,C are all endogenous, or R,S, T are all endogenous,
is covered by these cases. We finally need to examine queries where
at least one unary and one binary atom appear as exogenous. For
simplicity, from now on we will drop the variable names and just
use the relation symbols, in direct correspondence to the atom types
mentioned above (e.g. we writeA instead ofA(x) andR instead of
R(x, y)). Also, if the endogenous or exogenous state is not explicit,
it is assumed that the atom can be in either state.

Case 1: supersets of h∗1 :−An, Bn, Cn,W . The only possible re-
lations that can be added to h∗1 from the possible types are the bi-
nary relations R, S and T . For any of them, that are added to
h∗1, there exists a singleton relation (A, B or C) with a subset
of their variables. Therefore, we can apply the third rewrite, eg.
q ; q − {R} to get h∗1. Therefore, any query q over variables
x, y, z that is a superset of h∗1 is not final because it can be rewrit-
ten to h∗1.

Case 2: supersets of h∗2 :−Rn, Sn, T n. The possible atom types
that could be added are the ternary relation W , or the unary atoms
A, B, and C. There are 5 possible cases excluding symmetries
(adding A to h∗2 is equivalent to adding B instead). An atom in
parentheses means that it may or may not be part of q.

(a) q :− (Ax,)(Bx,)(Cx,)Rn, Sn, T n,W : W (and Ax, Bx, Cx)
can be eliminated based on the third rewrite leading to h∗2.

11

(b) q :−An, (Bx,)(Cx,)R,S, T (,W): weakly linear as A dom-
inates R and T (and W), and Bx and Cx can be dissociated
to W .

(c) q :−An, Bn, (Cx,)R,S, T (,W): weakly linear as R, S, T
(and W) are dominated, and Cx can be dissociated to W .

(d) q :−An, Bn, Cn, R, S, T : this is h∗3.
(e) q :−An, Bn, Cn, R, S, T,W : W can be eliminated based on

the third rewrite leading to h∗3.
Case 3: subsets of h∗3 :−An, Bn, Cn, R, S, T . We only need to

consider those where at least one of theR,S, T atoms is exogenous
or missing, otherwise they would fall under case 2. We have the
following cases (excluding symmetries):

(a) q :−A,B,C,R, S: linear, and therefore any of its subsets are
also linear.

(b) q :−Bn, Cn, R, S, T x: weakly linear as R,S, T are domi-
nated and can dissociate to W .

(c) q :−Cn, R, S, T x: T dissociates to W resulting in a linear
query. Any subsets would also be linear.

Case 4: at least one exogenous unary and one exogenous binary
relation.

(a) q :−Ax, B,C,Rx, S, T,W : A and R dissociate to W, result-
ing in a linear query. Any subset is also weakly linear.

(b) q :−Ax, B,C,R, Sx, T,W : A and S dissociate to W, result-
ing in a linear query. Any subset is also weakly linear.

Therefore, we have shown that any final query has to be one of
h∗1, h∗2, h∗3.

D. OTHER RESPONSIBILITY PROOFS
PROOF (THEOREM 4.15). We will show the result through a

series of reductions. We will start by a known LOGSPACE complete
problem, the Undirected Graph accessibility Problem (UGAP): given
an undirected graph G = (V,E) and two nodes a, b ∈ V , decide
whether there exists a path from a to b.

BGAP reduction: We define the Bipartite Graph Accessibility
Problem (BGAP): given a bipartite graph (X,Y,E) and two nodes
a ∈ X , b ∈ Y , decide whether there exists a path from a to b. Here
the path is allowed to traverse edges in both directions, from X to
Y and from Y to X . We will reduce any instance of UGAP to an
instance of BGAP as follows:

Given an instance of UGAP as an undirected graphG = (V,E),
and nodes a, b ∈ V , construct a bipartite graph with X = V ,
Y = E ∪ {c}, where c is a new node, and edges are of the form
(x, (x, y)) and(y, (x, y)), plus one edge (b, c). Then there exists a
path a→ b inG iff there exists a path a→ c in the bipartite graph.
Therefore, BGAP is hard for LOGSPACE.

FPMF reduction: We define the Four-Partite Max-Flow problem
(FPMF): given a four-partite network (U,X, Y, V,E) where each
edge capacity is either 1 or 2, source and target nodes s and t con-
nected to all nodes in U and V respectively with infinite capacities,
and a number k, decide whether the max-flow is ≥ k. We reduce
BGAP to FPMF as follows:

Given an instance of BGAP as a bipartite graph (X,Y,E) and
two nodes a ∈ X , b ∈ Y , construct a 4-partite graph (U,X, Y, V,E′)
by leaving the X and Y partitions and edges between them un-
changed, as they are in the BGAP instance, and set their capacities
to 2. Create a U -node xy for each edge (x, y) ∈ E. Each node
xy ∈ U is connected to x ∈ X with an edge of capacity 1. Sym-
metrically, the V -nodes are E, and each node y ∈ Y is connected
to all nodes xy ∈ V , with capacity 1. Finally connect a source
node s to all nodes U with infinite capacity, and connect all nodes

in V to a target node t also with infinite capacity. The resulting
graph has a maximum flow (min-cut) equal to |E|: the number of
edges between any 2 partitions is exactly equal to E, and edges be-
tween the X and Y partitions are not chosen in a minimum cut, as
they have capacity 2 instead of 1. The maximum flow of E utilizes
all U −X and Y − V edges, and a residual flow of 1 is left in all
X − Y edges.

Now add to the graph a new node a′ in partition U connected
with capacity 1 to node a in X and with infinite capacity to the
source node. Also add a node b′ to partition V , connected to node
b of partition Y with capacity 1, and to the target node with infinite
capacity. The flow in this final graph is |E| iff there is no path be-
tween a and b in the BGAP instance, and it is |E|+ 1 iff there is a
path between a and b. Therefore, BGAP can be solved by comput-
ing the maximum flow in the FPMF instance with k = |E|+ 1.

Query reduction: We will reduce FPMF to computing responsi-
bility for query q. Let (X,Y, Z,W,E) and number k be an in-
stance of FPMF. For each (xi, yj) edge between partitions X and
Y create a tuple R(xi, 1, yj) is the capacity of the edge is 1, and
two tuples R(xi, 1, yj) and R(xi, 2, yj) if the capacity of the edge
is 2. Similarly create relation S(y, u2, z) based on the Y −Z edges,
and relation T (z, u3, w) based on the Z −W edges. Finally, add
tuples R(x0, 1, y0), S(y0, 1, z0), and T (z0, 1, w0), where x0, y0,
z0 and w0 are unique new values to the respective domains. The
max-flow in the FPMF instance is ≥ k iff the responsibility of
R(x0, 1, y0) is ≥ k. Therefore, responsibility for q is hard for
LOGSPACE.

PROOF (PROP. 4.16 SELF-JOINS). This results from a reduc-
tion from vertex cover. Given graph G(V,E) as an instance of a
vertex cover problem, we construct relations R and S as follows:
• For each vertex vi ∈ V , create a new tuple ri with unique

value of attribute xi.
• For each edge (vi, vj) ∈ E, create a new tuple sk, with values

(x, y) = (xi, xj), where xi, xj are the values of tuples ri, rj
that correspond to nodes vi, and vj respectively.
• Add tuples r0 with value x0 and s0 with value (x0, x0).
The above transformation is polynomial, as we create one tuple

per node and one tuple per edge. A vertex cover of size K in G
is a contingency of size K for tuple r0 in the database instance:
removing from the database all tuples ri corresponding to the cover
leaves no other join result apart from the one due to r0, s0: All other
si = (xi, yi) 6≡ s0 do not produce a join result, as at least one of
R(xi) or R(yi) has been removed.

Now assume a contingency S for tuple r0. If S contains a tu-
ple si = (xi, yi), then we can construct a new contingency S ′ =
(S \ {si}) ∪ {R(xi)}, and |S ′| ≤ |S|. Therefore, there exists a
minimum contingency S that contains only R-tuples. If V ′ the set
of nodes that corresponds to tuples ri ∈ S, then V ′ is a vertex
cover in G. If there was an edge left uncovered, then that means
that there would be a tuple S(xi, yi), such that neither of R(xi),
R(yi) are in the contingency, which is a contradiction as the join tu-
ple R(xi), S(xi, yi), R(yi) would then be in the result. The cover
V ′ is minimal, because S is minimal.

PROOF (THEOREM 4.17 Why-No RESPONSIBILITY). This is a
straightforward result based on the observation that the contingency
set of a non-answer is bounded by the query size, and is therefore
irrelevant to data complexity. In order to make a tuple counterfac-
tual, we need to insert at most m− 1 tuples to the database, where
m the number of query subgoals.

12

	1 Introduction
	2 Query Cause and Responsibility
	3 Complexity of Causality
	4 Complexity of Responsibility
	4.1 Why So?
	4.2 Why No?

	5 Related Work
	6 Conclusions
	7 References
	A Proofs Causality
	B Canonical Hard Queries
	C Responsibility Dichotomy
	D Other Responsibility Proofs

