Distributed Query Evaluation on Semistructured Data*

Dan Suciuf
University of Washington

Abstract

Semistructured data is modeled as a rooted, labeled graph. The simplest kinds of queries on
such data are those which traverse paths described by regular path expressions. More complex
queries combine several regular path expressions, with complex data restructuring, and with
sub-queries. This paper addresses the problem of efficient query evaluation on distributed,
semistructured databases. In our setting the nodes of the database are distributed over a fixed
number of sites, and the edges are classified into local (with both ends in the same site) and
cross edges (with ends in two distinct sites). Efficient evaluation in this context means that
the number of communication steps is fixed (independent on the data or the query), and that
the total amount of data sent depends only on the number of cross links and of the size of
the query’s result. We give such algorithms in three different settings. First, for the simple
case of queries consisting of a single regular expression. Second, for all queries in a calculus for
graphs based on structural recursion which in addition to regular path expressions can perform
non-trivial restructuring of the graph. And third, for a class of queries we call select-where
queries which combine pattern matching and regular path expressions with data restructuring
and sub-queries. The paper also includes a discussion on how these methods can be used to
derive efficient view maintenance algorithms.

Disclaimer Thisis a preliminary release of an article accepted by ACM Transactions on Database
Systems. The definitive version is currently in production at ACM and, when released, will super-
sede this version.

1 Introduction

The semistructured data model has been introduced for data which does not conform to a rigid
schema [Abi97, Bun97]. Data components can be missing in some items, can have different types in
different items, collections can be heterogeneous and nested [QRS'95]. While originally motivated
by a variety of applications such as integration of heterogeneous data sources [PGMW95], man-
agement of biological databases [TMD92, BDHS96], or querying or managing Web sites [MMM96,
KS95, FFK*97], the dominant application today is for data sharing on the Web. XML [Con98],
the standard data format for the Web, is essentially a syntax for semistructured data.

*Copyright 200x by the Association for Computing Machinery, Inc. Permission to make digital or hard copies
of part or all of this work for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to Post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1(212)869 — 0481, or
permissions@acm.org.

tPart of this work was done while the author was at AT&T Shannon Laboratories

.cs.ucsd.edu

Academ
\ OtherLinks Papers Paper ers S
& !

Departipents
CS-Depay enEE-ment
Papers
People ResSearches X

___ Collaborator %P{S
s
7/“
%Qers

Figure 1: A fragment of the web site at http://www.ucsd.edu, and the result of a query (). For
the purpose of structure specific queries such a data source can be modeled as an edge labeled tree.

In the semistructured data model a database is modeled as a rooted, labeled graph. The nodes
represent objects and have an associated oid. The labels are atomic values, like strings, integers, etc,
or large objects, like images, sounds, etc, which are still atomic for the purpose of query evaluation.
Labels can be attached to either the graphs nodes or edges or both, resulting in minor variations
of the semistructured data model. For uniformity we assume here the labels to be attached to
edges only. Web-sites are a good examples of semistructured data instances: Figure 1 illustrates an
example of such a semistructured databases: a fragment of the Web site as http://www.ucsd.edu.

In data sharing applications the semistructured data is often distributed. Several autonomous
sites hold local data that may include links to objects in other sites. For example, consider the
database represented in Figure 2, which is distributed on two sites, http://www.ucsd.edu and
http://www.sdsc.edu respectively. Each node now belongs to exactly one site, while the edges
can be either local (at one site), or cross edges (between the two sites). Such cross edges are
expressed in HTML as references to other Web pages and in XML as links to other XML elements.
XLink [DMOTO0] defines a framework for expressing such links in XML.

In this work we address the problem of efficient query evaluation on distributed, semistructured
databases. The scenario we consider is one in which the data is distributed on a number of sites
(say dozens or more, but not thousands) that have agreed to cooperate both in sharing data
and in answering queries. While document sharing is common on the Web today, Web servers
do not answer user queries. Currently a W3C working group is designing a query language for
XML [CFMRO0] that will likely lead in the future XML servers to accept queries on their XML
data. Access to such servers will be restricted to authorized users, for example paying customers,
business partners, or users inside a firewall. Our scenario for distributed query evaluation is one
in which a community of XML data providers agree to share their data. Sharing is implemented
by having links from the local XML data to XML objects at some other server in the community,
for example by using XLink [DMOTO00]. The community is loose, with the data providers being
autonomous. In particular there are no global integrity conditions, for example broken links are
possible. At the logical level users see a unique, global graph, and are unaware of the distribution.

-
| /\ — Papy(s
) poas . |
http://www.ucsd.ed http://www.sdsc.ed

Figure 2: The information source is distributed on two sites.

Each query is initiated at some server, and may have to extract data from other servers in order
to compute the answer. Each server will restrict access to authorized users and the other servers.

For example in a B2B application a parts supplier may offer its customers access to XML data
about its products and allow the customer’s applications to query that data using an XML query
language. The supplier’s data may contain links to other sites, for example to a shipping company
for up to date information about delivery options, and it will have an agreement with that shipping
company to support distributed evaluation of queries on their joint data.

One consequence of this scenario is that objects are fetched using the HTTP protocol, which
makes the connection setup cost much higher than the data transfer cost. One single connection
that transfers a lot of data is preferable to several smaller connections each transferring small
amounts of data. A second consequence is the predominance of relative links over absolute links,
in order to reduce the likelihood of broken links. An absolute link consists of the referred object’s
oid while a relative link consists of some object’s oid plus a navigation expression describing how to
reach from there the target object. XLink allows relative links, with the navigation being expressed
in XPath [Cla99a]. Rather than referring to the oid of some specific object at a remote site, we
may prefer to refer to a more important object that is less likely to change in time, then use a
relative path expression to reach our real target. Thus only a small subset of the objects at a site
are directly referred by other sites.

Several semistructured data and XML query languages have been proposed by researchers. At
their core, all share a common feature: they allow navigation through the data with regular path
expressions. For example the following UnQL [BDHS96, BFS00] query:

Q1 = select ¢
where x = “CS-Department” = x = “Papers” =t in db

retrieves all papers accessible from a “CS-Department” link in the database in Figure 1. Here
x = “CS-Department” = x = “Papers” is a regular path ezpression, in this case denoting any path
which has some edge labeled “CS-Department”, and later some other edge labeled “Papers”. More
complex queries may pose more complex conditions, consisting of several regular path expressions,
or may construct results which are themselves graphs.

This paper discusses distributed evaluation techniques for three language constructs found in
current semistructured data query languages: regular path expressions, recursive traversals of the
graphs, and patterns that include regular path expressions. Our goal is to describe algorithms
with proven efficient upper bounds. For example, consider the distributed database in Figure 2.

A naive evaluation of the previous query would be to chase the regular expression along the links
in a “spider” style: this would result in the query being shipped between the two sites back and
forth a number of times dependent on the number of cross links. In some restricted cases we may
be able to determine ahead of time that the spider needs to be shipped between sites only a very
small number of times, but in the general case the upper bound of the spider algorithm has an
unacceptably high cost.

The definition of an efficient distributed query evaluation that we adopt throughout the paper
is the following:

Definition 1.1 An evaluation algorithm on a distributed database is efficient iff:

1. The total number of communication steps is constant, i.e. independent on the data or on
the query. A communication step can be a broadcast, or a gather, and can involve arbitrarily
large messages (but see condition 2).

2. The total amount of data transfered during query evaluation should depend only on (a) the
size of the query’s answer, and (b) the total number of cross edges.

This definition is motivated by our application scenario. Setting up an HTTP transfer is costly,
hence the best theoretical upper bound we can hope for is a constant number, independent on the
size of the data and the query. On the other hand transfer costs are low compared to setup cost,
so large messages are tolerable. We also attempt to minimize the amount of data transfered, but
there are some natural barriers to that, in a worst case scenario. We obviously need to transfer the
entire query answer, and, in the worst case, we have to traverse all cross links: hence the upper
bound in 2.

Considering Figure 2, the “spider” evaluation algorithm of a regular path expression query
violates item 1 above. Another naive evaluation method is to send the entire database to a single
site in one communication step, then compute the query locally: this violates 2, since the size of
the database is in general larger than the number of cross edges or of the size of the query’s result.
On the other hand an efficient algorithm according to our definition is not necessarily the best in
certain practical settings.

Point 2 of the definition refers to the algorithm’s data complezity in the sense of [Var82], not
the query complexity or combined complexity. This means that the query is fixed and we analyze
an algorithm’s complexity (in our case the total amount of data transfered) as a function of the
size of the data and the number of cross links.

We address the distributed query evaluation problem in three overlapping frameworks. First
we consider just regular expression queries, whose form is select ¢ where R = ¢ in db, which selects
all nodes in a graph reachable from the root via a given regular expression R. Efficient evaluation
of such queries reduces to the efficient computation of transitive closure of a distributed graph.
For that, we give a straightforward efficient algorithm. Parallel algorithms for the evaluation of
transitive closure have been studied before [VK88], but our setting here is different, since we allow
large blocks of communications, and consider each communication to be very expensive. Our
framework also differs from the traditional framework for distributed algorithms on graphs, e.g. for
the computation of transitive closure [Lyn97]: there each node of the graph is stored on a separate
site, and the number of communication steps is the graph’s diameter.

Second, we consider a larger class of queries, which allows us to perform graph restructurings.
These queries are described in a formalism whose central construct is a form of structural recursion
on trees [BDS95, BDHS96, BFS00]!. This allows us to define a query as a collection of mutually

'"We follow here the definition of structural recursion for semistructured data from in [BFS00], which ensures that

recursive functions which iterate on the graph’s structure. The queries in this formalism form
an algebra C, which is a fragment of UnQL [BDHS96, BFS00]: C doesn’t have joins and uses
only structural recursion expressions without nested functions. Still, C can express complex graph
restructuring queries. It is shown in [BFS00, ABS99] that XSLT [Cla99b], a language for XML
transformations standardized by the W3C, relies on structural recursion as its evaluation model,
and that a certain core fragment of XSLT corresponds to structural recursion. That fragment can
also be expressed in the algebra C discussed in this paper.

We develop an algebraic approach to distributed query evaluation for queries in C, rather than
an operational one. Namely for each query Q we show how to construct a related query Q%¢, which
we call a decomposed query, such that on a distributed database,) can be evaluated by evaluating
Q% independently at each site, computing the accessible part of all result fragments, then shipping
and assembling the separate result fragments at the client: moreover this evaluation is efficient,
according to Definition 1.1. An algebraic approach is more powerful than an procedural one: since
Q%¢ is still a query, further optimizations can be done at each site, possible tailored specifically
to each site. For example each site may transform and optimize Q% based on its local schema
information, e.g. using techniques in [FS98]. For the correctness of this algebraic method we rely
on the algebraic machinery developed in [BFS00]: we believe that distributed query evaluation is
a nice illustration of the power of that machinery.

Third, we return to declarative queries and consider queries which combine patterns with regular
expressions, sub-queries, and certain forms of restructurings. We call such queries select-where
queries. We follow here the definition from UnQL [BDHS96, BFS00], a language designed for the
semistructured data model, but notice that such queries correspond to join-free fragments of the
XML query languages XML-QL [DFF199] and Quilt [CFR00]. We describe an efficient distributed
evaluation algorithm for all join-free select-where queries: here too “efficient” is in the sense of
Definition 1.1. We use two novel ideas in this algorithm. The first is to show that every select-
where query () can be evaluated in two stages: evaluate a related query Q, to get a partial result
P, then send P to the client and restructure it there to get the final result. The key property here
is that @), is always a query expressible in C, hence we know that it can be efficiently computed
in parallel. Still, the size of P may be much larger than the query result and sending all its
fragments to the client may violate condition 2 of Definition 1.1. The second idea relates to the
way P is trimmed before it is sent to the client. We show that the useful portion of P can be
computed by solving an Alternating Graph Accessibility Problem, AGAP [Imm87, GHR95]. In
AGAP we are given a graph whose nodes are partitioned into AND nodes and OR nodes, and
we have to determine whether a given node is accessible. By definition an OR node is accessible
if at least one of its successors is accessible, while an AND node is accessible if all its successors
are accessible. In general the AGAP is more difficult to evaluate in parallel than GAP (Graph
Accessibility Problem), because AGAP is PTIME complete while GAP is in NC [GHR95]. However
we notice that computing P’s accessible part requires solving a particular form of the AGAP,
namely with a bounded AND-outdegree (defined formally in Subsection 6.3). We describe an
efficient distributed algorithm for computing this particular instance of AGAP.

Finally, for all three frameworks we show how the efficient evaluation techniques can be applied
to the incremental view maintenance problem [GL95], for views on semistructured databases. In
this problem we are given a centralized database db and a materialized view V defined in terms of
a query, i.e. V = Q(db). We are required to compute the new view V' = Q(db'), when the database
db is updated with an increment A to become db’. Moreover the amount of work performed should

all structural recursion expressions have PTIME data complexity. In an earlier work [BDS95] structural recursion
was defined as a more powerful construct.

depend only on the size of the view and that of the increment A. Sometimes we are allowed to
store some additional information besides V', which is only used for the purpose of incremental view
maintenance. We restrict A to consists only of additions to db (i.e. no deletions). Then we derive
view maintenance algorithms by instantiating the distributed evaluation algorithms to a database
consisting of two fragments: db and A.

The paper is organized as follows. We revise the graph data model in Section 2, follow-
ing [BDHS96, BFS00]. We define regular queries and give an efficient distributed evaluation algo-
rithm in Section 3. In Section 4 we define select-where queries, and explain why their distributed
evaluation is more difficult than for regular path expressions. We define structural recursion and the
graph data model in Section 5, following [BFS00], then present the algebraic method for distributed
evaluation of C queries. We describe efficient distributive evaluation of arbitrary select-where queries
in Section 6. Finally we discuss view maintenance in Section 7, and conclude in Section 8.

The most important results in this paper are novel. Namely those in Sections 3 and 6 are novel,
while those in Sections 5 and 7 are based on the preliminary work [Suc96].

2 Data Model

Semistructured data is modeled as labeled graphs. Some variations can be found in the literature,
but they are minor [ABS99]. Given our focus on the language UnQL we follow here the definition
in [BDS95, BDHS96, BFS00], which has two features not present in other data models: markers and
e-edges. These features turn out to be convenient in describing data distribution and distributed
query evaluation.

2.1 Rooted, Labeled Graphs

Let Label be the universe of all atomic values:
Label & Int U Real U Bool U String U Image. ..

In our query language we can test the type of a given label a, with predicates like isInt(a),
isReal(a), isImage(a), etc.

A semistructured database is a rooted graph (i.e. a graph with a distinguished node called
the root), whose edges are labeled with elements from Label U {¢} — hence the name “rooted,
labeled graph”. Here ¢ is a special label, denoting an “empty” symbol: we will discuss it in the
sequel.

We sometimes call these graphs trees, since the main intuition underlying their associated
operators comes from processing trees. However, unless explicitly mentioned, they are graphs, i.e.
may have cycles and subgraph sharing. We denote with DB the set of all graphs.

Figure 1 contains an example of a semistructured data, namely a fragment of the web site
http://www.ucsd.edu. Nodes in the graph correspond to web pages, while edges correspond to
hyper-links. The assumption we make here is that all relevant information is on the edges. In
reality, in the case of a web site, lots of information is stored at the nodes (i.e. in the web pages).
The page content is not necessarily lost in our model, since, at the logical level, we can always
move the information from the nodes into the incoming edges. For the purpose of keeping the
query language simple, it is more convenient to assume that information is attached to edges only
— hence edge-labeled graphs.

Figure 3 illustrates how semistructured data extends relational one. In this example a relational
database with two relations, r1, 79 is represented as a tree. Notice that the data is self-describing:

Figure 3: A relational database represented as a tree.

for example the attribute names m, n, p,q are now part of the data, and not of the schema. One
can easily generalize from this example and note that any relational database can be represented
as a tree of depth 4.

In both examples all nodes in the graph are accessible from the root: any unaccessible parts of
a rooted graph may be deleted. We will make this statement formal below.

These two examples represent the two extremes of semi-structured data: from unstructured
(the web) to fully structured (relational data). In between there is a full spectrum of partially
structured data which can be represented as labeled graphs, as argued convincingly in [QRS195]:
data with missing attributes, attributes which can be single- or set-valued, heterogeneous sets.

2.2 Syntax

Following [BDHS96, BFS00] we use a concrete syntax for denoting a particular case of semistruc-
tured data: data whose underlying graph is a tree. The syntax is:

T == {}|{Label=T}|TUT

We will abbreviate {a; = t1,...,a, =t,} for {a; =1} U...U{a, =1,}, and {a} for {a = {}}.
Then the example in Figure 3 is written as:

{rl = {tup= {m = {a},n = {c}},
tup = {m = {b},n = {c}},
tup = {m = {c},n = {b}}},
r2 = {tup = {m = {b},p = {c},q¢ = {c}},
tup = {m = {a},p = {a}, ¢ = {c}}}}

Our data model has set semantics. E.g. the trees {a,b = {c},b = {c}} and {a,b = {c}} are
considered equal, and ¢; U t9 should be read as set union. We will explain this in Sec. 2.4.

2.3 Epsilon Edges

As said earlier, we allow edges to be labeled with a special symbol, €. The meaning of such
an edge is related to that of an empty transition in automata [Aho90, pp.282], and is just a

Figure 4: An ¢ edge from node v to v’ means that all edges “visible” from v’ should be “visible”
from v too: the second tree is equivalent to the first one. Note that, if no other edge points to v/,
then »' may be eliminated, since it is no longer accessible from the root.

(@) (v (©

0 40 HOW

(d) (e) ()

Figure 5: Illustration of how e-edges can be used to express union.

notational convenience for describing succinctly more complex graphs. Whenever two vertices v, v’
are connected by an ¢ edge, the intended meaning is that all edges emerging from v’ should also
emerge from v. This is illustrated in Figure 4.

Figure 5 illustrates why e-edges are a convenient tool for representing graphs. Considering the
two trees t1,ty of Figure 5 (a), their union can be represented either as in (b) or as in (c): of
course, (c) is simpler to explain and construct than (b), since the latter involves “merging” of two
nodes, which raises the question what to do with their incoming edges. To see that more clearly,
consider the case when t1,ty are with graphs with cycles, like in Figure 5 (d). Then the meaning
of t; Uty is best understood when described with e-edges, as in (e). At a later step the e-edges can
be eliminated, to obtain the graph in (f).

2.4 Equality and Bisimulation

According to our set semantics the semi-structured data {a,b=>{c},b= {c}} and {a,b= {c}} are
“equal”. However they correspond to two different graphs: what does equality mean for graphs ?
Following [BDS95, BDHS96, BFS00] we say that two graphs are equal if they are bisimilar. The

definition of bisimulation is rather technical, but it has a simple intuitive explanation. We give the

technical definition first. Given two nodes u,v in some graph G, we write u €, % u when there
exists a path from u to v of length > 1 in which the last edge is labeled a € Label and all previous
edges are labeled €.

Definition 2.1 Given two rooted, labeled graphs G,G’, a bisimulation from G to G’ is a binary
relation R C Nodes(G) x Nodes(G') such that:

1. (Root(G), Root(G")) € R,

2. whenever (u,u') € R and there exists a path u 9y in G, then there exists some path
u' % ' (of possible different length, but with the same last label), and (v,v') € R.

3. Similarly, but with the roles of G,G" reversed: whenever (u,u') € R and there exists a path

£* a . . £* a
u' == v in G', then there exists some path u —— v, and (v,v") € R.

G, G" are bisimilar if there exists a bisimulation from G to G'.

The definition here of a bisimulation differs in some subtle way from that of a weak bisimulation
in process algebra, as defined in [Mil89]. We refer the reader to [BFS00] for a discussion.

This rather technical definition admits a simple intuitive rephrasing. To test whether two graphs
G and G’ are bisimilar check if they become equal after (1) unfolding into (possible infinite) trees,
(2) eliminating e-edges like suggested in Fig. 4, and (3) performing duplicate elimination at each
node.

We adopt bisimulation as our notion of graph equality. This has three important consequences.
First, on encodings of sets bisimulation coincides with set equality. For example the graphs corre-
sponding to {a,b= {c},b={c}} and {a,b= {c}} are bisimilar. Second, bisimulation is the formal
underpinning of e-edge elimination: that is, after eliminating a e-edge like in Figure 4 the resulting
graph is bisimilar to the original one. Third, every rooted graph is bisimilar to its accessible part:
hence we can eliminate the unaccessible part from any graph and obtain a graph that is “equal” to
it.

2.5 OIDs and Bag Semantics

Most other models of semistructured data considered in the literature have oids associated to nodes
and allow the query language to check equality of node oids. The lack of oids is not a limitation
of our model. Oid’s can be always represented as data values, and hence can be tested for equality
in any query language that allows equality tests on atomic values. We prefer here a model without
oid’s because simple set theoretic operations (such as union, ¢ U t') are easier to define, and this
makes query languages performing complex restructuring easier to formalize. Languages based on
0id’s can also express such restructurings with the aid of Skolem functions. The choice between
having oids or not is ultimately a matter of taste.

A related issue is that of bag v.s. set semantics. Our data model assumes set semantics,
hence duplicates are eliminated from any collection. In practice one often needs bag semantics, for
example in queries with aggregation (which we did not include in our language). Bag semantics
is easy to model in a language with set semantics, by using oids: simply add to each element of a
collection some distinct oid that prevents duplicates from being eliminated. For example, suppose a
query retrieves all colors from a collection of products. If there are one thousand different products,
but only (say) ten different colors, then in our data model the result set will have only ten elements,
since duplicates have been eliminated. If the user wants to keep duplicates, then the query can

be reformulated to return a collection of (color, product-oid) pairs. Since the product oids for all
one thousand products are different, there are no duplicates in the set, and duplicate colors will be
preserved.

3 Queries with Regular Path Expressions

We describe in this section the simplest kind of queries on semi-structured data: regular path
expression queries. For these we give a simple distributed evaluation algorithm, which is efficient
in the sense of Definition 1.1.

3.1 Regular Path Expressions

The syntax for regular expressions is:

Ru=P|a|_|RR|R=R|Rx|(R)

Here P is any unary, user-defined predicate on Label, or boolean combinations of such predi-
cates, and a € Label is any label constant?. The expression _ denotes any label®, Ri|Ry denotes
alternation, Ry = Ry concatenation, and Rx the Kleene closure.

Example 3.1 The following path regular expression finds all papers in the Computer Science
Department:

_x =(CS8Dept = _x = Paper
Here we assume CSDept and Paper to be user-defined predicates which recognizes strings denoting

a Computer Science Department or a Paper respectively. For example we may define Paper(z) def
(x = “Publication” or x = “Paper” or x = “Technical Report”).

However, the query may return papers from other departments, if some node under the Com-
puter Science link has a link to some other department. To avoid that we may want to use a more
complex regular expression:

_* =>CSDept = (not(Dept)) * = Paper
This matches any path whose sequence of labels aqas ... a, satisfies:
Im.1 <m < n A CSDept(an) N(Vi=m+1,...,n— 1.not(Dept(a;))) N\ Paper(a,)
O

Whenever no confusion arises, we will abbreviate _x with x. Thus, the former expression be-
comes: * = CSDept = (not(Dept)) x = Paper.
We use regular expressions in queries of the form:

Q(db) = select ¢
where R =t in db

We call such a query a regular path expression query, or reqular query in short. Here ¢ is a
variable, which we call tree variable.

*Thus a is the same as the predicate P, where P(z) = if = a then true else false
3Thus _ is the same as the predicate true.

10

Intuitively a regular query retrieves all nodes in db accessible from the root through a path
whose labels match R. To be precise, we define the meaning as follows. Let uq,...,u, be all the
nodes in db that are reachable from db’s root by some path that matches the regular path expression
R, and let t1,...,t, denote the labeled graphs with roots w1,...,u, respectively: that is, ¢; has
the same graph as db but with u; designated as root. Then the meaning of Q) is: t; U...U¢,. To
evaluate @ it suffices to create a new node p and add n e-edges from p into ui,...,un,.

For an example, consider the query:

select ¢
where * = CSDept = (not(Dept)) x = Paper =t in db

and the database in Figure 9 (a): the result is in depicted in (b), and in (c) (with € edges removed).
Of course, there is some loss of information, as opposed to keeping the matching nodes separatedly,
since we lose track on how edges were grouped according to these nodes. If this grouping is
important, we can rephrase the query as:

select {“Result” = t}
where * = CSDept = (not(Dept)) x = Paper =t in db

We will discuss in Section 4 such generalizations of regular path expression queries.

3.2 Distributed Evaluation of Regular Queries

We present here a simple distributed evaluation algorithm for regular queries, which is efficient
according to Definition 1.1. This is a procedural approach to evaluation on distributed databases,
prohibiting further optimizations at each site. In Section 5 we present an algebraic method which
allows us to further optimize the query separatedly, at each site.

We start by describing formally a basic evaluation algorithm for regular queries, then extend it
to a distributed one. Given a query select ¢ where R =t in db, we denote with A the automaton
associated to the regular expression R. Assume A has k states, States(A) = {s1,..., sk}, and that

s1 is it’s input state. A’s transitions are of the form s; £ sj, where P is a unary predicate on
labels or a label constant (see the definition of regular expressions). The algorithm for computing
the query on db is shown in Figure 6. At the core is the function wisit which is a graph traversal
function. As it proceeds, it remembers which nodes were visited and which states they were in:
we start with the root of db and the initial state s;. Thus, when we encounter a loop in db, we
traverse it at most a number of times equal to the number of states in the automata. In addition we
memorize the results of the calls to the function visit(s,u) in a data structure result[s, u|. This can

be any dictionary data structure, such as binary search tree or hash table. The nodes u1,...,u,
visited in a terminal state are collected in a set S = {uy,...,u,}. Finally we construct a new node
p and insert n edges p — u1,...,p — Up.

Next we assume that the database is distributed. First we give a formal definition.

Definition 3.2 A distributed database is a graph whose nodes are partitioned into m sets, called
sites or servers and denoted s, « = 1,m. We call a cross link an edge v — v for which u and v
are stored on different sites. We assume that all cross links are labeled with €.

The assumption that each cross link is an € edge is not really necessary but it simplifies the
presentation. It can be always achieved by replacing every cross link v — v with u = v/ = v,
where v’ is a fresh node, residing on the same site as u.

11

Algorithm : Basic-Evaluation
Input : A regular path expression R whose automaton is A
A semistructured database db
Output : Evaluates select ¢ where R =t in db
Method : wvisited < {}
S «— wisit(InitialState(A), Root(db)),
Construct the result graph F' as follows:
Include all db’s nodes and edges in F'
Create a new root p for F
forall u € S do
Add a new edge p = u to F

function visit(s, u)
if (s,u) € visited then return result[s, u]
visited «— visited U {(s,u)}
result]s,u] — {}
if s is a terminal state then result[s, u] — {u}
forall w % v (* edge in db *) do
if a = € then result[s, u] < result]s, u] U visit(s,v)
else forall s 5 s’ (* automaton transition *) do
if P(a) then result[s,u] « result]s,u] U visit(s', v)

return result(s, u]

Figure 6: Basic evaluation algorithm for regular path expressions

12

Thus, for any given site o, « = 1, m, there is a fragment of the graph db stored at «, which we
denote db,. We have:

Nodes(db) = | Nodes(db,)
a=1,m

Edges(db) = U Edges(dby) U CrossLinks
a=1,m

For every cross link u — v from site « to site 3 we call u an output node in a, and v an input node
in 8. We make the assumption that every site @ knows its input and output nodes, InputNodes(db,),
OutputNodes(db,). This assumption can usually be fulfilled after some preprocessing, depending
on how the graph is stored. If it is stored such that for each node we have a list of its outgoing
edges (like in the case of web sites), then output nodes are easy to identify, but identifying input
nodes requires an additional communication step. By convention, db’s root node r is on site 1,
r € Nodes(dby).

One should notice that a distributed database is different from a collection of views, as in
the query answering using views problem, see e.g. [DGMMO00]. The views offer a incomplete, and
possibly overlapping information about the data. A distributed database is a partition into disjoint
fragments, and can be fully reconstructed by taking their union.

Consider now the problem of evaluating a regular query on a distributed database. Executing
the algorithm in Figure 6 directly results in the computation being transfered from one site to the
other a number of times proportional to the number of cross links. This violates condition 1 of
Definition 1.1.

Instead we describe an efficient distributed evaluatin algorithm in Figure 7. The database
is distributed on m sites. The idea is simple: each site « traverses only the local graph db,
starting at every input node. There are only two changes from the function wisit in Algorithm
Basic- Evaluation to the distributed function wvisit,. First, when visit, starts at some input node r
of db,, it does not know in which state s that node is reached, if the search were to proceed globally.
Hence, to be conservative, visit, is called on u with all states s € States(A) (Step 2). Second, when
visit, reaches an output node u of db, in some state s, it cannot follow its e link, because it leads
to some node u' in a different site, 3. Instead « constructs a new output node, which is the pair
(s,u). Similarly 8 constructs a new input node (s,u'), for all its input nodes ' and all states s:
the connection between these is done by the client, once the various result fragments F,, a = 1, m,
are centralized. Summarizing, each site « constructs a result fragment F,, consisting of: (1) some
new input and output nodes of the form (s,), with 4 an input, or output node respectively, at site
a, and (2) the entire database fragment db,. The latter cannot be ruled out as being part of the
query’s result until all fragments F1, ..., F, are inspected. At this point it is obvious that Q(db) can
be obtained (up to bisimulation) by taking the union of Fi,..., F,,, adding all missing cross links
(ie. w = o' and (s,u) = (s,u'), with u € OutputNodes(dby),w' € InputNodes(dbg), s € States(A)),
and defining (s1,7) to be its root (where 7 is db’s root and s; is A’s input state). However large
parts of the fragments Fy, ..., F,, may be inaccessible from the root, and sending them to the client
may violate condition 2 of Definition 1.1. For that reason, we do some additional work in Steps 4,
5, 6, in order to compute the accessible part of F,,, for each a. Namely we construct at each site
the accessibility graph: this has F,’s input and output nodes, and one edge from some input node
to some output node if and only if they are connected in F,. These graphs are sent to the client:
note that the total amount of data exchanged is O(n?), where n is the total number of cross links
in db. The client assembles these pieces together by adding the missing cross-links, and computes
all nodes accessible from (s1,7). In Step 5 it sends these nodes back to the servers. At this point

13

Algorithm : Distributed- Evaluation
Input : A regular path expression R whose automaton is A
A semistructured database db distributed on a number of sites: db =], db,
Output : Evaluates select ¢ where R =% in db
Method :
Step 1 Send Q) to all servers a, @ =1, m.
Step 2 At every site « let F,, be dbg:
Nodes(F,) < Nodes(db,) InputNodes(F,) «— InputNodes(db,)
Edges(F,) «— Edges(dby) OutputNodes(F,) «— OutputNodes(db,,)
visited, — {}
forall r € InputNodes(db,,), s € States(A) do
S «— wisity (s, 1)
InputNodes(Fy) < InputNodes(Fy) U {(s,7)}
forall p € S do Edges(F,) « Edges(F,) U {(s,r) = p}
Step 3 At every site a construct the accessibility graph for F, (see text)
Step 4 Every site a sends it accessibility graph to the client site.
Compute the global accessibility graph at the client site (see text).
Step 5 Broadcast the global accessibility graph to every server site a, @ = 1, m.
Step 6 Every site o computes F2°¢, the accessible part of Fj,.
Step 7 Every site o sends Fio to the client site,
where it is assembled into the result.

function visit, (s, u)
if (s,u) € visited, then return resulty s, u]
visitedy, «— visited, U {(s,u)}
resulty[s, u] — {}
if u € OutputNodes(db,)
then OutputNodes(Fy) < OutputNodes(Fy) U {(s,u)}
resulty[s, u] «— resulty[s,u] U {(s,u)}
else if s is a terminal state then resulty[s, u] «+ {u}
forall u % v in Edges(dby) do
if a = € then resulty[s, u| < resulty[s,u] U visity(s,v)
else forall s 5 &' (* automata transition *) do
if P(a) then resulty[s,u] < resulty[s, u] U visity(s',v)

return resulty s, u]
Figure 7: Distributed Evaluation Algorithm for Regular Queries

14

each server a knows its accessible input nodes, so it can compute F},’s accessible part, F°. In
Step 7 these parts are gathered at the client: note that here the total size of data sent is O(r),
where 7 is the size of the query’s result.

To summarize:

Theorem 3.3 Algorithm Distributed- Evaluation evaluates efficiently a regular query Q on a dis-
tributed database db. Specifically, if n is the number of cross links in db and r is the size of the
result Q(db), then:

1. The number of communication steps is four (independent on the data or query).

2. The total amount of data exchanged during communications has size O(n?) + O(r).
Example 3.4 Consider the following regular query:

select ¢
where * = “CSDept” = not(“Dept”) x = “Paper” = t in db

The automaton corresponding to this regular query is shown in Figure 8, and has three states,
s1, 82, 83. Consider now the database in Figure 9 (a): the query’s result is shown in (b) and (c)
(with € edges eliminated). To apply algorithm Distributed- Evaluation we start by reorganizing the
database as in Figure 10 (a): vy is now db’s root. Then we compute locally the graphs F; and
F,, which are schematically shown in Figure 10 (b) (to reduce clutter we did not show the input
nodes v1, (s2,v1), and (s3,v1) in F, and dropped most of the inner nodes of F;). We explain some
of the edges in Fy: the ¢ edge from (sg,v}) to u; is there because there exists a path from v to
41 in dby which matches the transition from s9 to s3 in the automaton A, and s3 is terminal; the
e-edge from (s9,v)) to (s2,v3) is there because in db; there exists a path from v} to v matching
a transition from sy to s9; the e-edge from (s3,v)) to v} is there because s3 is a terminal state;
the edge labeled Paper from v} to uy is simply copied from db;, etc. Next we compute locally the
accessibility graphs: these are just summaries of Fi, Fy, showing which output node is reachable
from which input node. They are sent to the client (or any centralized site), which computes all
nodes accessible from (s1,v1): in Figure 10 (b) these are marked with a surrounding box. Here
(s2,v9) is first found accessible, which implies (sq, v})) accessible too (recall that the client completes
the missing e cross edges). This makes (s2,v4) and ug accessible. Given the € edge from vy to v},
we have (s, v)) accessible, hence vs and (s3,v3) are accessible too; finally (s9,u9) is accessible. The
accessible input nodes of Fi, Fy are sent back to the servers, which now start marking the accessible
nodes inside F; and Fs respectively. Here u; and all its successors will be found accessible in F7,
and all successors of uy will be found accessible in F,. Finally only the accessible fragments of
Fy, F5 are sent to the client, where they are assembled to yield the result. O

4 Select-Where Queries

Most applications require more than just regular path expressions. We discuss here a class of
queries which we call select-where queries, in which regular path expressions can be intermixed
freely with selections, joins, grouping, and limited data restructuring. This language is a subset of
UnQL [BDHS96, BFS00] whose syntax was inspired from OQL [Cat94].

We start with patterns, defined by the grammar:

P:=t|{P,...,P}|z=P|R=>P

15

CSDept Paper

- not(Dept)

Figure 8: Automaton for Example 3.4

(a) (c)

Figure 9: A database and the result of the regular path expression x= “CSDept” = not(“Dept”) *
= “Paper”.

16

|
| I
‘ I
‘ I
| I
‘ I
‘ I
| I
‘ I
| |
! E |
| |
I, |
C |
€ | |
| Paper l
‘ I
€ |
| I
| L |
‘ I
| I
‘]
DB2

(sLv4) | (s2v4)| (s3v4)

i Tl LSO s e

i i@ R (L) [@2vd) | SV
Vt (sliZ) v2) b3 (s19) [213)] (v9 va

F2
F1

(b)

Figure 10: Example 3.4 continued.

17

Here t is a tree variable, x is a label variable, and R a regular path expression. A select-where
query is:

select £
where C1,...,C,

Here Ci,...,C, are conditions, and can be of two kinds. The first kind has the form P in ¢,
with P a pattern and t a tree variable, and is called generator. The second is a predicate applied
to label variables: this includes equalities between label variables. FE is a tree variable £, a tree
constructor {l = F1,...,ly = Ex}, a union E U E’, or another select-where query. The symbol db
is a distinguished tree variable denoting the input database.

To see an example, the following query groups together the papers in CSDept with their ab-
stracts:

select {“Result” = {“Paper” = t1, “Abstract” = t,}}
where * = CSDept = not(Dept) x = Paper = t1 in db
* = “Abstract” =ty in t1

We require all variables occurring in patterns (even in separate patterns of the same query)
to be distinct. For the case of edge variables this is no restriction since they can be compared
for equality separately. For example instead of select ¢ where ¥ = z = x =% in db we would
write select ¢t where x = 2 =y =1t in db,z = y. We do not allow however trees to be compared
for equality, because in our data model there are no node oid’s. Equality of tree variables would
rather mean equality of their associated trees, which, in our data model, means bisimulation. This
is not a limitation. Note OIDs are just values like the labels sitting on the edges, and can be
captured in our model too. For example select t where “A” =t in db, “B" =t in db would have
to find two edges labeled “A” and “B” respectively leading to two “equal” trees. Testing such an
equality (bisimulation) is too expensive for a distributed database? and we drop it from our select
expressions.

The semantics of a select-where query is the standard, active domain semantics [AHV95]. Given
a query @) = select E where C,...,C,, define a valuation to be a mapping 6 sending label variables
to labels and tree variables to nodes in db, such that all conditions C1, ..., C, are satisfied; for that
we identify a tree variable ¢ with the rooted graph obtained by redefining the root in db to be ¢.
Let 61,..., 60, be all valuations of a query). Then its meaning is E[f1] U... U E[f,,].

Select-where queries satisfy the following two identities which we will need in the sequel:

select E where Cy,...,C, = select (select E where Cj11,...,C,) where C1,...,C; (1)
select (E U E') where C1,...,C,, = (select E where C1,...,C,) U (select E' where C1,...,Cp(2)

Select-where queries correspond in a precise sense to the SPJRU algebra on relational databases [AHV95,
pp-62], which is the algebra consisting of the operators selection, projection, join, rename, and
union. More formally, the following result follows from [BDHS96, BFS00]:

Proposition 4.1 Let Q be a select-where query, R be a relational database schema [AHVI5, pp.31]
and R be a relation schema (i.e. set of attribute names). If for every tree db encoding some relational

It is PTIME complete [JJM92, GHR95].

18

database of type R, Q(db) is an encoding of a relation of type R, then the restriction of @ over
inputs encoding databases of type R can be expressed in SPJRU. Conversely, any SPJRU query
mapping databases of type R to relations of type R can be expressed as a select-where query.

If we substitute our semistructured data model with XML, the select-where queries correspond
to fragments of the main two XML query languages proposed in the literature. XML-QL [DFF 98]
is an XML query language consisting essentially of select-where queries plus the use of Skolem
functions: select-where queries correspond precisely to the XML-QL fragment without Skolem
functions. Quilt [CFR00] extends XML-QL (without Skolem functions) by incorporating aggregate
functions from SQL and filter operators from XQL [Rob99]: select-where queries correspond to the
Quilt fragment without aggregates and without filter operations.

4.1 Difficulties in Distributed Evaluation of Select-Where Queries

It is not obvious how to extend algorithm Distributed- Evaluation from regular queries to arbitrary
select-where queries. We illustrate here three kinds of problems, in increasing order of difficulty.

Data Restructuring with Grouping Consider the following query:

Q1 = select {z=> select ¢
where x = “Title” = tin t;}
where x = “Paper” = x =t in db

The query binds z to each label following a “Paper” and t; to the target node of . For each such
binding it constructs a new edge labeled z, followed by all subtrees in ¢; under a “Title” edge. For
example if

db = { Collection = {Paper = {filel.ps = {T'itle = Optimizations}}},
Paper = {file2.ps = { Heading = {T'itle = {Missing}},
subTitle = {T'itle = {NoneGiven}}}}}

then the answer to Q1 is:
{filel.ps = {Optimizations}, file2.ps = {Missing, NoneGiven}}

The query’s semantics requires the traversal of paths labeled with the regular path expression
* = “Paper” = x = x = “Title”. But in addition to computing this regular expression, the edge
label z is returned as part of the answer. In a distributed database x and its corresponding ¢ may
be on different sites. In decomposing the query we must ensure that, after shipping all the result
fragments to the client, the right z’s are paired with the right ¢’s.

Data Restructuring with Ungrouping Consider:

Q2 = select {z =t}
where * = “Paper” = x = x = “Title” =t in db

As in the previous query this query binds z to any label following a “Paper” edge, and t to any
node further reachable from z after a “Title” edge. The difference is in the way the z’s and the t’s

19

are grouped. Here, for every binding of the pair (z,t) a new edge labeled = will be created, possibly
repeating the same z several times. For the example database db above, the answer is

{filel.ps = {Optimizations}, file2.ps = {Missing}, file2.ps = { NoneGiven}}

In particular if a paper has no title, it’s corresponding x will be dropped from the result: this
is unlike the previous query. Decomposing this query is harder than the previous one, because the
site discovering x has no information on how many times z needs to be replicated. This information
will be available only after all fragments of the result are centralized at the client.

Existential Conditions Consider the query:

Q3 = select ¢
where x = “Paper” =t in db
* = “Abstract” = _int
Like a regular expression query this query returns all trees ¢ reachable by a path labeled * =
“Paper”; but in addition it filters out some trees, keeping only those who have some path * =
“Paper”. The decision whether to include ¢ in the result or not cannot be taken locally, at the site
containing the root of £. On the other hand, we want to avoid sending ¢ over the network if it is not

part of the result: thus, apparently, additional communication steps are necessary, before deciding
whether to send ¢ or not, in order to comply with condition 2.

Cartesian Product Consider a more complex query:

Q4 =select {z={y=t1,z=>12}}
where x = “Paper” = x =t in db
= “Title”=>y=1tint
* = “Abstract” = z=1tyint

The query searches for two regular path expressions:

x = “Paper” = _= x = “Title” = _
x = “Paper” = _= x = “Abstract” = _

However these two paths must share a certain common prefix. To complicate matters, we also
do some data restructuring. Suppose that a paper has m “Title”s and n “Abstract”s. Then the
corresponding z has to be replicated m X n times. Intuitively, Q4 constructs a cartesian product.

Join Queries Finally we observe that the select-where queries can express traditional join queries
on relational databases represented as trees. We illustrate with the join of the two relations r1,72
of Figure 3.
select {“tup” = {“m" = {m = t1},“n" = {n=>t}, D" = {p=>1t3},“¢" = {qg=t4}}}
where “r1” = “tup” = {“m" = m = t1, “n" = n =19} in db,
“r2’ = “tup” = {“m" =>m' =>t), “p" =>p=13,“¢" = q¢=t4} in db,
m =m'
There are no efficient algorithms, in the sense of Definition 1.1, for computing joins on two dis-

tributed relations r1,79. When r; is on one site and 72 on another, distributed database systems
use semijoins [KSS97], which violate condition 2 of Definition 1.1

20

4.2 Restricted Select-Where Queries

As the previous subsection suggested, some select-where queries are easier to evaluate distributively
than others. Here we describe a class of queries which, as we show later, are as easy to evaluate as
regular queries.

We define these queries inductively on sub-queries. Sub-queries may have one input tree variable
t, and, possibly, one input label variable z, hence we write Q(t) or Q(z,t). The top-level query has
input db, sub-queries may have different inputs.

Definition 4.2 A restricted select-where query with tree variable t and possibly label variable z, in
notation Q(t) or Q(z,t), is one of:

1. t.

-}

2

3. {a = Qi(z,t)} where a is either = or a label constant

4. Qui(z,t) U Qa(z,1)

5. select Q1(t1) where R=t1int

6. select Q1(z1,t1) where R = z1 = t; int, P(z1), where P(x1) is a unary predicate.

Here Q1, Q9 are themselves restricted select-where queries with variables marked accordingly.

The intuition is the following. If a query select E where P in db is a restricted select-where
query, then P may introduce only one tree variable ¢ and, possibly, a label variable x occurring
right before ¢. In addition there are restrictions on how z, ¢ are used in . Namely we may use them
freely in constructors, like {a1 = E1,...,ar = Ex}, but not inside other select-where sub-queries,
except that ¢ may be used in immediate sub-queries like select F’ where P’ in t. The same property
holds recursively, for the sub-queries.

All regular queries are restricted select-where queries. Query Q1 of Subsection 4.1 is a restricted
select-where query, but queries 2, Q3,4 are not. To see a more complex restricted select-where
query, consider the following:

select {z=- (select {y =1}
where * = B =y =1, int)U
(select {z = t2}
where x = C =z =1ty int)}
where x = A=z =1t in db

Select-where queries with several generators, like select £ where C1, ..., C), may be equivalent
to restricted select-where queries, as a consequence of Equation (1). When this is the case, there is
limited variable sharing between the conditions C1,...,C): every tree variable defined by C; must
be used immediately in C;;1, and only the tree and label variables bound by the last generator Cj,
may be used in F.

21

4.3 Distributed Evaluation of Select-Where Queries

In the reminder of this paper we will prove that all join-free select-where queries can be efficiently
evaluated on distributed databases. First we show in Section 5 that a class of queries called
structural recursion can be evaluated efficiently, and that structural recursion queries can express
all restricted select-where queries. Then we show in Section 6 how all join-free select-where queries
can be evaluated efficiently, using a new algorithm.

5 Distributed Evaluation of Structural Recursion without Nesting

UnQL is based on structural recursion, a programming paradigm that allows one to define mutually
recursive functions satisfying certain syntactic restrictions. The restrictions guarantee that the
recursion always terminates, not only on trees but also on graphs (with cycles). We show here
that functions expressed by structural recursion with certain restrictions (without nesting) can be
efficiently evaluated on distributed databases. This has two consequences. First, prior work [BFS00]
shows that all select-where queries can be translated into structural recursion queries. Examining
that translation we notice here that restricted select-where queries are expressed as structural
recursion expressions without nesting. This gives us a method for evaluating restricted select-where
queries efficiently on distributed databases. Second, efficient evaluation of structural recursion is
of independent interest. The same prior work [BFS00] shows that there exists a tight connection
between XSLT [Cla99b] and structural recursion. Namely simple XSLT programs can be expressed
as (unnested) structural recursion functions. This gives us an efficient evaluation method for simple
XSLT programs on distributed databases.

5.1 Structural Recursion

We review here the definition of structural recursion from [BFS00]. We start by illustrating struc-
tural recursion in three examples.

Example 5.1 The following function computes the regular expression x = Dept (recall that Dept
is a unary predicate on edge labels):

v({}) ={}
o({z =t}) = if Dept(x) then t U p(t) else ¢(t)

p(tUt) = (t) Uet)
0

Evaluation proceeds as follows. Start with a tree and check one of three cases. If the tree is empty,
apply the first line (return {}). If the tree is a singleton set then apply the second line: this results
in a recursive call of ¢ on a subtree. Finally, if the tree is not a singleton then decompose it
arbitrarily into two trees ¢ Ut and apply the function recursively on each of them. The function
obviously terminates on every tree. It is less clear at this point what happens if the input argument
is a graph with cycles: we show below that the function still terminates in this case too. The reader
may check that ¢(db) returns the same answer as the regular expression % => Detp on the database
db. Notice that on an edge z that matches Dept we return ¢t U ¢(¢). If we replace the second line
with:

o({x = t}) = if Dept(x) then t else ¢(t)

22

then the function would compute the regular expression not(Dept) * = Dept instead.
The second example illustrates the power of structural recursion in restructuring the input data.

Example 5.2 Consider the function:

e({}) ={}
o({x = t}) = if Dept(z) then {z = { “Name” = t}} else {z = ¢(t)}
p(tUt) =) Ued)
O

A non-department edge = will simply be copied in the answer returned (the {z = ()} expression).
A department edge = will determine an additional edge labeled “Name” to be inserted after z. For
example, given the data:

db ={ “Colledge” = { “Eng.” = { “Dept” = { “CS"},
({Dept” # { “EE”}}},
“Colledge” = { “Arts” = { “Dept” = { “English”}}}}

the function ¢(db) returns:

{ “Colledge” = { “Eng.” = { “Dept” = { “Name” = { “C§"}},
((Dept}7 i { “Na,me}7 i { ([EE’)}}}},
“Colledge” = { “Arts” = { “Dept” = { “Name” = { “English”}}}}}

We assumed here that the predicate Dept(z) is true only when z = “Dept”. This example illustrates
how structural recursion can transform a tree, regardless of its shape or depth. The restructuring
can be quite dramatic: if the entire database db consists only of Dept edges, then ¢(db) returns a
tree with twice as many edges.

Finally, the third example illustrates the use of multiple structural recursion functions.

Example 5.3 Suppose we have a semistructured database of departments (“CSDept”, “EEDept”,
etc.), containing, among other things, publications like “Paper”, “TR” (Technical Report), etc. We
want to name uniformly all publications in the Computer Science Department as “TR”: we want
to keep all other publications unchanged. We assume that we have a predicate Pub(z) which checks
whether the label £ denotes a publication. Then the query constructing the new database can be
expressed as Q(db) = ¢1(db), where @1, @9 are two mutually recursive functions defined by:

e1({}) ={} pa({}) = {}
o1({z = t}) = if CSDept(x) then {z = @2(t) }p2({z = t}) = if Pub(z) then { “TR” = ¢a(t)}

else {z = ¢1(t)} else {z = ¢a(t)}
p1(tUt) = pi(t) Uei(t) 2(tUt) = pa(t) Ugpa(t)

O

Here we define two mutually recursive functions, ¢; and ¢s. The main function, ¢q, is called
on the root of the tree and, as it proceeds downwards, it may eventually call the function ¢s on
some subtree.

The general definition is given below.

23

Definition 5.4 We say that m mutually recursive functions @1,...,om are defined by structural
recursion if, for every i =1,...,m, the function p; is defined as follows:

ei({}) ={}
vil{x =1t}) = Ei(z, p1(t), ..., om(t))
ei(tUt) = p(t)Ue(t)

where each E;, 1 = 1,...,n, is an expression that only uses conditionals on the label x and con-
structors on the values @i(t),. .., @m(t).

Implicit in this definition is the fact that each function ¢; must be defined by three patterns,
corresponding to the empty tree, the singleton tree, and the union of two trees. Moreover, for the
first and third pattern the right hand side are required to be {} and @;(t) U @;(t') respectively;
in the sequel we will sometimes omit them from the function’s definition. This restriction has to
do with determinism, ensuring that ¢;(¢) has the same meaning no matter how we decompose ¢
into the union of two trees. The definition also restricts what recursive calls ¢; may do for the
singleton tree case, {x=>t}: it may call any of the other functions ¢4, ..., @, recursively (including
all of them), but only on the subtree ¢, and the results of the recursive calls must be combined in
an expression using only constructors and conditionals. The constructors are those from Sec. 2.2:
{},{Label= T}, T UT', while the conditionals have the form if p(z) then — else —, with p some
predicate.

This definition is a restriction of that given in [BFS00] in that it does not allow for nested
functions: hence, we will call it structural recursion without nesting. In particular joins are not
expressible with this restricted form.

Notice that the first example is not correct according to our definition since it uses the free
variable ¢ in the second line. We can always rewrite such functions by “copying” ¢ with an auxiliary
function 7. Thus the first example becomes:

v({}) ={} 7{}) ={}
o({x = t}) = if CSDept(z) then v(t) U p(t) else p(t) v({z = t}) = {z = (1)}
p(tUt) = o(t) Up) y(EUt) = () Ur(t)

We will use the copy function in the sequel.

We end this subsection with an important remark relating structural recursion and XSLT [Cla99b],
a language supported by the W3C for expressing XML to XML transformations. XSLT is not declar-
ative, but has an execution model that consists of a recursive traversal of the XML tree. There
is a close connection between XSLT and structural recursion that is described in [BFS00]: namely
a certain core fragment of XSLT corresponds precisely to structural recursion. This is important,
since it implies that the efficient distributed evaluation technique we describe here for structural
recursion also applies to XSLT programs expressed in that core. Of course, since XSLT is Tur-
ing complete, it can express more complex XSLT programs that do not correspond to structural
recursion, and the techniques described here do not apply to such programs.

5.2 Translating Restricted Select-Where Queries into Structural Recursion

Select-where queries can be translated into structural recursion: this is shown in [BFS00]. Our
goal here is to show that restricted select-where queries can be translated into structural recursion
without nesting.

24

First we need to revise the result from [BFS00] showing that regular expression queries can
be translated into structural recursion without nesting. More precisely, every query Q(t) = select
t1 where R=>t; in t is equivalent to Q(t) = ¢1(t), where ¢1,...,@m,7y are m+ 1 mutually recursive
functions, with v being the copy function. The construction is done by building some automaton
for R (it can be nondeterministic), then associating one function ¢; to each state in the automaton.
The copy function <y is needed in addition for terminal states. We refer the reader to [BFS00] for
the general construct, and only illustrate here an example:

Example 5.5 Consider the regular query
Q(db) = select t where x = CSDept = not(Dept) * = Paper =1t in db

Figure 8 shows the automaton for the regular expression. Then Q(db) = 1(db), where @1, ps, ©3,
are four mutually recursive functions corresponding to the three states in the automaton plus the
copy function:

() =1{} e({h) =1{} es({) ={}
v1({{=t}) = if CSDept(l) w2 ({l = t}) = if Paper(l) ps({l=1t}) ={}
then 1 () U p2(t) then 2(t) U ps(t) U (t) p3(tUt') = ps(t) Ups(t')
else p1(t) else if not(Dept(l))
e1(tUt) = ei(t) Upri(t) then (%)
else {}

Pa(tU) = @2(t) Ugpa(t)

The idea is that each function @;(t) corresponds to the regular language obtained by taking state
1 as initial state, less the empty string. Notice that @3 returns the empty set, because there are
no outgoing edges from state 3 (hence only the empty string is accepted, if state 3 becomes initial
state). The role of v is to copy the tree being returned once the final state is reached. O

Before giving the translation of restricted select-where queries into structural recursion we start
by replacing every query of the form:

select Q1(z1,t1) where R= 1 = t1 in t, P(z1)
(case 6 in Definition 4.2) with:
select (select Q1(x1,t1) where z1 =t in t9, P(z1)) where R= 1ty int

Thus, every generator in any where clause will have either the form R=%; € t or the form z1=1%; €1
followed by a predicate P(z1).

Now we can prove by induction on the structure of a restricted select-where query Q(z,t) that
there exist a set of m structural recursive functions @1, ..., @, and an expression E(z,t1,...,tn)
consisting only of conditionals on z and constructors on the tree variables t1,..., %y, such that
Q(z,t) = E(z,01(t),...,0m(t)). We consider each case in Definition 4.2.

1. When Q(z,t) = t, then take Q(z,t) = 7y(t), where y is the copy function.

2. When Q(z,t) = {} then take Q(z,t) = {}.

25

3. When @ = {a = Qi(z,t)}, apply the translation inductively on Qi(z,t) to obtain functions
©1,---5pm and expression E; s.t. Q1(z,t) = E1(x,01(t),--.,0om(t)), then define Q(z,t) =
{0, = El(wa (pl(t)a LR @m(t))}

4. When @Q = Q1 UQ)9, apply the construction inductively to @1, 2, assume that they use differ-
ently named recursive functions ¢1,..., @, and 1, ..., %, respectively (otherwise rename),

ﬁna'lly define Q('T: t) = E1($7 <101(75)7 T (Pm(t)) U EQ("I": (Al (t)a ce awn(t))

5. When Q(t) = select Q1(t1) where R =>1; in ¢t then we apply the construction above for the
regular expression R but replace the copy function with the function computing @}1. More
precisely, let ¢1,...,©m,y be the functions that compute the regular expression R (i.e. 1(t)
is equivalent to select t where R = t; in t) and let Q1(t1) = E(¢1(%),-..,¥n(t)) be the result
of the inductive construction for Q. Let ¢, ..., ¢l be the result of substituting all recursive

calls to y(t) with E(41(t),...,%¥n(t)). Then Q(t) = ¢ (t)-

6. Finally, when Q(t) = select Q1(x1,t1) where 17 = t; in t, P(z1), then, after applying the
inductive step to @)1, add a new function ¢ to the mutually recursive functions defined to be:

o({}) = {}
(p({.Tl = tl}) = if P(il)l) then Ql(w].)tl) else {}
p(tUt) = ot)Up(t)

Example 5.6 Consider the following restricted select-where query:

select {z = (select ¢’ where “B" = t"int) Ut}
where £ =t in db

This can be expressed as ¢1(db), where:

pr({z =t}) ={z = @2(t) Un(t)}
wa({z = t'}) = if z = “B" then y(t') else {}

and <y is the copy function (we omitted the clauses ¢;({}) = {} and @;(t Ut') = ¢;(t) U pi(t')). O

5.3 Operations on Graphs

It is shown in [BFS00] that structural recursion is equivalent to some algebraic operations over the
input tree (or input graph) that do not use recursion. This offers an alternative way to evaluate
structural recursion, called bulk evaluation, or bulk semantics, that treats the graph as a whole.
In particular bulk evaluation applies uniformly to trees and graphs with cycles, without enter-
ing infinite loops. The standard, recursive evaluation is called top-down evaluation, or top-down
semantics®. The two evaluations are shown to return the same answer.

The distributed evaluation algorithm for structural recursion is based on the bulk semantics,
hence we need to review it here. In this section we start by reviewing the operators on graphs that
are needed to express bulk evaluation.

5Top-down semantics can also be defined on cyclic data.

26

X1 X2 X3

a b a c
€ b a b
Vs
Y1l Y2 Y1

Figure 11: A database with inputs X = {&z1,&z9, &z3} and outputs Y = {&y1, &ya}-

Graphs with Multiple Inputs and Outputs We start by extending our data model to allow
certain nodes to be designated input nodes and others output nodes. The names we give to
these nodes are called markers. Let Marker be an infinite set of markers that we designate
&z, &y, &z, There is a distinguish marker & € Marker. Let X,) be two finite sets of markers.

Definition 5.7 A labeled graph with input markers X and output markers Y is g = (V,E,I,0)
where V' is a set of nodes, E CV x (Label U{e}) x V are the edges, I C X x V are the inputs, and
O CV x Y are the outputs, such that:

e [is an one-to-one mapping from X to V. For &z € X we denote v = I(&x) the unique node
v €V s.t. (&z,v) €I and call v an input node.

e O is a many-to-many mapping from V to Y. Whenever (v, &y) € O we call v an output node.

e No edges are leaving from output nodes.

We denote with DB§ the set of labeled graphs with input markers X and output markers).
When X = {&}, then we abbreviate DB with DBy. The set DBy is further abbreviated with
DB.

Figure 11 contains an example of a graph with inputs &z1, &z, &3 and outputs &yi, &yo,
which is written as® (&z1 := {a = (&y1 U{b= &y })}; &g := {b= {&y1 U{b= &ya}},a}; &3 :=
{c={a,b=&y1}}).

Graphs with input and output markers generalize the rooted labeled graphs defined in Sec. 2.
A rooted graph should be thought as having a single input marker, X = {&}, and no output
markers,) = (). Hence the notation DB used there is consistent with that used here. Notice that
if g € DBY and Y C)’ then g € DB%,. By contrast, when X # X’ then DB N DB = (.
Equality is defined in terms of bisimulation, as before. The definition of a bisimulation (Def. 2.1)
extends to two graphs g,¢’' € DB§ by replacing condition (1), which required that the two roots
be in the bisimulation, with:

(1) For every &z € X, (I(&x),I'(&x)) € R.

It follows that a graph g is equal to it’s accessible part, defined as the collection of edges and
nodes accessible from some input node. When X = () then there are no input nodes, and any graph
in DB%, is equivalent to (0,0, 0,0): this is the empty graph and we denote it with ().

Graph Constructors The graph operators we consider consists of nine graph constructors plus
structural recursion. We define the graph constructors here. They are:

5To be precise, this graph is bisimilar to that in Figure 11.

27

{} empty tree
{l:d} singleton tree
dy Udy union of two trees

&z :=d label the root node with some input marker
&y data graph with one output marker

O empty data graph

di ®dy disjoint union

d1Qd, append of two data graphs
cycle (d) data graph with cycles

We explain the constructors here, their formal definition is in Fig. 12. Each operator is “typed”,
in the sense that it expects certain input/output markers and returns certain input/output markers.
Recall our convention by which a tree has the “default” input marker &.

The first three are the tree operators: {}, {l : d}, d; U da. All three constructors expect
d,dy,ds € DBy and return results in DBy.

The next four constructors allow us to create and add input and output markers: &z := d
takes d € DBy and relabels the root with the input marker &z, hence the result is in DB;&$}.
The constructor &y returns a tree with a single node labeled with the output marker &y and
default input marker &: hence &y € DBy, where &y € Y. This is like {}, but now we have
an output marker on the unique node. The empty graph is denoted by (): it has no nodes, no
edges, and is the unique graph in DB%,. Notice the distinction between the empty graph () and
the empty tree {} which contains a single node (the root). The disjoint union d; @ dy requires d;
and ds to have disjoint sets of input markers A7, X5, and the same set of output markers); then
di ®ds € DB;lUXz.

Finally, the last two constructors deal with the vertical structure of the data graphs. The append
operator d;@d, is defined when d; € DB§ and dg € DB%, and results in a graph in DB}ZV. Append
is essentially performed by gluing each output node in d; with the input node in ds labeled with the
same marker: formally, however, this is achieved by adding ¢ edges, see Fig. 12. It corresponds to
list concatenation, if linear trees are identified with lists: when d; = {a;1 : {a2 : ... {an : &z} ...}}
and dy = (&z := {b1 : {b2:...}}), then d1@Qdy = {a1 : {aa : ... {ap : {b1: {b2:...}}}...}}. For
another illustration, consider d; = {a : &y1, b, ¢ : &ys} and dy = (&yl = {d}, &y2 = {e, f}).
Then d;@dy is value equivalent” to {a : {d}, b, ¢ : {e, f}}. The effect is that of simultaneously
substituting each output marker in d; with the value of the corresponding input marker in dy. The
last operator allows us to introduce cycles: when d € DB%Uy, then cycle (d) € DBSE.

We will use the following syntactic sugar. We abbreviate (&z1 := d1) @ ... ® (&zm = dpy)
with (&z1 = di;...; &z = dp). For X = {&z1,...,&z,}, we let {} be an abbreviation
for “the empty tree” in DBJ;E, defined as (&z1 := {};...; &z := {}). For d,d' € DB§, d =
(&z1 = dy;...; &z, = dp), d = (&1 := dY;. .. &z = d],) we define d U d' to be (&z1 :=
diudy;.. &z, =d, Ud).

As an example of how the graph constructors can be used we show how to express formally
the distribution of a database on several sites. Consider a rooted database db which is stored at m
different sites. In Subsection 3.2 we denoted with db,, a = 1,m the m fragments. Recall that we
have identified input and output nodes in each db,, @ =1, m. Then db can be represented as:

db = &z1Qcycley (dby @ ... ® dby,)
"When we apply the definition in Fig. 12, d1@d> results in {a : {e : {d}}, b, c: {e: {e, f}}}.

28

{1:d} di1 Udy
&%, ... &X, &X. &X:,
d, d
8_Ly 0 &Yy ... &Y, &y;... &y,
&y 9] di @ dy
&X; ... &X,
d, &
X, &X, ... &X,
€ & €
&y, ... &y, R
! ! &X; &X, ... &X,
€l €
v v d
&Y, &y, & & &
d, &xl‘ &X, .. &xm
&z, ... &z, &x, &% ... &x,
d1Qd, cycle (d)

Figure 12: Definition of the constructors.

29

& &yl %
¢ &y2 &yzlb

sitesl sites2 dbl db2

Figure 13: Representation of a distributed database.

Here X is a set of markers X = {&z1,&x2,...,&z,} whose size is one plus the number of cross
links. For example the database db in Figure 13 is stored on two sites « = 1,2. We start by
cutting the cross links, and inserting markers in place: &x1, &x9, &1, &yo, where &z is the input
to the old root. Call dbq, db2 the resulting two fragments: here db; € DBX and dby € DBXz, with

Xl dif {&.’L‘l,&yl,&yg} XQ : {&.’L‘Q} and X = def Xl U X2 = {&.Tl,&l'Q,&yl,&yg} &ZBl denotes the

root of db. Then db € DB is represented as:
db = &z1Q(cycley (dby @ dby))

where db; @ dby is the concatenation of db; and dbs. The cycley ... construct redraws the cross
links, while &z1@(...) selects only the input labeled &z as the unique input of the database.

Structural Recursion in Algebraic Notation The first step towards bulk evaluation is to
replace m mutually recursive functions with a single recursive function with m input markers.

Formally, let ¢1, ..., ¢, be m mutually recursive functions defined by?®:

pi({z=>1}) = Euz,ei(t),.-.,0m(t))

m({z =1t}) = Em(z,01(t),.-.,om(t))
Here Fy(z,t1,..-ytm)s---y Em(z,t1,...,ty) are expressions that use only conditionals on z and
constructors on the variables %1,...,tmy.

Let S = {&s1,...,&s,} be a set of m markers and define:
E(zx) = (&s1:= (F1(z,&s1,...,&8m);...;&8m = Ep(z,&s1,...,&sm)))

F is a function Label — DBg that, when given a label z, returns a graph with input markers S
and output markers S. Define the following recursive function ¢:

e({h) = {}

({3c =1}) = E(2)Qp(1) 3)
) = o) Uet)

8We omit the definitions ;({}) = {} and gpz(t Ut') = pi(t) Upi(t') for i =1, m.

30

When evaluated recursively on an input tree ¢ € DB, ¢(t) returns a graph in DBg. Recall our
convention that we use in the first and third line: {} actually denotes (&s1 :={};...; &sm = {}),
while ¢t Ut' is done component wise. The following identity holds for every tree t:

(&s1:= p1(t);. .3 &sm = om(t)) = @(t)

This can be checked easily by induction on ¢. In particular, if we only want to compute ¢ (¢), we
can obtain it from ¢ by:

pi1(t) = &s1@p(2)

Hence we will assume in the rest of this section that a structural recursion defines a single
recursive function, as in Eq.(3). Moreover, we shall denote such a function as:

o(t) = recs(E)(t) (4)

To illustrate, consider the two recursive functions in Example 5.3. Following the construction
above we define:

E(z) def (&sy:=if I = “CSDept” then {l = &s2} else {l = &s1};
&s9 = if Pub(l) then { “TR” = & s} else {l = &s2})

Then the query Q(db) in Example 5.3 (the function ¢;) can be expressed as:
&s1Qrecigs; gs,) (£)(dD)

Bulk Evaluation of Structural Recursion Given an input tree ¢, the bulk evaluation of the
function ¢(t) = recs(t) proceeds as follows. First, each node v in the input tree ¢ will be replaced
with m copies, u1,...,u, (recall that m is the number of markers in §). Next the function E(z)
is applied to each edge u % v in the input tree ¢, resulting in a graph E(a), with m input nodes
and m output nodes: then € edges are added from w1, ...,u, to the input nodes of F(a), and
¢ edges are added from the output nodes of E(a) to v1,...,v,. Finally, if r was the root in ¢,
then 71,...,7, will be designated as the input nodes and labeled with the markers &s1, ..., &sp,
respectively. For a more detailed discussion we refer the reader to [BFS00]. Notice that the bulk
semantics is oblivious to whether the graph has cycles or not, hence it gives meaning to structural
recursion on cyclic data.

For an illustration, consider the query @ in Example 5.3, given by two mutually recursive
functions @1, @2. It can be written as:

Q(db) = &s1Qrec(E)(db)
where:

E(x) o (&sy := if CSDept(z) then {z = &sy} else {z = &s1};
& sy := if Pub(z) then { “TR” = & sy} else {z = &s3})

Consider now the database db in Figure 14 (a), the bulk evaluation of recs(E) is shown in (b).
The simplified form (under bisimulation) of &s1@ recs(E)(db) is shown in (c).

31

Back

EEDept BEDept

Figure 14: Tllustration for Example 5.5. A Database (a), the result of recs(F)(db) (b), and the
simplified answer of Q(db) = &s1@Qrec(E)(db) (c).

32

Structural Recursion on Graphs with Input and Output Markers Consider again the
structural recursion definition in (4). We have defined its meaning for the case when t € DB. One
can extend the definition in a natural way to the case when ¢t € DBS\; . For that we need a marker
constructor: if &u and &s are markers, then &u - &s is a fresh new marker. One can think of “.”
as a Skolem function, taking two input oids and returning a fresh output oid. Further, we assume
that & is both a left and right identity: & - &s = &s - & = &s. Given two sets of markers U, S, we
defined - S = {&u - &s | &u e U, &s € S}.

Consider now some ¢ € DB§, where X = {&z1,..., &z}, Y = {&y1,-..,&yr}. We define
the result of recs(E)(t) to be a graph in DB constructed as follows. First apply the bulk
construction as in the case of a graph in D B: for each node u in ¢t we have m copies, u1, - . . , Uy, in the
output graph, and there are additional nodes and edges obtained by applying E independently on
each edge. Then, for each input node u in ¢ that is labeled with some input marker &z;,7 =1,...,n,
label the corresponding nodes w71, . . . , U, with the input markers &x;-&s1, . . . , &x;-&s,, respectively.
Similarly, for each output node u in ¢ that labeled with some output marker &y;, i = 1,..., k, label
the corresponding nodes u1, - .., u, with the output markers &y; - &s1, ..., &y; - &s,, respectively.

Thus structural recursion treats each input separately from the others. This can be captured
precisely by the equation:

recs(E)t@®t) = recs(E)(t) @ recs(E)(t) (5)

Interestingly, the recursive semantics can also be easily adapted to handle output markers in
the same way as the bulk semantics. Consider some graph ¢ with output markers &y, ..., &y,
and assume m mutually recursive functions ¢ (t), ..., ¢m(t) to be defined by structural recursion,
as in Def. 5.4. To deal with the output markers it suffices to extend their definitions to:

i(&yj) = &yj- &s;
ei({}) ={}
({
(

S

vi({x =1t}) = Ei(z, p1(t), .-, om(1))
ei(tUT) = p(t)Uep(t)

5.4 A Calculus for Graphs

The calculus C we consider for computing graphs consists of all constructors in Sec. 5.3, the struc-
tural recursion operator recs(FE)(t), and the conditional if P(z) then ¢ else t', where P(z) is a
unary predicate on z.

The following is a consequence of our discussion in Sec. 5.2.

Proposition 5.8 Every restricted select-where query Q(db) can be expressed in C as PQrecs(E)(db),
for some set of markers S, where P is a constant expression.

As a trivial illustration, let us continue Example 5.6. The restricted select-where query @) can
be expressed as Q(db) = &s1@Qrecs(E)(db), where:

BE(z) = (&s1 = {z = &sy U &ss};
&sy :=if . = “B" then &s3 else {};
&sy:={z = &s3})

33

5.5 Decomposed Queries and Distributed Evaluation

The idea behind efficient evaluation of queries in C on distributed databases is to transform them
into decomposed queries.

Definition 5.9 Let @ be a query in C. We say that QQ is decomposed iff:
1. For all t, ¥, Q(tQt') = Q(¢)QQ(¥), and
2. For allt,t', Qit®t) = (Q(t) ® Q(t')).

If Q(t) = recs(E)(t), then Q is decomposed: condition 1 follows from [BFS00], while condition 2
is just Equation (5). Some queries in C fail to be decomposed because the equations in Def. 5.9 do
not typecheck (they have the wrong markers). For example consider the query Q(t) = {“A” = ¢}
that adds an “A”-edge on top of the database t. Here ¢ may have output markers, but its input
marker must be & (by definition of the operator {— = —}). Equation 2 fails simply because both
Q(t) and Q(t') have the same input marker, &, hence the operation @ is not technically valid.
Equation (1) also fails. First, let’s establish the types. For t@t' to make sense we must have
t € DBy and t' € DB%; for Q(t') to make sense we must have) = {&}. Assume & occurs exactly
once as an output marker in . Then t@¢' is ¢ with that marker substituted with #': Q(t@t') adds a
single “A"” edge to the top of t@Qt', while Q(¢)@QQ(¢') has two “A” edges, one at the top, the other
above t' root. The two are not equal.

We first show the connection between decomposed queries and efficient computation on dis-
tributed databases.

Proposition 5.10 If Q) is decomposed then:
Q(cycle (1)) = cycle (Q(2))

Proof: We only give an informal argument. Since cycle ¢ is bisimilar to the infinite unfolding
1QtQ ..., we have Q(cycle t) = Q(tQtQ...) = Q(t)QQ(+)Q... = cycle Q(1). O

This suggests the following evaluation method. Recall that a distributed database can be
expressed as:

db = &z1Qcycley (dby & ... & dby)

where dby, ..., db,, are the fragments on the m sites. Then, for a decomposed query (), we have:

Q(db) = Q(&z1)Qcycley (Q(db1) @ ... ® Q(dbnm))

We will describe a distributed algorithm based on this equation.

Before that we must address the problem that not every query in C is decomposed. We show
however that each query in C can be rewritten into a decomposed query followed by some residual
computation consisting only of constructors. We give this proposition first, then show how such
queries can be efficiently evaluated.

Proposition 5.11 For every query Q in C there ezists a decomposed query Q%° and constant
expression P such that Q(db) = PQQ°(db) for every graph db € DB.

34

We call the process of finding P, Q%¢ for a given) “query decomposition”. Two important
classes of queries we have considered earlier are already in the form given by the proposition and do
not need to be further decomposed. The first class are that of restricted select-where queries: recall
from Prop. 5.8 that every restricted select-where query can be rewritten as PQ recg(E)(db), which
is in the form given in the proposition. The second class are those given by structural recursion, like
Q(db) = p1(db), where ¢1(t),...,pm(t) are m mutually recursive functions defined by structural
recursion. This includes queries expressed in a certain core fragment of XSLT (see the discussion
at the end of Sec. 5.1). We have seen that) can be rewritten as Q(db) = &z1@rec(E)(db): this
is also in the form given by the proposition, and does not need to be further decomposed.

Proof: (of Proposition 5.11) We prove by induction on the structure of @ in C. Queries in C have
a relatively simple structure, since structural recursions cannot be nested. That is, in recg(F)(t),
the expression E has only constructors and conditionals, and no structural recursion; hence, we
do not need to extend the induction to £. This implies that we do not need to treat conditionals
(if P(z) then Q else Q'), since they can only occur inside some recs(E) expression. Another
simplifying assumption is in the treatement of Q1(db)@QQ2(db). here we use the fact that db has no
output markers (since db € DB). As a consequence ()1(db) cannot use db in any interesting way. For
example, the expression {a=(dbU{b=db})}QQ2(db) is equal to {a=(dbU{b=>db})} since there is no
output marker to append with QQ2(db). For another example, consider {a=-(dbU{b=-&y})}QQ2(db):
this expression is equal to {a = (dbU{b= (&y@Q2(db))})} and, again, db in the first query does not
contribute to the append operation. Hence we will restrict our induction to the case when @1 (db),
in Q1(db)@Q4(db), is a constant query (i.e. does not depend on db). Finally, we pre-process the
entire query () such as to rename the local markers S in every recs construct to be disjoint from
all other markers used in other rec constructs. With these observations in mind, we proceed to the
proof by induction.

1. Q(db) = db. Then take P def (& = &) and Q%°(t) e We obviously have Q(db) =

PaQ®c(db).
2. Q(db) = {}. Then take P % {} and Qdec & ().

3. Q(db) = {a=Q1(db)}. Here a can only be a label constant, not a label variable. First apply

induction hypothesis to @ to decompose it into Q,(db) = P,@Q%°(db). Then P def {a=P1}

and Qdec déf chiec.

4. Q(db) = Q1(db)UQ2(db). First apply induction hypothesis to decompose Q1 (db) = P,QQ%°(db)
and Q(db) = Py@Q%ec(db). The idea is to define P % P, U P, and Qde¢(db) % (Qie¢(db) &
Qg%e¢(db)). But we must take some precautions to make sure that (Q°(db) ® Q4¢¢(db)) is
well defined, i.e. that the two queries have distinct input markers. A careful analysis of the
induction process (using the fact that all rec constructs have disjoint sets of markers) shows
that Q%¢(db) can either (al) only have private input markers, not shared with Q4¢(db), or
(bl) be of the form ((Q%)'(db) @ db). Similarly, Q4°‘(db) can either (a2) have only private

input markers, or (b2) be of the form ((Q4%¢)'(db) @ db). For the first three of the four com-

bined cases, it is safe to define Q%°(db) def (Q%ec(db) @ Q3e¢(db)). For the last case we define

Qee(db) % ((Qdeey (db) @ (Qdeey (db) @ db).

5. Q(db) = Q1(db)@QQ2(db). Based on our remark, it suffices to consider only the case when @

is a constant expression. We apply induction hypothesis first to Qa, Q2(db) = P,@QQ%e¢(db),

then define P % Q,@P,, Qdec(db) % Qdec(dp).

35

6. Q(db) = recs(E)(Q1(db)), where E is a constant query. We apply induction hypothesis
and decompose Q1(db) into P @Q%*°(db). Hence recs(E)(Q1(db)) = recs(PLQQ%*¢(db)) =

recs(P1)Q recs(Q%¢(db)), and we define P def recs(E)(P;) and Q4°(db) = recs(E)(Q%¢°(db)).

def

7. Q(db) = (&z = Q1(db)). Decompose Q:(db) = P,QQ%<(db) first, then P = (&z := Py),

def

QUee(ds) < Qec(db).

8. Q(db) = (Q1(db) ® Q2(db)). Decompose the sub-queries first: Q;(db) = P,@Q%(db), i = 1,2,

then define P & (Pr® P), Q o (Qdec @ Q).

def

9. Q(db) = (). Take P % (), @dec &I

= ()
10. Q(db) = &y (an output marker). Take P def &, Qdec def &y.
O

We can show how to evaluate any query in C efficiently, in the sense of Definition 1.1, on a
distributed database. The algorithm is given in Fig. 15. We start by decomposing the query into
P@Q(db), with P constant and @ decomposed, following the procedure in Proposition 5.11, then
we apply the algorithm in Fig. 15. We describe the algorithm next.

The distributed database can be expressed as:

db = &z1Qcycley (db @ ... ® dby,)

where dby,...,db,, are the fragments on the m sites. Steps 1 and 2 of the algorithms compute
Q(db), according to the expression:

Q(db) = Q(&=z1)Qcycley (Q(db1) @ ... ® Q(dbn,))

Each server o computes F, := Q(dby), for « = 1, m. We cannot send all fragments F,, to the
client, because their combined size exceeds that of the answer. Steps 3 to 7 trim the fragments Fy,
before sending them to the client. In step 3 each server constructs an accessibility graph for Fi,.
This graph is obtained by taking the input nodes and output nodes in F,, and connecting with an
edge every pair of nodes (u,v) whenever there exists a path in F, from the input node u to the
output node v. The accessibility graphs are sent to the client (Step 4): notice that their combined
size is no more than O(n?), where n is the total number of cross edges. The client connects the
input and output nodes of the different fragments, and forms a global accessibility graph. Next
it computes the accessible nodes in the global accessibility graph (Step 4). To see how these are
computed, consider the query’s answer, PQQ(db), which becomes:

P@Q(&z1)Qcycley (F1 @ ... Fy) (6)

Recall that the global accessibility graph is a summary of (Fy &...®F),), showing which input nodes

are connected to which output nodes. The client computes P’ 3 PQQ(&z1) first and identifies
the output markers reachable in P’ from its root (P’ has a single input node labeled &): let these
markers be &z1,...,&zp,. Initially, all input nodes in the global accessibility graph labeled with
these markers are marked “accessible”. Then the client executes a standard accessibility algorithm
to find all accessible nodes, and sends them back to the servers (Step 5). In Step 6 each server «
knows the accessible input nodes for F,, and computes the accessible local nodes in F,. Finally
these are sent back to the client which computes:

P'Qcycley (FI @ ... @ F°)

36

Algorithm : Distributed- Evaluation-C
Input : A query of the form PQQ(db)
with P constant and () decomposed,
A semistructured database db distributed on m sites:
db = &x1Qcycley (dby & ... ® dby,)
Output : Evaluates PQQ(db)
Method :
Step 1 Send @ to all servers a, o =1, m.
Step 2 At every site a compute Fy, := Q(dby)
Step 3 At every site a construct the accessibility graph from F,, (see text)
Step 4 Every site a sends it accessibility graph to the client.
The client assembles them into the global accessibility graph (see text).
then computes all nodes accessible from P’s root
Step 5 Broadcast the accessible nodes to every server site a, a« = 1, m.
Step 6 Every site o computes F2°, the accessible part of Fj,.
Step 7 Every site o sends F5° to the client
which computes the final result PQQ(&z1)Qcycley (F“ @ ... ® Fic).

Figure 15: Distributed evaluation.

All nodes in F{<,. .., F contribute to the query’s answer, because they are all accessible from
the answer’s root: hence the total size of data exchanged in Step 7 is no larger than the query’s
answer. Moreover this expression is equivalent to Eq.(6), because only inaccessible nodes and edges
have been eliminated from the fragments Fi,..., Fj,: hence the algorithm computes the correct
answer.

In summary we have shown:

Theorem 5.12 Every query Q in C can be evaluated efficiently on a distributed database db. More
precisely, it can be evaluated such that:

1. The total number of communication steps is four (independent on the query or database).

2. The total amount of data exchanged during the communications is O(n?) + O(r), where n is
the number of cross links and r the size of the query’s result.

Corollary 5.13 Ewvery restricted select-where query @ can be evaluated efficiently on a distributed
database db.

6 Distributed Evaluation of Select-Where Queries

We now turn to arbitrary select-where queries. Algorithm Distributed- Evaluation-C applies only to
restricted select-where queries, and we have seen in Subsection 4.1 some examples of queries that

37

seem more difficult to evaluate distributively than restricted select-where queries (e.g. @2, @3, Q4).
We will describe here a more complex algorithm for efficient evaluation of select-where queries
on distributed databases. The new algorithm uses two new techniques: partial evaluation and
alternating graph accessibility. To evaluate a select-where query @), we start by evaluating a different
(but related) query @,: the new query is a restricted select-where query, hence we know how to

compute it efficiently. We call partial result the result of this new query, P def Qr(db), and partial
evaluation the process of computing the query in two steps (the partial result first, then the final
result). After the first step, the partial result is still distributed. It contains enough information for
us to reconstruct the final result, but, like in the previous distributed algorithms, it may be much
larger than the real result, hence sending all its fragments to the client would violate condition 2 of
Definition 1.1. The problem is now that a simple graph accessibility computation as before no longer
suffices to identify the useful parts of P’s fragments. The crucial observation here is that these
useful parts can be computed by solving an alternating graph accessibility problem [Imm87, GHR95]
(AGAP), which generalizes the graph accessibility problem (GAP).

We illustrate here the ideas behind both techniques with two examples. Consider the following
select-where query:

Q(db) = select {“A" = {“B" = y=11,“C" =z = t2}}
where x = “B" = z =t in db
* = “C"=y=1yindb

It creates m1 X ny edges labeled “A”, where nq,ns are the number of matchings of x= “B" =z =t
and * = “C" = y = t5 respectively. To simplify our discussion, assume that in all possible bindings
the sizes of t; and ty are O(1); then the query answer has a size O(1 + ning). Notice that Q
“shuffles” x,,t1,tq, by grouping y with #; and z with ¢3. @ is not a restricted select-where query
because it does not use variables immediately after binding them. The variables (z,¢;) are bound
first, but they cannot be used in the select clause until (y,¢2) are also bound. The idea in partial
evaluation is to replace () with a restricted select-where query @, :

Qr(db) = {“A"= (select {“B" = {z = t1}} where x = “B" = z = t; in db) U
(select {“C" = {y = t2}} where x = “C" = y = t9 in db)}

Here we kept the same generators as in (), but used each variable immediately after its binding:
Q. is a restricted select-where query, hence @, (db) can be computed efficiently on the distributed
database db. We call its answer, P def Q(db), a partial result. P, of course, is different from the
desired answer, Q(db), because it contains a single edge “A” instead of ny X ng, and the z’s and y’s
are grouped differently. Still, the client can recover Q(db) from P by computing another query:

Q(db) = Qs(P) = select {“A" = {“B" = {y = t1},“C" = {z = t2}}}
where “A" = {“B" = z=1,,“C" =y =t} in P

Consider now the size of P. Since there are 1 bindings for ¢; and ns bindings for %9, the size of P is
O(1+n1 +ngy). The efficiency condition (Def. 1.1) allows us to send only O(1+njng) data over the
network (the size of the answer, Q(db)). Hence, we are safe to send P with two exceptions, when
n1 = 0 or nyg = 0 (but not both), because in this case O(1 + ny + ng) is larger than O(1 + ning).
In these cases we should withhold sending significant portions of P. For example if ny = 0 and
ng > 0, then the entire subtree under “C” in P is useless and should not be sent. This is the
purpose of the alternating graph accessibility. Consider the action taken by a server holding two

38

edges u QIR w, for some label . Should it send y and w to the server 7 One global condition
to check is that there exists a path from the root to the node u: this ensures that (y, w) are indeed
valid bindings for * = “C” = y = t9: this is similar to the previous two distributed algorithms.
The other condition is to check if there exists at least one binding for (z,¢1). This is a particular
case of AGAP.

To illustrate a more complex case of AGAP consider:

Q(db) = select {“A" = {“B" = t1, “C" = t9, “D" = t3}}
where x = “A" =t in db
*x=> “B"=t1int
*x= “C"=>tyint
*x = “D"=t3int

which we replace with the following restricted select-where query:

Qr(db) = select {“A"= (select {“B" = t1} where x = “B" = ¢, int) U
(select {“C" = ta} where x = “C" =ty int) U
(select {“D" = t3} where x = “D" = t3int)}

where x = “A” = tin db

Suppose one of the servers storing a distributed database holds a node ¢; with an incoming “B”
edge. The following conditions need to be checked before it can be sent to the client. First there
has to exists a path back to the root that traverses some “A” edge. Next, from that “A” edge there
has to exists a path forward to a valid binding of #3. Finally, from that “A” edge there has to exists
a path forward to a valid binding of ¢3. Hence, instead of checking a single path (to the root), we
now have to check three paths. Formalized properly, this is precisely the AGAP problem.

To summarize, given a query) we first construct a new query @Q,(db) that ignores @’s select
clauses and constructs a graph containing all variable bindings, in the order with which they are
introduced in the where clause. Next, before centralizing the partial result @,(db) we have to solve
an alternating graph accessibility problem that tells us which fragments are indeed useful to the
final answer. We describe the details of these two steps in the remainder of this section.

6.1 Translating Select-Where Queries into Restricted Select-Where Queries

The idea behind the restricted select-where query @, associated to some query @ is simple. @,
essentially collects all bindings of all variables occurring in), grouped in the order in which

they were bound, which makes (), a restricted select-where query; hence (), can be evaluated

distributively to obtain the partial result P def Q. (db). In a second step, we restructure P such as

to obtain Q(db). This restructuring doesn’t need to be a restricted select-where query, since it is
computed locally, at the client. It turns out that the restructuring is another select-where query
Qs, i.e. Q(db) = Qs(P) = Qs(Qr(db)). Both), and Q) are derived from). We describe this step

next.

Preparation Given a select-where query, we will first apply the following simple transformation
to get an equivalent one:

e Reduce generators to a canonical form. Namely we replace every generator of the form
{u1 = P1,...,up = Py} in t with k generators: u; = P; int,...,ux = Py in t. Similarly, we
replace u = v = P int with u = t' int,v = P int', where t’ is a fresh variable.

39

Thus, from now on, we may assume that all generators have the form z =t int or R=t' in ¢, with
z a label variable, R a regular path expression, and t,t tree variables.

Pattern tree Given a select-where query), we define a pattern tree, PT, that captures all
dependencies between the variables used in (). PT is obtained from the where clause of () and the
where clauses of all sub-queries. That is, PT ignores the select clauses. Nodes in PT are labeled
with node variables in), and edges are labeled with regular path expressions or label variables.
Each sub-query, @', contributes to a certain fragment of PT that is constructed independently,
then all fragments are connected by c-edges. We describe now how to construct the fragment
corresponding to some sub-query Q':

Q' = select F
where a1 = 1 in $1,...,a, = 1, In 5,
where a; is either a label variable or a regular expression. Denote V' = {t1,...,tn,81,...,5,} the
set of all tree variables occurring in the where clause of Q' (note that ¢1,...,%, are distinct, but
$1,...,S, may contain repeated variables, and may contain some of the t;’s). The fragment of

PT corresponding to @' has one node ng;, labeled ¢, for every variable ¢ € V, and one edge
nQ'.s; & ngr ¢, for each generator (a; = ¢; in s;) in Q', 2 =1,...,n. Notice that this fragment is a
forest, with roots corresponding precisely to the free variables s; in Q' (i.e. those that do not occur
in {t1,...,t,}). We call a sub-query Q" a block, and also call its corresponding fragment in PT a
block. Finally, we add ¢ edges between nodes in different blocks, as follows. Consider again the
sub-query ' above. Its select clause has a subexpression F that may contain some other sub-query
Q". If that sub-query uses one of the variables ¢; bound by @', then we add an e-edge from ng 4,
to ngn 4;. Finally, the root of PT is the node ng gp.

Notice that if we delete all the € edges, PT breaks into a number of connected components: we
call each such component a sub-block. Each block in PT, corresponding to some query @', consists
of a number of sub-blocks equal to the number of free variables in the where clause of Q.

Example 6.1 Consider the query:

Q(db) = select select {A={B=1,C=1t,D=t}}
where Ry = t1int
Ry=tyint
where R =t in db

where R, R1, Ry are regular path expressions. It’s associated pattern tree is shown in Figure 16.
There are three sub-blocks: the topmost corresponds to the outermost select block, the lower two
correspond to the inner select. O

Example 6.2 For a more complex example, consider the query:

Q = select { “A” = (' select { “AA" = (select {“AAA" =t}
where Ri1 = t11 int1, Rio = t19 inty
Rg1 = to1 in tg, Reg = taa int9)}
where Ry = t1 int, Ry = t9 in t),
“B" = (select { “BB" = (select {“BBB" =t}

40

Pyl

R1 R2

Figure 16: Pattern Tree for Example 6.1

where R3; = t31 in t3, R3g = 39 In i3
Ry1 = ta1 in tg, Rag = taa int4)}
where Rg = t3int,Ry =tsint)}
where R =t in db

The pattern tree is shown in Figure 17. There are five select blocks, three consisting of one
sub-block, two of two sub-blocks. Hence the pattern tree has seven sub-blocks. O

Partial Result We construct the partial result P in such a way as to describe all bindings to
the variables mentioned in the pattern tree. We describe its structure next. The partial result
will have match nodes alternating with match-set nodes. Let t1,...,t, be the tree variables on
some path starting at the root in the pattern tree (hence ¢; = db), and ending at some node
labeled t,. The idea is that t1,...,t, will be bound by @ in that order. Let ¢ be the tree variable
of a successor of t,: the edge connecting %, with ¢ may be labeled with a label variable, say =,
or with a regular expression R: i.e. there is a pattern z = ¢ in t,, or R=1% in ¢, in . So
t1,...,tn,t uniquely determines a path in PT, and z labels the last edge of that path. Consider
now a binding for ¢1,...,t, in db: intuitively, we are now about to bind ¢. For the given binding we
introduce one match-set node s in P, and say that it “corresponds” to the node ¢ in the pattern
tree. Assume that there are k distinct matchings of ¢ (and z) extending the given matchings
for t1,...,t,- Then s will have exactly k successors, corresponding precisely to the k& bindings:
s &f {“Match” = my,..., “Match” = my}, where “Match” is just a label constant, and each
of mi,...,my is a matching node (again, we say that they “correspond” to the node ¢ in the
pattern tree). Assume further that ¢ has [successors in the pattern tree, i.e. there are patterns
y1 =1 int,...,y, =1 in t; in consequence ¢ has [successors in the pattern tree. Then each m; has
the form: m; = {“z" = {z}, “t" = t, “1" = 541, “2" = 849, ..., “I" = sy}, where the trees s;1,...,s;
are match-set nodes for !, ..., ¢; respectively. Here “1”, “2” ... “I" are just labels representing the
successors number. Of course, if there is a regular expression R instead of a label variable x, then
m; = {“t" =1, “1" = 51, “2" = 842,. .., “I" = s;}. The intuition is the following. The partial result

41

Figure 17: Pattern Tree for Example 6.2

42

contains all bindings of all variables in the query. For example if the pattern is x =-¢ in t,, then the
node m; will have two children (labeled “z” and “t") holding the bindings of z and ¢ respectively.
The nesting structure in the partial result has been designed such that it corresponds to the order
in which variables are bound in), making it possible to construct it with a restricted select-where

query.

Partial Query No matter how complex the select-where query (@) is, the partial result P can be
obtained with a restricted select-where query, @), which we call the partial query. @, follows the
structure of the pattern tree. For each node n in the pattern tree labeled with the tree variable ¢
we define two queries, M,, and S, constructing the match nodes and the match-set nodes in the
partial result. The incoming edge to n can be an e-edge, or can be labeled with a regular expression
R or a label variable . M,, has at most = and ¢ as free variables, and is:

def

M, (z,t) = {“" = {z}, " = t,“1" = Sp,(t),..., “k" = Sn,(t)}
Here we assume that ¢’s successors in the pattern tree are the nodes nq,...,n; and are labeled with
the tree variables t1,...,%;. If n is not preceded by a label variable z, then we drop “z” = {z}; if n

is preceded by an ¢ edge, then we drop “t” = t too (because this information is stored somewhere
above in P). As an optimization, we may drop any of these two components even in other cases, if
they are not needed by @Q’s constructor (we illustrate below).

Each of the queries Sy, (t) constructs the match-set node of that successor node. When the edge
n — n; is an € edge, then:

S (1) & M, (2)

When the edge n — n; is labeled with the regular expression R, then:

Sn; (t) = select { “Match” = My, (t;)}
where R=1t; int
When the edge is labeled with the variable z;, then:
Sn; (t) = select { “Match” = My, (z;,t:)}
where ; = t; int
Finally we define @Q,(db) def M,,, (db), where n; is the root of the pattern tree: there is no S,, query

for the root node. Obviously @, is a restricted select-where query, because every sub-query M,,, .S,
has precisely one of the forms in Def. 4.2.

Example 6.3 Consider the query Q:

Q(db) = select {“A" = {“B" =1, “C" = t3}}
where R =t in db
Ri=tiint
Ry=tyint

The pattern tree (not shown) has four nodes, corresponding to db, 1,11, t2 respectively. We denote
the nodes with the variables labeling them. Then we have:

Mgy (db) = {“1" = S(db)} /] “db" = db not necessary

43

Si(db) = select { “Match” = My(t)}
where R =% in db
Mi(t) = {“1"= Sy, (t),“2" = S, (t)} /] “t" = t not necessary
Sy, (t) = select { “Match” = My, (t1)}
where R = t1int
S, (t) = select { “Match” = My, (t2)}
where Ry = t9int
My, (t) = {“ = 1}
M, (t2) = {“t5 = ta}

We performed two optimizations (marked by comments): namely we dropped “db” = db and “t" =1,
since the values of db and ¢ are not needed in the final result. Hence:

Qr(db) = May(db) =
{“1"= select { “Match” = { “1"= select { “Match” = {“t| = t1}}
where R1 =1 in t,
“2"= select { “Match” = {“t§ = t2}}
where Ry =ty int}}
where R =t in db}

O

Optimization Several optimizations of the partial query (and, consequently of the partial result)
are possible. As explained already we may drop the “z” = {z} and/or “t"" =t in M, (z,t). We may
eliminated match nodes with a single successor, i.e. replace:

Sn(t) = select { “Match” = {“1" = S, (t')}} where ...

with
Sn(t) = select {“1" = S, (¥')} where ...

Finally, we can (of course) rename the labels “Match”, “1”, “27, etc. with more suggestive ones
corresponding to the query. Such optimizations, including renamings, where applied to the queries
Q@ illustrated at the beginning of this section.

Recovering the result from the partial result. As explained earlier, in the last step we
construct the result Q(db) from the partial result P by applying a restructuring query Qs(P). Qs
is obtained by modifying @) as follows. First we introduce for each node n in the pattern tree a
match variable my and a match-set variable s, (with one exception: there is no match-set variable
for the root node). The idea is that match variables will be bound to match nodes in P, while
match-set variables will be bound to match-set nodes. The match variable for the root will be
P, ie. my, = P. We describe next how to construct Qs from (), by induction on @’s structure.
Consider a sub-query Q'(t1,...,tx) of @, where t1,...,t; are all free tree variables in the where
clause. That is Q'(t1,...,1x) is:

select £

where P in s1,..., P, in s,

44

We write n; for the unique node labeled ¢ in the pattern forest of)': the roots of the pattern forest
are ny,,...,ny . We convert Q' into a query Q(t1,... ,tk,mntl,...,mmk) as follows. (1) Every
generator of the form:

r=tins

is changed to:
“GM = s, in my,
“Match” = my in sy
‘e >z = _ inmy
“ = ¢ in mg

where 7 is the number of the successor of s in the pattern tree which is labeled with ¢. The last
two generators (“z” = z and “t” = t) may be missing, if the corresponding variables are not used
in any select clause. (2) Every generators of the form:

R=tins

is changed to:

w1

1 = Sp, in mg,
“Match” = my in sy
“ =t in my

Again, the last clause may be missing. (3) For every node n labeled with ¢ for which we have some
outgoing e-edge n — n’ in the pattern tree we introduce the following generators at the end of the
generators list:

“" = “Match” = m, in my,

Finally, Q,(P) will be the above translation of the entire query Q(db). Technically, s would have
two variables, Qs(db, P) (recall that P is the match variable for db, i.e. P = mgp). If db does not
occur in Qs, then we are done, since s now only depends on P, Qs(P). db only occurs in Q; if it
occurs as a free variable in one of @’s select clauses, like e.g. in select {z = db} where z = _in db.
When this happens, we make db a bound variable by adding the clause “db” = db in P in Q’s select
clause.

Example 6.4 Consider the query () in Example 6.3 and its corresponding partial query @,. Recall
that the pattern tree has four nodes, which we call (by abuse of notation) db,t,t1,t9. Then in Q;
we have seven additional variables, mgp, s¢, m¢, S¢,, M4, , St,, My, (recall that there is no match-set
variable for the root db). Moreover, mg = P. Then Qs(P) is:

select {“A" = {“B" = t1, “C" = t2}}

where “1" = g; in P // translation of R= ¢ in db
“Match” = my in s
“U"'= g4, in My // translation of Ry =t € ¢

“Match” = my, in sy

“1 = 11 in my,

“M = gy, inmy // translation of Ry =ty € ¢
“Match” = my, in sy,

“H = by in my,

45

Notice that db does not occur in @, hence Q; is of the form Qs(P) and we are done. O
Summarizing, we have:

Theorem 6.5 Given a select-where query Q, let QQ, and Qs be the queries constructed as above.
Then (1) for any database db, Q(db) = Qs(Qr(db)), and (2) Qr(db) is a restricted select-where
query.

Proof: (Sketch) Part (2) is obvious from the construction of @,. We only sketch here the proof
for part (1), by illustrating how it works for the query in Examples 6.3 and 6.4. To keep the
notations simple, we abbreviate with E(t1,?2) the expression {“A” = {“B" = t;, “C" = t2}}: ie.
both Q(db) and Q4(P) have the form select E where ... We will use the notations Mg, S¢, My, ...
from Example 6.3, and recall that Q,(db) = Mg (db). We also rename the variables ¢1,%9 in Qs to
t},th, to avoid some name clashes: that is, Qs(P) = (select E(t},}) where ...). Then:

Qs(Qr(db)) = select E(t),t))
where “1" = sy in Mgy (db)
“Match” = my in s

... the other generators

Since Mg, = {“1" = Sy(db)}, s¢ will be bound to S;(db), hence:

Qs(Qr(db)) = select E(ty,1))
where “Match” = my in Sy(db)

... the other generators

Now S;(db) = select { “Match” = My(t)} where R =t in db, hence m; will be bound to M;(t) where
R = tin db. That is:

Qs(Qr(db)) = select E(t),t})
where R=tindb

“r = Sty in Mt(t)
“Match” = my, in 54,
“t = t] inmy,
“r = Sty in Mt(t)
“Match” = my, in sy,
“th = th in my,
Next, My(t) = {“1" = Sy, (¢), “2" = Sy, (¢)}. Hence s, will be bound to S, (t), and similarly for s¢,:

Qs(Qr(db)) = select E(tllatIQ)
where R =1 in db
“Match” = my, in Sy, (t)
“t =t in my,
“Match” = my, in S, (t)

“5 = th in my,

46

Next, St (t) = select { “Match” = My, (t1)} where Ry = t; in ¢, hence my, will be bound to My, (t1)
where ¢ is given by R; =t in t. Similarly for my,:

Q(Q (db)) = select E(t], t)
where R =t in db
Ri=t1int
“t = t) in My, (t1)
Ry=tyint
“t = th in My, (t2)

Finally we substitute My, and My, with their definition and recover Q(db). O

6.2 Alternating Graph Accessibility Problem for the Partial Result

As illustrated in the example at the beginning of this section, the partial result may contain
fragments which are unnecessary for the actual query result. We want to identify and delete these
fragments before sending all pieces of the partial result to the client.

Recall that the partial result consists of the following components:

Match-set nodes They have links directly to match nodes.
Match nodes They have links to variable-value nodes, and to match-set nodes.

Variable-value nodes These store (i.e. have links to) the values of label variables and of tree
variables.

Furthermore each match-set node and each match node “belongs” to some node in the Pattern
Tree.

In addition to the accessibility problem which we had to address in the previous distributed
algorithms, here there are two new reasons why fragments of the partial result may be unnecessary:

1. A non-empty sub-block of a select — where block becomes unnecessary if some other sub-block
of the same select — where block is empty (i.e. has no matching).

2. A variable z or ¢t bound in some select — where block and used in a constructor in an inner
block may be unnecessary if that inner block is empty.

Recall that in both algorithms discussed so far for distributed evaluation, we solve a Graph
Accessibility Problem, GAP, on the query’s result before sending it to the client. In the case of
select-where queries, we have to solve an Alternating Graph Accessibility Problem, AGAP [Imm87,
GHR95]. We review the AGAP here briefly in a form adapted to our needs.

In an AGAP we are given a graph G whose nodes are partitioned into three sets: AND nodes,
OR nodes, and accessible nodes ACC: we call such a graph an AND/OR graph. We define the set
of accessible nodes as follows:

Definition 6.6 Given a AND/OR graph G we define the set of accessible nodes:
1. Any node in ACC is accessible.
2. Any AND node having all its successors marked accessible is accessible.

3. Any OR node having at least one successor marked accessible is accessible.

47

The AGAP problems has as input an AND/OR graph G and a node z and asks whether z is
accessible or not. It generalizes the graph accessibility problem (GAP) we had to solve earlier as
follows. Recall that in that setting we were constructing the query’s result, which is a rooted graph.
Given a node x which is a potential node in the constructed graph, the problem was whether there
exists a path from the root to z. Construct an AND/OR graph G’ by reversing all edges in G and
making G’s root the only node in ACC. Define all other nodes to be OR nodes. Then a node z in
G is accessible from the root iff it is accessible in G’ according to Definition 6.6.

Returning to select-where queries, let P be the partial result produced by the query @Q,, P =
Q:(db). We will construct from P an AND/OR graph G obtained by adding more nodes and edges
to P. G can be constructed without any communications between sites, and has the property that
a node z in P is necessary in Q4(P) iff it is accessible in G. Hence, we use G to compute all
accessible nodes z.

We describe now how to construct G. It is obtained by adding one or two nodes to P, for each
node in P and for each query block B. Consider one such select — where block in @, call it B.
Let n» be any node in the pattern tree which is in, or above a sub-block of B, and let ¢ be the tree
variable associated to n. For each match-set node or match node n’ in P “belonging” to n we add
a new node to P, called the ezistential node for B and n’, in notation e, p. The intuition is that
en' B Will tell n’ whether some instantiation of the block B exists. If, in addition, n does not cover
all sub-blocks of B in the pattern tree, then we add a second node to P, called the local existential
node, in notation le,s g. The intended meaning is that le, p will be accessible iff all sub-blocks of
B below n are non-empty: this depends only on the fragment of P below n'. By contrast e, g will
be accessible iff the entire B is nonempty: this may depend not only on information below n’, but
also side-wards. We show next how this accessibility information can be gathered.

Local Existential Nodes If n’ is a match-set node, then le, p will be an OR node, and its
successors will be the le nodes of the successors of n’ (if n' has any successors): intuitively, the
sub-block of B dominated by n' exists (i.e. is nonempty) iff there exists at least one matching
under n’ for which the same sub-block exists. If n’ is a match node, then we have two cases. (1)
Some of n’s successors in the pattern tree still dominate parts of the block B. Then le, g will be an
AND node, and its successors will be the le nodes of those successors which are above the block B.
Intuitively, the sub-block of B dominated by n' exists if all variables following n’ have a matching
for which their fragment of B exists. (2) None of n’s successors are above the block B: this only
happens if n is a leaf in one of B’s sub-blocks. Then le, p is in ACC: intuitively, the fact that we
have a matching node is a witness that we have instantiated that part of the block B which n/ can
see.

Existential Nodes We describe now the the existential nodes, e, g. These are always OR
nodes, and their successors are constructed according to three cases. (1) n has no successors in
block B, or n has some successors in the block B, but does not cover all of them. Then e, p has
a single successor, which is the e node of the parent of n': intuitively n' gets its information about
the entire block B from some node above, which can see the entire block B. (2) n covers all nodes
in B, and is the lowest node doing so: then e, p has a single successor, which is le,s p. Intuition:
what the sub-block n’ sees is precisely the entire block B, hence the local existential node is the
same as the existential node. (3) n dominates the entire block B, and so do some of its successors:
then e, p has as successors the e nodes of n’ successors. Intuition: there are nodes below which
“know” about the non-emptiness of the entire block B.

The Data Nodes All nodes in P are imported into G as OR nodes, and all edges are im-
ported in reversed direction: this is in the same spirit as in algorithms Distributed- Evaluation and

48

Distributed-FEvaluation-C , where for a “data node” n’ we tested whether n' is accessible from the
root. During copying, we make the following three changes. (1) For every match-set node n' in P
“belonging” to some node n in the pattern tree which is the root of a sub-block of some block B,
we make it an AND node in G with two children: one is the former parent of n’ in P, the other is
en' g. That is n’ is accessible iff it is connected to P’s root and the block to which it belongs exists.

wol! wyll

(2) For every edge corresponding to a variable, i.e. of the form n} % n), or n} 4 nh with z a label
variable and ¢ a tree variable, we make n), into an AND node pointing to n} and to a fresh node
n4, which is an OR node pointing to all nodes of the form ey, g with B some inner block using
the variable z (or t). That is we keep that variable value only if some inner block using it can be
instantiated (otherwise that variable value is never used). (3) As before, we place P’s old root in

ACC.
Example 6.7 Consider the query of Example 6.1:

Q(db) = selectp selectg {A={B=1t,C=1t,D=t}}
whereg R{ = t1int
Ro=1tyint
wheregr R =t in db

Here R, Ry, Ry are regular path expressions. There are two blocks B and B’. We consider only the
inner block, B: the other one is handled in a similar way. B has two sub-blocks in the pattern tree
shown in Figure 16. We show in Figure 18 (a) and (b) a (simplified) fragment of the AND/OR
graph G. All continuous lines are edges imported directly from the partial result P, in reversed
direction. All dotted edges are new edges in the AND/OR graph, related to the additional e and
le nodes.

Examining the P subgraph first, we see that there are two matchings for the ¢ variable: this is
illustrated by the fact that the match-set node s; has two successor match nodes, both denoted with
my (recall that P’s edges are reversed in Figure 18). Both m; nodes have two children®, namely
the match-set nodes corresponding to ¢; and %9 respectively. For the first match of ¢ there are two
matchings for £; and two for ¢5. For the second match of ¢ there is a single matching for #;, and
no matching for ¢5. Part (a) of the figures illustrates the construction of the e and le nodes for
the block B (those for B’ are constructed in a similar manner). We describe these, starting from
the bottom. On the bottom level each le node is marked ACC: intuitively this means that once
we “see” a node my,, we “know” that the first sub-block of B exists, and similarly for ¢5. On the
next level (with the match-set nodes s, and s,), each le node is an OR node. Note that of the
four le nodes on this level the last one is not accessible, according to Definition 6.6, because there
is no matching for to there. On level further up, each le node is an AND. That is, in the scope
of the variable ¢, the sub-blocks of B it sees exists iff both the sub-blocks for ¢; and for ¢y exists.
Since t’s sub-blocks of B happen to be the entire block B, here we have a link from the e node to
the le node: that is the entire block B exists iff that portion seen by ¢ exists. All other e nodes
point directly or indirectly to the e nodes on this level, since here is where we have the information
about the existence of the block B. In consequence, there are two candidate instantiations for the
block B, corresponding to the two bindings of . One is non-empty (the left half of the graph
in Figure 18 (a)), the other is empty (the right half). The emptiness information for each block

9To be accurate, each m; node would have to point to two copies of that my nodes, since in the pattern tree there
are two successors of ¢ both labeled ¢. To prevent the figure from becoming too cluttered we avoid drawing those
nodes.

49

instantiation is then distributed to all sub-blocks. Those who find out that they belong to empty
blocks do not need to be send to the client. For example the unique binding of ¢; in the right-most
leave are marked inaccessible (in general there could be several such, and the savings obtained by
not sending these bindings can be large).

We next describe the two ways the e nodes are used. First, each match-set node s;;, and s4, on
level three are AND nodes pointing to e. That is, in order for s;, to be considered “accessible”, not
only must it be accessible from the root in P, but the entire block B it belongs to must exist. Of
the four math-set nodes on level three, the first two are accessible (left most sy, s¢,), but the last
two are not (right most sy, s,). Note how the entire binding for the rightmost s;, is being marked
inaccessible, due to the fact that there is no corresponding matching for ¢s.

The second way the e nodes are used deals with the variable nodes, which we illustrate in
Figure 18 (b): we simplified the figure, in order to avoid too much clutter. Here we see that each
my; node in P has a variable successor, pointing to the root of the corresponding binding of the
t variable. Ultimately, we want to send that entire tree to the client, since it participates in the
construction of the final result. But not all bindings are useful: in G we add, besides the reversed
edge from t to my, a second edge from ¢ to the e node of the block(s) where ¢ is used. Since in
our query () the variable ¢ is used only in the constructor of the block B, its “raison d’etre” is the
existence of the block B: hence ¢ is an AND node. In our example the first ¢ is accessible, while the
second one is not, hence the second node (and all its subsequent nodes and edges) will not be sent
to the client. Here the figure is relatively simple because ¢ is used in a single block. In general it
may be used in several blocks: then we add an additional OR node, since t’s raison d’etre is when
at least one of those blocks exists.

O

In general G is a graph, not a tree. However one may notice that none of G’s AND nodes
belongs to a cycle. We will exploit this in the next subsection where we show how to solve the
AGAP distributively.

6.3 Solving the AGAP for a Distributed Database

The AGAP is inherently more difficult to solve in parallel (and, hence, distributively) than the
GAP, unless NC = PTIME. Indeed, it is known that the GAP is in the class NC of prob-
lems computable in polylogarithmic parallel time with polynomially many processors [GHR95].
This class is widely regarded as the class of problems efficiently computable in parallel, and it is
known that NC C PTIME, while the conjecture NC # PTIMFE remains one of the major open
problems in complexity theory. The AGAP problem is PTIME complete with respect to NC!
reductions [GHR95, pp.129]. Hence it is “as hard” to compute in parallel as any PT'IM E problem,
which most likely means that we would have difficulties finding an efficient distributive algorithm
for a general AGAP instance.

However in our case we have to solve AGAP’s of a particular form: in which the AND nodes do
not belong to cycles, and in which their outdegree is “small”. Specifically, we call an alternating
graph G AND-acyclic iff none of its AND nodes belong to a cycle. Next, for a AND-acyclic

graph G we define for each node n the AND-outdegree, 6,, as follows. (1) If n and all nodes

reachable from n are OR nodes or ACC nodes, then 6, e 1; (2) If n is an OR node with successors

ni,na, ..., then 6, def max(1, 6y, 0ny,---); (3) If n is an AND node with successors ny,no,. .., then

on def Ony + 6n, + ... Finally, given an alternating graph G we define its AND-outdegree, 6, to be

the maximum AND-outdegrees of its nodes.

50

(b)

Figure 18: The AND/OR graph associated to a partial result. The part relevant to match and
match-set nodes is in (a), that relevant to the variable nodes is in (b). Only block B is considered:
there is some additional (but smaller) fragment of the AND/OR graph corresponding to the block
B'.

51

The intuition is the follows. Consider some boolean expressions £ having AND and OR opera-
tors applied to variables. This can be represented as an AND/OR tree G. Compute E’s conjunctive
normal form: then G’s § is the same as the largest number of operands in an AND operation in
the conjunctive normal form.

First we reduce the AGAP to a GAP of exponential size:

Theorem 6.8 Any AGAP for a graph G with n nodes can be reduced to a GAP on a graph with
2™ nodes.

Proof: Consider the following graph G’. Its nodes are subsets of nodes of G, and there will be an
edge s; — s9 iff for every node n € s; either (1) n € sg, or (2) n is an OR node and some of its
successor is in s, or (3) n is an AND node and all of its successors are in so. Then it is easy to
check that a node z is accessible in G iff there exists a path in G’ from {z} to some s such that
s C ACC, i.e. all nodes in s are ACC nodes. O

Corollary 6.9 Any AGAP for a graph G with n nodes, which is AND-acyclic and has the AND-
outdegree 6, can be reduced to a GAP on a graph with () < O(n%) nodes.

Proof: It suffices to observe that in the graph G’ of the previous theorem, if there exists a path
from {z} to some set s C ACC, then there exists a path going only through sets of cardinality
< 6. Since 8§, < 4, it suffices to consider in G’ only nodes consisting of sets of cardinality < §, and
there are (}) such sets. O

In fact all the information about connectivity can be found in those edges s — s’ of G’ in which
s is a singleton set. Indeed there is an edge s — s’ in G’ iff Vn € s there exists an edge {n} — 5"
in G’ with s” C s'. This observation enables us to derive an efficient distributive algorithm for the
AGAP of an AND-acyclic graph: this is shown in Figure 19. The alternating, AND-acyclic graph
G is distributed on m different sites, called servers, and we assume to know G’s AND-outdegree
0. As in previous algorithm each site starts by constructing a local graph which summarizes how
inputs are connected to outputs: we call these graphs here 10, with @ = 1,m. The difference
is now that IO, shows for each input node z the set of sets of output nodes s’ for which {z} is
connected to s’ in the graph G’,. Also, it suffices to restrict s’ to sets of cardinality < §. In Step 2
all graphs 10, are sent to the client, which computes all accessible input or output nodes. It then
broadcasts this information to the servers, which now can compute their accessible internal nodes.

Summarizing, we have:

Theorem 6.10 Algorithm Distributed-Evaluation-AGAP solves the AGAP for a distributed graph
with the following complexities:

1. The total number of communication steps is constant (more ezactly: two).

2. The total amount of data exchanged during communications is O(n(})) = O(n'*®), where n
is the total number of cross links and 6 the AND-outdegree.

For the GAP problem, 6 = 1 and the above algorithm is essentially the accessibility computation
part of Algorithm Distributed- Evaluation .

Finally, we apply this algorithm and the techniques describe earlier in this section, to evaluate
efficiently select-where queries on distributed databases. For a select-where query) we define its
block-fragmentation, 6, to be the largest number of leaf nodes in any block of Q’s pattern tree.
For example the query in Example 6.1 has § = 2 while the query in Example 6.2 has § = 4. All
restricted select-where queries have § = 1.

52

Algorithm : Distributed- Evaluation-AGAP
Input : A alternating, AND-acyclic graph G
with AND-outdegree ¢
distributed on m sites, Go,a =1, m
Output : Computes for each node z whether z is accessible
Method :
Step 1 At every site a compute the input-output graph IO, (see text)
Step 2 Send all 10, a = 1,m to the client.
Step 3 The client constructs the global accessibility graph
on the input/output nodes, 10
Step 4 The client broadcasts 10 to all servers.

Step 5 The servers compute their accessible nodes
Figure 19: Distributed AGAP.

Theorem 6.11 Let Q be a select-where query with b blocks and with block fragmentation 6, and
db be a distributed database. Let n be the number of cross-links, and r the size of Q(db). Then Q
can be evaluated efficiently distributively, with the following complexity:

1. The total number of communication steps is four (independent on the query or data).

2. The total amount of data exchanged during communications is O(n't®)+O(r). The constants
in the O notation depend on the query.

Proof: (Sketch) We describe first the evaluation method which follows naturally from the tech-
niques described in this section. The method is efficient, according to Definition 1.1, but unsat-
isfactory because the size of the total data exchanged is O(n?t®) 4+ O(r). Then we show how to
improve this method.

We start by decomposing the query into Q(db) = Qs(Q.(db)), where P = Q,(db) is the partial re-
sult, as before. Next we evaluate the partial result P = @, (db) using algorithm Distributed- Evaluation-C ,
but do not send the result to the client: instead each server « holds a fragment of the partial result,
P,, for a = 1,m. Next we construct the associated AND/OR graph G described in Subsection 6.2.
No communications are needed here, but notice that the total number of cross links has increased
from n to (2b + 1)n, where b is (recall) the total number of select — where blocks in Q. We run al-
gorithm Distributed- Evaluation-AGAP to compute G’s accessible nodes, hence we compute at each
site a the accessible part of P,, call it P2°. These parts are then sent to the client and assembled
into P%“. As our informal discussion mentioned at the beginning of this section, the size of P*
is bound by O(r), i.e. it is no larger than the actual result: to achieve that it was important to
reduce P to P%€, otherwise the size of P can be arbitrarily large when compared to r. Finally we
compute Qs(P) at the client.

The above method has indeed only four communication steps, which is the same as Algorithm
Distributed-Evaluation-C , with the only difference that now we compute AGAP instead of GAP.
However the AND-outdegree of the graph G is 14§, not é: this results in total size of the data sent
O(n?*9), not O(n'*?). To see what is happening, recall that each match-set node in P becomes an

53

AND node in G with two successors: its parent in P and the associated e node for the current block.
But that e node is a large AND expression of all sub-blocks, including the fragment dominated by
the current match-set node. For example in Figure 18 (a) the left-most node s;, has AND-outdegree
3, while @’s block fragmentation is 2. Intuitively s;, should be accessible if (1) it is reachable from
the root AND (2) the other sub-block exists, hence it should have AND-outdegree 2. What is
happening instead is that G adds a third redundant conjunct (3) s¢’s sub-block exists. That is
redundant in the sense that if it is not satisfied, then s;, has no my, successors in P, and we don’t
have to work to eliminate it from P,

We can avoid this by introducing more nodes in the graph G. Instead of having a single node
e for each block B, now we introduce several such nodes, one corresponding to each node in the
pattern tree belonging to B: hence instead of the e, p nodes, we now have e, p, nodes, where
n' is some node in P, B is a block, and n is some node in @)’s pattern tree, s.t. n belongs to the
block B. The meaning of e,y g, is that it will be accessible iff the block B exists, possible with
the exception of the sub-block (in the pattern tree) dominated by n. Similarly, we construct more
le nodes. The AND-outdegree of the new e and /e nodes will be one less than the AND-outdegree
of the e and le nodes (which we still need to keep, for the purpose of the variable nodes). Finally,
in the match-set nodes we use the new e nodes, instead of the old ones. We invite the reader to fill
in the details. O

7 View Maintenance

7.1 View Maintenance for Restricted Select-Where Queries

In the view maintenance problem we are given a query () defining a view of the database, V def
Q(db). When the database is updated with an increment A, we want to compute the view on the
updated database incrementally from A. By that we mean that the amount of work should depend
only on the size of A and of V, not on that of db. In general, the increment may consist either of
insertions, or deletions, or both [GL95]. In order to be able to do so, we need to store and maintain
some additional information besides V.

We show here that the distributed evaluation algorithms presented in this paper can be applied
to a restricted form of the view maintenance problem: namely when all updates are insertions.
That is A consists of new nodes and new edges being added to db. Here we distinguish two cases:
(1) edges are not allowed to “point back”, i.e. to go from A into db, and (2) edges are allowed to
go arbitrarily between db and A. The second case requires more work, because we may need to
re-traverse parts of db due to the new edges entering the old graph.

The basic idea behind our view maintenance algorithms is to instantiate a distributed evaluation
algorithm for @ to the case when the database is stored on two sites: site 1 holds db, while site
2 holds A. We keep all intermediate results at site 1, i.e. do not do any trimming of the partial
result, based on knowledge about A. When computing the view in the first stage, V = Q(db), we
take A = (. When the update actually takes place, we run the algorithm once again, but now all
the processing at site 1 is already done, so we only have to process A. We briefly discuss this for
each setting.

View Maintenance for Restricted Select-Where Queries Here we take as basis Algorithm
Distributed-Evaluation . Consider case (1) first, when A is not allowed to point back. Then we
run visit; in Algorithm Distributed- Evaluation , considering db’s root to be the only input node,
and all nodes as being output nodes. This results in F}. Next we compute Fi’s accessible part,
F{<¢: it consists of V' and all pairs of the form (s,u), with v a node in db visited in state s. F{*¢

o4

will hence be our view plus the additional information consisting of such pairs (s,u). When db is
updated with some A, we consider all edges u — v with « in db and v in A (the “cross edges”).
For each state s such that (s,u) is in F{*‘, we compute visits(s,v). This results in new nodes and
edges being added to F}“‘, which updates both the view V' and the additional information.

Case (2), when edges are allowed to point back, from A to db, is similar, but now we consider
all nodes in db to be both input and output nodes for site 1. Then F{““ is much larger, since it
always contains all pairs of the form (s,u): in addition there are £ edges from each (s,u) to those
nodes v in db which would be included in the view V whenever u will be visited in state s. View
maintenance proceeds as before.

Note that in both cases the amount of work for view maintenance is proportional only to the
size of A, and independent on db and V.

View Maintenance for Queries in C Here we take as basis Proposition 5.11 and Algorithm
Distributed-Evaluation-C . In case (1) we add one output marker to each node in db (or only to
a subset of such nodes, if we know in advance where updates are allowed to occur), and call db;
the new database. Let Z1, Zs, ... be the new output markers. We compute now Vi = Q(db;1). Not
surprisingly, Vi may be much larger than V, because all the output markers in db;y may now be
part of the result (but V7’s size is within a factor of db’s size). The actual view is V = V1;Q(Z; :=
{}; Zy :={};...). Any update is now expressible as db] := db;@QA. Using Proposition 5.11 we can
prove that the new view, V/ = Q(db}), can be computed as V{ = V;@Q9%°(A): this follows from
the fact that @ can be written as Q(db;) = PQQ$(db;) with Q9 decomposable and from the
associativity of Q.

In case (2) we introduce both an input and output marker at each node in db: call db; the
resulting database. We decompose Q, Q(db) = PQQ4%°(db), and define Vi = Q9°(db,). V; will be
even larger as before. Furthermore, an update is now db} := cycle (db;; A). Here A has an input
marker for every edge from db to A, and an output marker for every edge from A to db. Since the
new cross edges can form cycles, we express the update with cycle rather than!® @. Finally we can
maintain V; as V] = Q9(cycle (dby; A)) = cycle (Vi; Q¥¢(A)).

Again, in both cases the amount of work for view maintenance is proportional only to the size
of A, and independent on db and V.

View Maintenance for Select-Where Queries Finally we consider select-where queries. Here
we only consider case (1). Given a query @, we split it into Q(db) = Qs(Q.(db)), where @, is
the restricted select-where query computing the partial result. As before we introduce an output
marker at each node in db to obtain db;, then compute P; = Q,(db1). As we know, P; may be larger
than V, and we don’t want to traverse it entirely after an update. So we compute its associated
AND/OR graph G, then the graph G’ (see Theorem 6.8 and Corollary 6.9). We store, besides P,
the transitive closure of G'. If Q’s block fragmentation is §, then the transitive closure of G’ is fully
described by pairs of nodes {u} — s’ for which s’ is a set of cardinality < § accessible from {u}. We
also “simplify” these pairs, by dropping from s’ all nodes which are already known to be accessible.
Thus a pair {u} — s’ means that u will become accessible in G as soon as all nodes in s’ become
accessible. When an update takes place, db) := db;@A, then we first update P := P,QQ%<(A),
where Q,(t) = P,@QQ%(t) is the decomposition of Q.. Before recomputing the view however, we
need to compute the accessible part of P]. To do this efficiently we use the stored transitive closure.
Namely from Q%¢(A), new le nodes (see Subsection 6.2) in G’ may become accessible. We consider
all sets s’ formed only of newly accessible nodes (their number is O((size(A))?)), and for each of

"When XNY = XN Z =0andt € DBy,t' € DBY, then one can show that t@Qt' = cycle,, (¢;¢'). Hence the
update expression used in case (2) is a generalization of that used in case (1).

95

them mark accessible all nodes u for which {u} — s’ was in the transitive closure of G'. Some
indexing structure is required to find all u’s, given an s’. This is possible since the size of s’ is
bound by 4, which is typically a small number. Finally, once we have the accessible part of Pj,
(P!)2, we compute V' = Q,((P1)).

Unlike the previous two settings, here the amount of work done for view maintenance depends
both on V and A.

8 Conclusions and Future Work

We have described efficient distributed query evaluation for queries on semistructured databases.
The database is an edge-labeled graph and is stored on a fixed number of independent sites. All
queries considered are join-free, but may contain complex combinations of patterns with regular
path expressions, graph constructors, and nested sub-queries. In their most general forms, the
algorithms cover two overlapping classes of queries: the class C (which includes queries expressed
by structural recursion, including those in some core XSLT fragment), and the select-where queries
(including join-free queries expressed in XML-QL and Quilt). The methods described rely on an
algebraic machinery, hence they do not preclude further query optimization before evaluation at
each site. All resulting distributed algorithms are efficient, in the sense that they do a constant
number of communication steps and send an amount of data which depends only on the number
of cross links and the size of the result.

We see two directions in which this work needs further extension. The first deals with joins,
which our methods do not address. In the classical relational framework we have two relations R
and @) stored on two distinct sites, and wish to compute R X). The standard technique uses
semi-joins [KSS97], in that the join attributes from @ are sent first to the site storing R, here
a semi-join is performed, and only the matching tuples are send back to @ for a join. It is not
clear how to integrate this basic idea into our distributive evaluation algorithm to compute, for
example, select-where queries with joins. The second direction is in connection with the ability
to describe partial information about the way a database is distributed on several sites. Recent
proposals [BDFS97, GW97] describe the graph’s structure by another graph summarizing the nodes
and edges in the database. It is possible to further annotate this graph which information about
the database is distributed, and use that information in order to perform less work at each site.
We believe that such techniques could further improve the distributed algorithms presented here.

References

[Abi97] Serge Abiteboul. Querying semi-structured data. In Proceedings of the International
Conference on Database Theory, pages 1-18, Deplhi, Greece, 1997. Springer-Verlag.

[ABS99] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web : From Relations to
Semistructured Data and XML. Morgan Kaufmann, 1999.

[Aho90] Alfred V. Aho. Algorithms for finding patterns in strings. In J. Van Leeuwen, editor,
Handbook of Theoretical Computer Science. Vol A: Algorithms and Complexity. MIT
Press, 1990.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison
Wesley Publishing Co, 1995.

56

[BDFS97]

[BDHS96]

[BDS95]

[BFS00]

[Bun97]

[Cat94]

[CFMRO0]

[CFRO]

[Cla99a)

[Cla99b]

[Con98]

[DFF+98]

[DFF+99]

[DGMMO0]

[DMOT00]

Peter Buneman, Susan Davidson, Mary Fernandez, and Dan Suciu. Adding structure
to unstructured data. In Proceedings of the International Conference on Database
Theory, pages 336—-350, Deplhi, Greece, 1997. Springer Verlag.

Peter Buneman, Susan Davidson, Gerd Hillebrand, and Dan Suciu. A query language
and optimization techniques for unstructured data. In Proceedings of ACM-SIGMOD
International Conference on Management of Data, pages 505-516, 1996.

Peter Buneman, Susan Davidson, and Dan Suciu. Programming constructs for un-
structured data. In Proceedings of the Workshop on Database Programming Languages,
Gubbio, Italy, September 1995.

P. Buneman, M. Fernandez, and D. Suciu. Unql: A query language and algebra for
semistructured data based on structural recursion. VLDB Journal, 9(1):76-110, 2000.

Peter Buneman. Tutorial: Semistructured data. In Proceedings of ACM Symposium
on Principles of Database Systems, pages 117-121, 1997.

R. G. G. Cattell, editor. The Object Database Standard: ODMG-93. Morgan Kauf-
mann, San Mateo, California, 1994.

Don Chamberlin, Peter Fankhauser, Massimo Marchiori, and Jonathan Robie. Xml
query requirements, 2000. http://www.w3.org/TR/xmlquery-req.

Don Chamberlin, Daniela Florescu, and Jonathan Robie. Quilt: an XML query lan-
guage for heterogeneous data sources. In Proceedings of WebDB, Dallas, TX, May
2000.

James Clark. XML path language (XPath), 1999. available from the W3C,
http://www.w3.org/TR/xpath.

James Clark. XSL transformations (XSLT) specification, 1999. available from the
W3C, http://wuw.w3.org/TR/WD-xslt.

World Wide Web Consortium. Extensible markup language (xml) 1.0, 1998.
http://www.w3.org/TR/REC-xml.

A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. Xml-ql: A query
language for xml, 1998. http://wuw.w3.org/TR/NOTE-xml-ql/.

A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query language
for XML. In Proceedings of the FEights International World Wide Web Conference
(WWWS8), pages 77-91, Toronto, 1999.

D.Calvanese, G.DeGiacomo, M.Lenzerini, and M.Vardi. Answering regular path
queries using views. In Proceedings of the International Conference on Data Engi-
neering, 2000.

Steve DeRose, Eve Maler, David Orchard, and Ben Trafford. Xml linking language
(xlink) version 1.0, 2000. http://www.w3.org/TR/x1link.

o7

[FFK*™97] M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu. STRUDEL - a web-site
management system. In Proceedings of ACM-SIGMOD International Conference on
Management of Data (Systems Demonstration), pages 414425, Tucson, Arizona, May
1997. System demonstration.

[FS98] Mary Fernandez and Dan Suciu. Optimizing regular path expressions using graph
schemas. In Proceedings of the International Conference on Data Engineering, pages
14-23, 1998.

[GHRY95] Raymond Greenlaw, H.James Hoover, and Walter L. Ruzzo. Limits to Parallel Com-
putation. P-Completeness Theory. Oxford University Press, New York, Oxford, 1995.

[GL95] Timothy Griffin and Leonid Libkin. Incremental mainenance of views with duplicates.
In International Conference on Management of Data, pages 328-339, San Jose, Cali-
fornia, June 1995.

[GWIT] Roy Goldman and Jennifer Widom. DataGuides: enabling query formulation and
optimization in semistructured databases. In Proceedings of Very Large Data Bases,
pages 436-445, September 1997.

[Imm87] Neil Immerman. Languages that capture complexity classes. SIAM Journal of Com-
puting, 16:760-778, 1987.

[JIM92] J.L.Balcazar, J.Gabarro, and M.Santha. Deciding bisimilarity is P-complete. Formal
Aspects of Computing, 4(6A), 1992.

[KS95] David Konopnicki and Oded Shmueli. Draft of W3QS: a query system for the World-
Wide Web. In Proc. of VLDB, 1995.

[KSS97] Henry F. Korth, Abraham Silberschatz, and S. Sudarshan. Database System Concepts.
McGraw-Hill, New York, 1997.

[Lyn97] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufman, 1997.
[Mil89] Robin Milner. Communication and concurrency. Prentice Hall, 1989.

[MMM96] A. Mendelzon, G. Mihaila, and T. Milo. Querying the world wide web. In Proceedings
of the Fourth Conference on Parallel and Distributed Information Systems, Miami,
Florida, December 1996.

[PGMW95] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange across het-
erogeneous information sources. In IEEFE International Conference on Data Engineer-
ing, pages 251-260, March 1995.

[QRST95] D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, and J. Widom. Querying semistruc-
tured heterogeneous information. In International Conference on Deductive and Object
Oriented Databases, pages 319-344, 1995.

[Rob99] Jonathan Robie. The design of xql, 1999. http://www.texcel.no/whitepapers/xql-design.html.

[Suc96] Dan Suciu. Query decomposition and view maintenance for query languages for un-
structured data. In Proceedings of the International Conference on Very Large Data
Bases, pages 227-238, September 1996.

58

[TMD92]

[Var82]

[VKSS]

J. Thierry-Mieg and R. Durbin. Syntactic Definitions for the ACEDB Data Base
Manager. Technical Report MRC-LMB xx.92, MRC Laboratory for Molecular Biology,
Cambridge,CB2 2QH, UK, 1992.

M. Y. Vardi. The complexity of relational query languages. In Proceedings of 14th
ACM SIGACT Symposium on the Theory of Computing, pages 137-146, San Francisco,
California, 1982.

Patrick Valduriez and Setrag Khoshafian. Parallel evaluation of the transitive closure
of a database relation. International Journal of Parallel Programming, 17(1):19-42,
1988.

59

