
Efficient Evaluation of XML Middle-ware Queries

Mary Fernandez
AT&T Labs - Research

mff@research.att.com

Atsuyuki Morishima
∗

University of Tsukuba

mori@dblab.is.tsukuba.ac.jp

Dan Suciu
†

University of Washington

suciu@cs.uwashington.edu

ABSTRACT
We address the problem of efficiently constructing ma-
terialized XML views of relational databases. In our
setting, the XML view is specified by a query in the
declarative query language of a middle-ware system,
called SilkRoute. The middle-ware system evaluates a
query by sending one or more SQL queries to the tar-
get relational database, integrating the resulting tuple
streams, and adding the XML tags. We focus on how
to best choose the SQL queries, without having control
over the target RDBMS.

1. INTRODUCTION
XML is the universal data-exchange format between

applications on the Web. Most existing data, however,
is stored in non-XML database systems, so applications
typically convert data into XML for exchange purposes.
When received by a target application, XML data can
be re-mapped into the application’s data structures or
target database system. Thus, XML often serves as a
language for defining a view of non-XML data.

We are interested in the case when the source data
is relational, and the exchange of XML data is between
separate organizations or businesses on the Web. This
scenario is common, because an important use of XML
is in business-to-business (B2B) applications, and most
business-critical data is stored in relational database
systems (RDBMS). This scenario is also challenging, be-
cause the mapping from the relational model to XML is
inherently complex and may be difficult to compute ef-
ficiently. Relational data is flat, normalized (3NF), and
its schema is often proprietary. For example, relation
and attribute names may refer to a company’s internal
organization, and this information should not be ex-
posed in the exported XML data. In contrast, XML
data is nested, unnormalized, and its schema (e.g., a

∗Research conducted as visitor at AT&T Labs.
†Research conducted as employee at AT&T Labs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGMOD 2001May 21-24, Santa Barbara, California, USA
Copyright 2001 ACM 1-58113-332-4/01/05 ...$5.00.

DTD or XML Schema) is public. The mapping from
the relational data to XML, therefore, usually requires
nested queries, joins of multiple relations, and possibly
integration of disparate databases.

In this work, we address the problem of evaluating
efficiently an XML view in the context of SilkRoute [5],
a relational to XML middle-ware system. In SilkRoute,
a relational to XML view is specified in the declar-
ative query language RXL. An RXL query has con-
structs for data extraction and for XML construction.
We are interested in the special case of materializing
large RXL views. In practice, large, materialized views
may be atypical: often the XML view is kept virtual,
and users’ queries extract small fragments of the entire
XML view. For example, SilkRoute supports composi-
tion of user-defined queries in XML-QL [4] and virtual
RXL views and translates the composed queries into
SQL. SilkRoute’s query composition algorithm is de-
scribed elsewhere [5]. Our goal is to support data-export
or warehousing applications, which require a large XML
view of the entire database. In this case, computing the
XML view may be costly, and query optimization can
yield dramatic improvements.

Shanmugasudaram et al. [9] evaluate experimentally
a variety of approaches for publishing XML data in a
relational query engine. In our scenario, the XML doc-
ument defined by an RXL view typically exceeds the
size of main memory, therefore, the sorted, outer-union
approach [9] best suits our needs. This approach con-
structs one large, SQL query from the view query; reads
the SQL query’s resulting tuple stream; and then adds
XML tags. The SQL query consists of several left-outer
joins, which are combined in outer unions. The result-
ing tuples are sorted by the XML element in which they
occur, so that the XML tagging algorithm can execute
in constant space [9]. SilkRoute initially used a more
naive approach, in which the view query was decom-
posed into multiple SQL queries that do not contain
outer joins or outer unions. Each result is sorted to
permit merging and tagging of the tuples in constant
space. We call this the fully partitioned strategy.

This work makes two contributions. First, we show
experimentally that neither of the above approaches is
optimal. This is surprising for the sorted outer-union
strategy, because only one SQL query is generated, and
therefore has the greatest potential for optimization by
the RDBMS. In experiments on a 100MB database, we
found that the outer-union query was slower than the

Supplier(*suppkey, name, addr, nationkey)
PartSupp(*partkey, suppkey, availqty)
Part(*partkey, name, mfgr, brand, size, retail)
Customer(*custkey, name, addr, nationkey, ph)
LineItem(*orderkey, partkey, suppkey, lno, qty, prc)
Orders(*orderkey, custkey, status, price, date)
Nation(*nationkey, name, regionkey)
Region(*regionkey, name)

Figure 1: Fragment of TPC-H Schema

queries produced by the fully-partitioned strategy. We
found that the optimal strategy generates multiple SQL
queries, but fewer than the fully partitioned strategy,
therefore the optimal SQL queries may contain outer
joins and outer unions. XML tagging still uses constant
space, because it merges sorted tuple streams. The op-
timal strategy executes 2.5 to 5 times faster than the
sorted outer-union and fully-partitioned strategies.

Given this finding, we want to devise an algorithm
for decomposing an RXL view query into an optimal
set of SQL queries. This problem is complicated by two
issues. First, the RXL view query may be large, be-
cause it constructs an XML document and, therefore, is
as complex as the output schema. Public DTD’s have
up to several hundreds elements and several thousand
attributes, therefore any program or query generating
XML documents for those DTDs must have a compa-
rable complexity [7]. This rules out exhaustive-search
strategies like the dynamic-programming algorithm of
System R [8]. Second, our algorithm must function
in a middle-ware system, and, therefore cannot rely on
RDBMS-specific heuristics.

Our second contribution is a greedy optimization al-
gorithm for the XML view-evaluation problem. The
algorithm decomposes a RXL query into a set of SQL
queries. The search algorithm is guided by estimates of
query cost and data size provided by the RDBMS. We
evaluated the algorithm on two views of the TPC/H
database and found that, for both views, it generated
the optimal strategies.

2. MOTIVATING EXAMPLE
We motivate the problem of efficient generation of

XML views from databases with an example. We use
the TPC Benchmark ’H’ database [11], which contains
information about parts, the suppliers of those parts,
customers, and their part orders. Fig. 1 contains a frag-
ment of the database’s schema specified in datalog syn-
tax. Key attributes are denoted by the ’*’ prefix. For
example, the Supplier relation has four attributes and
its key is the suppkey attribute.

We assume that information in this database needs
to be exported in the format determined by the DTD
in Fig. 2. This DTD specifies the XML format for the
entire contents of the TPC database. Each supplier

element includes its name, its nation, the geographi-
cal region of the nation, and a list of the supplier’s
parts. Each part element includes a part name and
a list of orders pending for the part. Each order ele-
ment includes an orderkey, the associated customer, and

<?xml encoding="US-ASCII"?>
<!ELEMENT suppliers (supplier*)>
<!ELEMENT supplier (name, nation, region, part*)>
<!ATTLIST supplier ID ID>
<!ELEMENT name (#PCDATA)>
<!ELEMENT nation (#PCDATA)>
<!ELEMENT region (#PCDATA)>
<!ELEMENT part (name, order*)>
<!ATTLIST part ID ID>
<!ELEMENT order (orderkey, customer, cnation)>
<!ATTLIST order ID ID>
<!ELEMENT orderkey (#PCDATA)>
<!ELEMENT customer (#PCDATA)>

Figure 2: DTD of XML data about suppliers.

the customer’s nation. The name, nation, region, and
customer elements all contain strings.

To keep the example simple, we designed a DTD
that follows naturally from the relational schema, but
in practice, this may not be possible. DTDs for data ex-
change are created by agreement between partners and
will not match each partners relational schema exactly.
The DTD is also not unique: a different DTD might be
specified by a public consortium of parts suppliers to
provide access to order information for their customers.
These requirements rule out automatic generation of the
DTD or of the mapping between the relational schema
and the DTD.

In SilkRoute, the mapping from the relational schema
to the XML view is specified in RXL (Relational to
XML transformation Language). RXL combines the
extraction part of SQL (the from and where clauses),
with the construction part of XML-QL (the construct

clause). Fig. 3 contains the RXL query mapping the
relational data to an XML output that is valid with re-
spect to our DTD. As in SQL, the from clause declares
tuple variables that iterate over tables. In this example,
$s is a tuple variable that iterates over the Supplier

table. The where clause contain conditions over these
variables: for example $s.nationkey = $n.nationkey

is a join condition. The construct clause specifies an
XML fragment, which may contain expressions over the
tuple variables.

RXL has three features that support creation of arbi-
trarily complex XML structures: nested queries, block
structure, and Skolem functions. Nested queries oc-
cur inside construct clauses to construct sets of sub-
elements. The block structure permits independent sub-
queries to construct different sets of elements, i.e., par-
allel blocks express union. For example, the outermost
query in Fig. 3 has two sub-queries delimited by block
boundaries {...}, each constructing a different set of
elements. Skolem functions (not illustrated here) can
be used to fuse objects constructed by different queries,
which is useful in data integration.

To evaluate the RXL query computing the XML view,
we must compute one or more SQL queries to extract
and group the data for the XML view then add the XML
tags. We focus here on generating the SQL queries.
Each sub-query in the view definition corresponds to a
SQL query, but they are correlated, and it is unclear

from Supplier $s

construct

<supplier> <name>$s.name</name>

{ from Nation $n

where $s.nationkey = $n.nationkey

construct

<nation>$n.name</nation>

{ from Region $r
where $n.regionkey = $r.regionkey
construct <region>$r.name</region> } }

{ from PartSupp $ps, Part $p

where $s.suppkey = $ps.suppkey,

$ps.partkey = $p.partkey

construct

<part> <name>$p.name</name>

{ from LineItem $l, orders $o
where $ps.partkey = $l.partkey,

$ps.suppkey = $l.suppkey,
$l.orderkey = $o.orderkey

construct
<order>

<orderkey>$o.orderkey</orderkey>
{ from Customer $c

where $o.custkey = $c.custkey
construct

<customer>$c.name</customer>
{ from Nation $n2

where $c.nationkey =
$n2.nationkey

construct
<cnation>$n2.name</cnation>
}

}
</order> }

</part> }

</supplier>

Figure 3: Query 1 : RXL view of TPC-H.

<supplier>

<part><nation>
S1.1(suppkey(1,1),name(2,1)) :−

1 *

 Supplier(suppkey(1,1), _, _, _)
S1(suppkey(1,1)) :−

S1.2(suppkey(1,1),pname(2,2)) :−
Supplier(suppkey(1,1), _ , _, nationkey),
Nation(nationkey, name(2,1), _)

Supplier(suppkey(1,1), _, _, _),
PartSupp(partkey, suppkey(1,1), _),
Part(partkey, pname(2,2), _, _, _, _)

Figure 4: View tree for query fragment

how to put them together. To illustrate, we use the
simpler RXL query contained in the boxes in Fig. 3.

The set of all possible choices are best visualized on
the intermediate representation for RXL queries, which
we call a view tree. Fig. 4 depicts the view tree for our
simplified RXL query. Each node corresponds to an ele-
ment in one of the construct clauses in the RXL query,
and is annotated by a non-recursive datalog query that
computes all instances of that node in the output XML.
It is also possible to derive from the queries the multi-

(a)

1 1*

*

<nation>

<supplier>

<part> <nation> <part>

(d)(c)

<supplier>

(b)

<part>

<supplier>

<nation><part><nation>

<supplier>

Figure 5: Execution plans for query fragment

plicities of the parent/child relationships, which are in-
dicated by the labels 1 and *: the 1 between <supplier>

and <nation> indicates that each <supplier> element
in the output XML document will have exactly one child
of type <nation>, and the * between <supplier> and
<part> means that <supplier> may have zero or more
many children of type <part>. Sec. 3.5 describes how
to derive the multiplicities automatically.

The view tree makes it clear how to generate queries.
A ’1’-labeled edge requires an inner join, while a * re-
quires a left outer join. Hence, the view tree corresponds
to the following SQL query:

select s.suppkey, n.name, Q.partkey, Q.name

from Supplier s, Nation n

where s.nationkey = n.nationkey

left outer join

(select ps.suppkey as suppkey, p.name as pname

from PartSupp ps, Part p

where ps.partkey = p.partkey

) as Q

on s.suppkey = Q.suppkey

order by s.suppkey

We need an outer join because there could be suppli-
ers without parts, and they need to appear in the XML
document. The order-by clause groups tuples from the
same supplier together and allows the tagger to con-
struct the <supplier> element using little memory.

We call the above query a “unified” translation, be-
cause it corresponds to the entire view tree and produces
one relation. It is equivalent to the sorted outer union
query in [9]. This is not the only choice. We can split
the view tree into connected components, and generate a
separate SQL query for each such component. Fig. 5 il-
lustrates how to do this systematically: (a) corresponds
to the query above, while (b), (c), and (d) are three al-
ternative ways to partition the view tree into connected
components. Each produces a set of SQL queries. For
example, plan (b) results in the two SQL queries:

select s.suppkey, n.name

from Supplier s, Nation n

where s.nationkey = n.nationkey

S1.1
<name>

S1.2
<nation>

S1.4
<part>

<orderkey> <customer> <cnation>

S1.3

<order>
S1.4.2

S1.4.2.3S1.4.2.2S1.4.2.1

S1
<supplier>

<name>
S1.4.1

1 1
1

1 1 1

*1

*

<region>

Figure 6: Labeled view tree for Query 1

order by s.suppkey

select s.suppkey, p.name

from Supplier s, Part p, PartSupp ps

where s.suppkey = ps.suppkey and

ps.partkey = p.partkey

order by s.suppkey

Notice that no outer join is needed, because the first
query produces all the values for Supplier. The tagger
must merge the two sorted tuple streams to produce
the XML elements. Fig. 5(c) corresponds to two SQL
queries and Fig. 5(d) to three SQL queries (omitted).

Fig. 6 depicts the view tree for the large RXL query
in Fig. 3. In this view tree, there are nine edges and 29

or 512 subsets of edges, each of which corresponds to
a partition of the tree. Therefore there are 512 possi-
ble plans for splitting the tree into a collection of SQL
queries; each plan consists of between 1 and 10 tuple
streams. On a TPC/H database of 100MB, some run-
ning times were:

No. of queries Total Time Query Time
10 1837s 584s
5 592s 244s
1 2729s 1234s

Total time includes the time to execute the query at the
server and to bind and transfer the data to SilkRoute.
The first plan splits the RXL query into ten small SQL
queries, whose sorted tuple streams are merged by the
tagger. The best plan consists of five SQL queries; in
this case, the tagger merges five tuple streams. The last
plan is the sorted outer-union plan. We note here that
the optimal plan is substantially faster than the fully
partitioned and sorted outer union plans, both of which
one might expect to perform well. Also, several other
plans, consisting of 3, 4, and 6 SQL queries, performed
almost as well as the optimal plan: under 600s (246s).

In general, there are 2|E| possible translations of an
RXL query into one or more SQL queries, where |E| is
the number of edges in the query’s corresponding view
tree. Given the exponential number of potential plans,
SilkRoute uses heuristics to choose a good plan. In com-
mercial XML middle-ware products, the user typically
must write these SQL queries himself, which effectively
“hard wires” the evaluation plan into the XML view.
This may seem like a reasonable requirement, but in

practice, it is difficult to choose a good plan. The sim-
plest choices are to always produce one unified rela-
tion as in Fig. 5(a) or fully partitioned relations as in
Fig. 5(d). We show in Sec. 4 that these plans are often
substantially slower than the optimal plans.

3. PLAN GENERATION
This section gives a formal definition of a view tree

and describes the algorithm for translating a partitioned
view tree into one or more SQL queries. Fig. 7 depicts
the architecture of the planner and translator. The
planner partitions a view tree into one or more sub-
trees; for each subtree, one SQL query is generated. The
translator submits the SQL queries to the underlying
RDBMS, reads in the result relations, and constructs
one integrated (logical) relation. A tuple in the inte-
grated relation represents a path from the root element
to a leaf element in the result XML document. The
XML document is constructed by re-nesting the tuples
in the result relation and tagging each element.

3.1 View tree
We represent an RXL view query V by a view tree,

which consists of a global XML template and a set of
datalog rules. The global XML template is obtained by
merging all V ’s XML templates from all its construct

clauses. Every XML template has an associated Skolem
term, that uniquely identifies the XML template in an
RXL view. Elements from two different XML tem-
plates are merged if and only if they have the same
Skolem function, hence each Skolem function occurs ex-
actly once in the view tree. For example, the tree in
Fig. 4 represents the global XML template for the query
fragment in Fig. 3. Users can define Skolem terms ex-
plicitly in each XML element, in order to control how
elements are grouped. Where Skolem terms are missing,
the system introduces them automatically: it creates a
new Skolem function name for each element; and its ar-
guments are all keys of all tuple variables whose scope
includes the XML element and all variables that are con-
tained in that element. In Fig. 4, the system introduced
Skolem functions S1, S1.1, and S1.2; the argument of S1
is suppkey(1,1), thus the Skolem term S1(suppkey(1,1))
uniquely identifies the supplier element. SilkRoute’s
XML generator uses the XML template to instantiate
the result document. The arguments of S1.1 should be
suppkey(1,1), nationkey, and name(2,1), and S1.2’s argu-
ments should be suppkey(1,1), partkey, and pname(2,2).
To simplify presentation, we assume that name func-
tionally determines nationkey, and pname functionally
determines partkey, which simplifies S1.1’s arguments
to suppkey(1,1) and name(2,1), and S1.2’s arguments to
suppkey(1,1) and pname(2,2).

A view tree’s datalog rules are non-recursive. Their
heads are Skolem terms, and their bodies consist of re-
lation names and filters. The datalog rules are con-
structed as follows. For each occurrence of a Skolem
function F in V , we construct one rule of the form
F (x, y, . . .) :- body, where body is the conjunction of all
from and where clauses in the scope where F occurs.
In both the XML template and in the datalog rules, we

R1

R2

Rk

Partioned
Relations

RDBMS

SQL1

SQL2

SQLk

.

Partitioned
SQL Queries

Partitioned

View Tree
XML Document

<supplier>

<name>

View Tree

<part>

Partition
Generation

SQL

Integrated (Logical)
Relation

Integrate Tag

name
suppkey pname

Figure 7: Architecture of query planner and translator

replace the tuple variables used in RXL by column vari-
ables. The head of a datalog rule corresponds to an
element in the XML template, and a rule’s body defines
the conditions under which the element is created.

When assigning a Skolem term to a node, we associate
a Skolem-function index with each Skolem function and
a Skolem-term variable index with each Skolem variable.
A Skolem-function index uniquely defines the tag and
location of a node. These indices are used to sort the
tuples of partitioned relations and during tagging of the
XML document. An index (l1.l2. . . .) is assigned to each
node in breadth-first order. For example, S1 is assigned
to the root, and S1.1 is assigned to the root’s first child
(Fig. 4 and 6). Each Skolem-term variable v is assigned
a Skolem-term variable index (p, q) as follows. Let nv
be the node closest to the root that has v in its Skolem
term. Then, p is equal to the level of nv in the view
tree, and q is the first integer that such that (p, q) is
unique for all variables in the tree. For example, in
Fig. 4 the variable suppkey is assigned index (1,1), be-
cause its containing element is at level one, and it is
the first variable in the term, and the variable pname

is assigned (2,2), because it is the second variable that
appears in a term at level two.

3.2 View-tree partitioning
The planner produces one plan for each spanning for-

est of the view tree, so it produces 2|E| plans, where
|E| is the number of view-tree edges. Fig. 5 contains
the possible plans for the query fragment in Fig. 3. The
planner produces one SQL query for each tree in a span-
ning forest. In Sec. 5, we present a greedy algorithm
that heuristically chooses a subset of the 2|E| plans.

For each tree in a spanning forest, we must define
the schema of the relation that computes the nodes in
the tree. Consider the unified plan in Fig. 5(a) that
corresponds to the entire view tree. Given the database
instance on the left in Fig. 8, the corresponding query
produces the XML document on the right. The result
of the SQL query is the relation in Fig. 9. Note that
this relation is equivalent to the integrated relation.

In general, let Ti be one spanning tree in a parti-
tioned view tree T , and let SFImax(Ti) be the maxi-
mum length of the Skolem-function indices in Ti. Let Ri
be the partitioned relation that corresponds to Ti. Its
schema is defined to be the set of attributes attrs(Ri) =
SFIattrsi ∪ STVattrsi where

L1 L2 s.suppkey(1,1) n.name(2,1) p.name(2,2)

1 1 supp#1 USA
1 2 supp#1 plated brass
1 2 supp#1 anodized steel
1 1 supp#2 Spain
1 1 supp#3 France
1 2 supp#3 polished nickel

Figure 9: Integrated relation for Plan (a)

Plan (c), node <nation>;
L1 L2 suppkey(1,1) name(2,1)

1 1 supp#1 USA
1 1 supp#2 Spain
1 1 supp#3 France

Plan (c), edge <supplier>-<part>:
L1 L2 suppkey(1,1) pname(2,2)

1 2 supp#1 plated brass
1 2 supp#1 anodized steel
1 supp#2
1 2 supp#3 polished nickel

Figure 10: Relations for Plan (c) in Fig. 5

• SFIattrsi = {”Lj”|1 ≤ j ≤ SFImax(Ti)}, and

• STVattrsi = {v|v, a Skolem-term variable in Ti}.

Fig. 10 contains partitioned relations for Fig. 5(c). The
first relation corresponds to the tree containing only
the nation node: its Skolem-function index contains
the labels L1 and L2, and two Skolem-term variables
suppkey(1,1) and name(2,1). The tuples in an instance of
a partitioned relationRi are sorted by L1, V(1,1) . . . , V(1,n1),
L2, V(2,1) . . . , V(2,n2), etc. This order is consistent with
the structural relationship between the elements in the
result XML document.

3.3 Integration and tagging
Regardless of the number of trees into which we par-

tition the view tree, the associated partitioned relations
Ri are sufficient to reconstruct the integrated relation
(corresponding to a single partition of the viewtree), in
a single pass. In SilkRoute, the integrated relation is
virtual, i.e., it does not materialize the relation. In-
stead, the result XML document is constructed directly
from the partitioned relations. Limited space prevents
presentation of the tagging algorithm. Informally, the
tagging algorithm merges the partitioned tuple streams
into one tuple stream, nests the tuples, and tags their

Supplier(supp#1, "USA Metalworks", "New York", usa#24)
Supplier(supp#2, "Romana Espanola", "Madrid", spain#3)
Supplier(supp#3, "Fonderie Francais","Paris", france#19)

Nation(usa#24, "USA", reg#1)
Nation(japan#3, "Spain", reg#2)
Nation(rom#19, "France", reg#3)

PartSupp(part#4, supp#1, 100)
PartSupp(part#12, supp#1, 320)
PartSupp(part#20, supp#3, 64)

Part(part#4, "plated brass", mfgr#3, "Brand1", "S", 904.00)
Part(part#12, "anodized steel", mfgr#4, "Brand2", "M", 912.01)
Part(part#20, "polished nickel", mfgr#1, "Brand3", "L", 920.02)

<supplier key="supp#1">
<nation>USA</nation>
<part>plated brass</part>
<part>anodized steel</part>

</supplier>
<supplier key="supp#2">

<nation>Spain</nation>
</supplier>
<supplier key="supp#3">

<nation>France</nation>
<part>polished nickel</part>

</supplier>

Figure 8: Example fragment of TPC-H database instance and fragment of result XML document

values. The required memory size of the algorithm de-
pends only on the number of nodes and Skolem-term
variables in the view tree. It does not depend on the
size of the database instance, therefore the algorithm
scales well as the size of the underlying database, and
corresponding XML document, increases.

3.4 SQL generation
SilkRoute uses outer-join plans to construct queries

for partitioned relations. The outer-join plans can be
implemented using the outer-join and union operators of
SQL. For example, one possible SQL query for Fig. 5(a)
uses a left-outer join to combine the root (supplier)
node with its children nodes, and it uses a outer union
to combine the children nodes (the nation and part

elements). 1

select 1 as L1, L2, s.suppkey, Q.name, Q.pname

from Supplier s

left outer join

((select 1 as L2, n.nationkey as nationkey,

n.name as name, null as suppkey,

null as pname

from Nation n)

union

(select 2 as L2, null as nationkey,

null as name, ps.suppkey as suppkey,

p.name as pname

from PartSupp ps, Part p

where ps.partkey = p.partkey)

) as Q

on (L2=1 and s.nationkey = Q.nationkey)

or (L2=2 and s.suppkey = Q.suppkey)

sort by L1, s.suppkey, L2, Q.nationkey,

Q.name, Q.pname

The structure of outer-join plans using left-outer joins
and unions corresponds closely to the structure of sub-
trees. The sub-query for a node n in a view tree and
the sub-queries of n’s children are combined with an

1We also can use the SQL ’with’ clause to construct par-
titioned relations that satisfy the definition in Section
4.3.1, if the RDBMS supports it.

outer join. The sub-queries for n’s children (siblings)
are combined with an outer union. The outer union is
necessary because sibling nodes have different relational
structures: in the relation that computes a node m, the
attributes of m’s siblings are null values. The query
above can be simplified further by view-tree reduction,
which we describe in the next section.

The outer-join plan is different from the outer-union
plan [9] described in Sec. 2. They correspond to (R left-
join (S ∪ T)) and ((R leftjoin S) ∪ (R leftjoin T)),
respectively. The outer-union plan combines parent and
child nodes using inner or outer joins and combines sub-
tress with outer unions. In general, SilkRoute can use
either strategy to generate queries, but it currently im-
plements outer-join plans. For completeness, we include
the outer-union plan in the experiments in Sec. 4 and
distinguish clearly between the unified outer-join and
outer-union plans in our results.

Some of the plans SilkRoute produces do not require
outer union, outer join, or the with clause. For example,
a fully partitioned plan has no edges and requires none
of these constructs. Plans with no branches (i.e., no
sibling nodes) do not require the union operator. This
characteristic is especially useful in a middle-ware sys-
tem, because all SQL engines do not necessarily support
all these constructs. In those cases, SilkRoute chooses
permissible plans based on the source description of the
underlying RDBMS.

3.5 View-tree reduction
The view tree is a flexible intermediate representa-

tion, because it supports generation of multiple execu-
tion plans, but its flexibility can introduce redundant
queries in the view tree and in corresponding execu-
tion plans. Recall that a single condition in an RXL
query often guards the creation of multiple elements,
e.g., the part and name elements in Query 1 are both
guarded by the conditions $s.suppkey = $ps.suppkey

and $ps.partkey = $p.partkey. In the corresponding
view tree, the two elements are guarded by distinct,
but equivalent, datalog rules. During plan generation,
we would like to eliminate redundant queries by iden-

tifying “reducible” edges in the view tree. An edge is
reducible if the queries associated with its nodes are
equivalent, or if the query associated with a child node
has a functional or inclusion dependency on the query
of its parent node. In both cases, one query can be
eliminated, because it is implied by the other.

After generating a partitioned view tree, the planner
reduces the view tree in two steps. First, edges in the
view tree are assigned labels that indicate the potential
number of child elements in the result XML instance.
Second, groups of nodes connected by ’1’-labeled edges,
which represent functionally dependent queries, are col-
lapsed into one node by combining their queries. Af-
ter view-tree reduction, SQL generation proceeds as de-
scribed in Sec. 3.4.

We illustrate the labeling step on the view tree in
Fig. 6. The edge labels ’1’, ’?’, ’+’ and ’*’, denote one,
zero or one, one or more, and zero or more child ele-
ments, respectively. An RXL query does not contain
sufficient information to label edges, because the possi-
ble number of XML elements depends on the database
constraints. Currently, the database constraints are spec-
ified in a source description file, but they could be de-
rived from key constraints and referential constraints ex-
tracted from the schema of the target database. Given
these inputs, SilkRoute labels the view tree edges as
follows. Assume that p and c are the parent and child
nodes of an edge e, where their queries are F (x1, . . . , xm)
:- Qp and G(x1, . . . , xm, . . . , xn) :- Qc, respectively. Let
Rp = {〈x1, . . . , xm〉|Qp} andRc = {〈x1, . . . , xm, . . . , xn〉|Qc}
be the relations defined by queries Qp and Qc. Then, e
is labeled:

C1
true false

C2 true 1 +
false ? *

• C1 is true if and only if there exists a functional
dependency Rc : x1, . . . , xm → xm+1, . . . , xn.

• C2 is true if and only if there exists an inclusion
dependency Rp[x1, . . . , xm] ⊆ Rc[x1, . . . , xm].

The inverse of C2, Rc[x1, . . . , xm] ⊆ Rp[x1, . . . , xm],
always holds, because RXL’s semantics always define a
tree. Therefore, C2 implies πx1,... ,xm(Rc) = Rp in this
context. In general, the problem of checking whether
a given set of functional and inclusion dependencies
implies another set of dependencies is undecidable [1].
SilkRoute uses heuristics and known algorithms for re-
stricted problems. In particular, it does not consider
inclusion dependencies when it checks if a functional
dependency can be derived, which allows the check to
be done in linear time [2]. From our experience, this
solution is adequate for typical RXL queries.

In the second step, the view tree’s nodes are grouped
into equivalence classes: each class contains nodes that
are reachable only by ’1’-labeled edges. Fig. 11 illus-
trates this step. For each such class, a new Skolem term
S is created, and a new datalog rule S(v1, . . . , vm) :- Q
is created, where, v1 . . . vm, are the union of the Skolem-
term arguments of each node in the class, and Q′ is the

<name> <region> <part><nation>

*

1
1

*

1

1
1 1

<supplier>
S1(v1)

S1.1(v1,v2) S1.2(v1,v3) S1.3(v1,v4) S1.4(v1,v5)

S1.4.1(v1,v5,v6)
<order><name>

S1.4.2(v1,v5,v7)

<orderkey>
S1.4.2.1(v1,v5,v7,v8)

<cnation>
S1.4.2.3(v1,v5,v7,v10) <customer>

S1.4.2.2(v1,v5,v7,v9)
(a) Partitioned view tree of an execution plan

<supplier>
<name>
<region>

S1’(v1,v2,v4)

<nation>
S1.2’(v1,v3)

<part>
<name>

S1.4’(v1,v5,v6)

(b) Partioned view tree after reduction
S1.4.2’(v1,v5,v7,v8,v9,v10)

<cnation>
 <customer>

<order>
<orderkey>

Figure 11: Example of view tree reduction

conjunction of all the nodes’ query bodies. In each class,
the greatest-common-ancestor node is replaced by the
node S(v1, . . . , vm). In Fig. 11, the equivalence classes
are {S1, S1.1, S1.3}, {S1.4, S1.4.1}, and {S1.4.2,
S1.4.2.1, S1.4.2.2, S1.4.2.3}. They are replaced
by S1’, S1.4’, and S1.4.2’, respectively.

Two potential benefits of view-tree reduction are that
it can reduce the number of outer joins2, and it can re-
duce the total size of the relations and therefore, the
total size of data transferred. In general, whether view-
tree reduction actually decreases the data size depends
on the characteristics of submitted queries and database
instances. For example, in Fig. 11, if the data size of
<region> element dominates, then in the reduced view
tree, its large data value would occur in every tuple in
the relation for S1’, which could increase data-transfer
time. Both query-only time and data-transfer time of
a reduced plan, therefore, may not always be faster
than the corresponding non-reduced plan. To allevi-
ate this problem, we can prohibit the reduction of spe-
cific nodes based on the average data size estimated by
the target database. We use view-tree reduction as a
plan-improving heuristic: given a set of arbitrary non-
reduced plans, the corresponding set of reduced plans,
in general, are more efficient. Our experimental results
support this heuristic.

4. EXPERIMENTS
One important feature of a view tree is that it permits

us to generate and compare all possible execution plans
for an RXL query. As discussed in Sec. 2, other XML

2The current query generator constructs for each node
an outer join with the union of its children, which diss-
apears when all children are labeled ’1’.

1

1
1 1 *

*

11

S1
<supplier>

<order>
S1.5S1.4

<part><name>
S1.1

<nation>
S1.2

<region>

1

<name>
S1.4.1 <orderkey>

S1.5.1
<cnation>

S1.5.3S1.5.2
 <customer>

S1.3

Figure 12: Labeled view tree for Query 2

Database Server Client
Config Size Platform Platform

A 1 MB AMD K6-2 SGI
350 MHz Challenge L
256MB mem 4GB mem
1GB swap IRIX64 V6.5
Linux RH 6.1

B 100 MB Intel Celeron Intel
566 MHz Pentium III
256 MB mem 192 MB mem
1GB swap Linux RH 6.2
Linux RH 6.2

Table 1: Experimental Configurations

publishing systems produce either a unified or fully par-
titioned plan. Here, we present experiments that com-
pare these default plans to the “optimal” plans, i.e.,
those plans that have the fastest execution times com-
pared to all others. SilkRoute uses an outer-join strat-
egy to generate plans, so its unified plans are not equiv-
alent to outer-union plans [9]. For completeness, we in-
clude a unified outer-union plan in the experiments. We
also compare plans generated from non-reduced view
trees with those generated from reduced view trees.

We also generated plans for Query 2. Query 2 is iden-
tical to Query 1 except that the block defining the order
node is a child of the supplier node instead of the part

node. Fig. 12 depicts its view tree. In Query 1, the two
one-to-many edges (labeled “*”), are nested in a chain,
whereas in Query 2, the two ’*’ edges are parallel. A
’*’ edge corresponds to a outer join in an SQL query, so
each query stresses an SQL engine in a different way:
Query 1 has nested outer joins and Query 2 has unions
of outer joins.

The experiments were run using two database con-
figurations (Table 1). Configuration A used the TPC-
H Database with 1 MB of data, and Configuration B
used a 100 MB database. Exhaustive query plans were
generated for Config. A; Config. B is used in Sec. 5 to
evaluate our plan-generation algorithm. Due to licens-
ing restrictions, we are not permitted to identify the
commercial product used in our experiments. In the
experiments, the database client was a simple Java pro-
gram that submitted SQL queries to the database server
and read tuples from the tuple streams via JDBC. Both
configurations use JDK 1.2 and JDBC 1.2.2.

Recall that each view tree has ten edges. As described
in Sec. 3, one plan is generated for each subset of edges
in the view tree, so there are 512 possible plans for each

query. Each plan generates between one and ten SQL
queries, each of which produces one tuple stream.

Figures 13 and 14 plot the execution times of the 512
plans for Queries 1 and 2, respectively. The horizontal
axis is the number of tuple streams per plan and the
vertical axis is the execution time in milliseconds, on
a log scale. Both total time and query-only time were
measured on the SilkRoute client. Total time includes
query execution time on the database server and data
transfer time to the client: timing began when the first
SQL query was submitted to the server and terminated
when the last tuple was read from the last tuple stream.
Query-only time includes the time until the first tuple
is read from a tuple stream. The time to first tuple is
comparable to the time to count all tuples in the result
on the server only, so pipelining of output during query
execution did not effect our measurements. If a sub-
query did not complete within 5 minutes, no time was
reported. For Query 1, 101 plans timed out; for Query 2,
no plans timed out.

For non-reduced trees, the outer-union and fully par-
titioned plans are slightly slower than the optimal plans.
Figures 13(a) and 14(a) plot the query-only time for
non-reduced trees. In Fig. 13(a), the unified outer-union
plan (diamond) is 16% slower than optimal and the fully
partitioned plan is 24% slower. In Fig. 14(a), the outer-
union plan is 21% slower and the fully partitioned plan
is 41% slower.

Recall from Sec. 3.5 that view-tree reduction elimi-
nates redundant queries in a view tree. To determine
the effect of view-tree reduction on execution time, we
generated 512 plans for Queries 1 and 2 and then ap-
plied the view-tree reduction algorithm to each plan.
Figs. 13(b) and 14(b) contain the query-only times of
the plans with view-tree reduction. These graphs should
be compared to Figs. 13(a) and 14(a), respectively. Note
that view-tree reduction significantly reduces query-only
time. For both Queries 1 and 2, the ten fastest re-
duced plans are 2.5 times faster than the ten fastest
non-reduced plans, and the optimal plans are 2.6 to 4.3
times faster than the outer-union and fully partitioned
plans.

The differences for total execution times, which in-
clude data-transfer time, are similar. For Query 1 in
Fig. 13(c), the unified outer-union (triangle) is four times
slower than optimal, and the fully partitioned plan is
three times slower. For Query 2 in Fig. 14(c), the uni-
fied outer-union plan is 4.8 slower than optimal, and the
fully partitioned plan is 3.7 times slower.

We note that for query-only time, the unified outer-
union plan is only slightly slower than the unified outer-
join plan, but its total execution time is much faster.
The outer-join plan actually produces fewer, but wider,
tuples than the outer-union plan; the additional width
may induce anomalous caching behavior in JDBC. This
suggest that we could further improve the total running
time of the best plans if we rewrite them from outer
joins to outer unions.

5. PLAN-GENERATION ALGORITHM

0
�

2 4 6� 8� 10

1000

10000

100000
T

im
e

in
 m

se
c

�

0
�

2 4 6� 8� 10

1000

10000

100000

0
�

2 4 6� 8� 10

1000

10000

100000

SQL queries (tuple stream) per plan
(a) Query time (b) Query time - with reduction (c) Total time - with reduction

Figure 13: Query 1, Configuration A (times in msec)

0
�

2 4 6� 8� 10

1000

10000

100000

T
im

e
in

 m
se

c

�

0
�

2 4 6� 8� 10

1000

10000

100000

0
�

2 4 6� 8� 10

1000

10000

100000

SQL queries (tuple stream) per plan
(a) Query time (b) Query time - with reduction (c) Total time - with reduction

Figure 14: Query 2, Configuration A (times in msec)

0
�

2 4 6� 8� 10

1000000

T
im

e
in

 m
se

c

�

0
�

2 4 6� 8� 10

1000000

Query time
Total time
Outer-union : Query time
Outer-union : Total time

SQL queries (tuple stream) per plan
(a) Query 1 (b) Query 2

Figure 15: Configuration B, with view-tree reduction (times in msec)

The experiments indicate that choosing a default uni-
fied, fully partitioned, or purely heuristic execution plan
is not effective in practice and that devising an algo-
rithm to generate near-optimal plans is worthwhile. The
graphs in Fig. 13 and 14 also suggest that there are
many near-optimal queries to choose from. The only re-
liable source of query costs is the target RDBMs. Given
that the target RDBMs can estimate the cost of a query,
we can use the target database to choose “good” edges
in a view tree, i.e., those edges whose two associated
queries are less expensive to evaluate together than sep-
arately.

Here, we present an algorithm that given a view tree,
returns an evaluation plan that contains a set of manda-
tory view-tree edges and a set of optional view-tree
edges. The algorithm uses the RDBMs to estimate the
relative cost of an edge in the view tree. For an edge
e = (sfi1, sfi2), where sfi1, sfi2 are the Skolem functions
associated with the edge’s parent and child nodes re-
spectively, we compare the sum of the costs of evaluat-
ing the queries associated with sfi1 and sfi2 to the cost of
evaluating the two queries combined. We use a simple

linear equation to estimate a query’s cost:

cost(q, a, b) = a ∗ evaluation cost(q) + b ∗ data size(q)

data size = f(|attrs(q)| ∗ cardinality(q))

The coefficients a and b assign weights to the query
evaluation cost and query data size, respectively. The
RDBMs serves as an oracle, providing the values for
the functions evaluation cost and cardinality. This
technique is feasible, because most commercial databases
provide support for estimating these costs.

Fig. 17 contains the plan-generation algorithm gen-
Plan. Fig. 16 contains the type signatures for the algo-
rithm’s functions. The function genPlan takes a view
tree ViewTree, the cost coefficients a and b described
above, and two thresholds: t1 is the maximum threshold
for a mandatory edge and t2 is the maximum threshold
for an optional edge. The recursive function addEdge

takes the current set of edges (Edges), the queries asso-
ciated with those edges (Queries), and the current sets
of mandatory and optional edges. On each recursive in-
vocation, addEdge computes the relative costs of every
edge ei in Edges:

cost = cost(qc)− (cost(q1) + cost(q2))

where q1 and q2 are the queries associated with ei’s par-
ent and child nodes, and qc is the result of combining q1
and q2. These costs are then sorted and addPlan con-
siders the edge e with smallest relative cost (i.e., the one
with greatest combined benefit). If the relative cost of e
is less than t1, the maximum threshold of a mandatory
edge, then e is added greedily to the mandatory edges of
the plan. Similarly, if e’s relative cost is less than t2, it
is added to the optional edges of the plan. The function
addEdge greedily adds edges until no remaining edge is
less than the mandatory or optional threshold.

The function combineQueries determines how to col-
lapse two queries into one query based on the label of
the edge in the view tree. The ’1’-labeled edges cor-
respond to inner joins and ’*’-labeled edges to outer
joins. In addition, combineQueries applies view-tree
reduction to eligible edges.

The complexity of the function genPlan isO(|Edges|2),
because addEdge recomputes the costs of every edge in
the view tree on each recursive call. This is not nec-
essary : instead, it could recompute the costs of those
edges incident to each edge e selected by addEdge, but
to simplify presentation of the algorithm, this definition
recomputes all the edge costs on each invocation.

5.1 Results
We applied the plan-generation algorithm twice to

the view trees for Query 1 and Query 2: in one case,
combineQueries did not apply view-tree reduction and
in the second, it did. The generated plans for Query 1
appear in Fig. 18 (a) and (b), and in Fig. 18 (c) and (d)
for Query 2.

The most important result is that the generated plans
correspond directly to the fastest plans measured in
Sec. 4. For Query 1, the plans generated from the
non-reduced and reduced view trees correspond to the

function genPlan(ViewTree, t1, t2, a, b) {
function addEdge(Edges, Queries, mandE, optE) {
// Compute relative cost of each edge in Edges
costE : {Cost} =

⋃
for ei in Edges {
let (sfi1, sfi2) = ei

q1 = getQuery(sfi1, Queries)
q2 = getQuery(sfi2, Queries)
qc = combineQueries(q1, q2, ei)

in (cost(qc) - (cost(q1) + cost(q2)), ei, qc)
}

// Sort edges by costs

sortedE = sort costE
// Greedily add "best" edge to plan
(i, e, qc) = head(sortedE)
if (i < t1 || i < t2) {
let (sfiq, svtq, bodyq) = qc
// Add e to plan

mandE’ = if (i < t1) mandE ∪ {e} else mandE
optE’ = if (i >= t1 && i < t2) optE ∪ {e}

else optE
(sfi1, sfi2) = e
// Remove edge e from Edges
Edges′ = Edges - {e}
// Remove e’s queries from Queries
Queries′ = (Queries - { getQuery(sfi1,Queries) }) -

{ getQuery(sfi2, Queries) }
// Add combined query qc to Queries
Queries′′ = Queries′ ∪ {qc}
// Remove edges incident to e from Edges
incidentE = incidentEdge(Edges, e)
Edges′′ = Edges′ - incidentE
// For each edge incident to e, add new edge

// that is incident to combined node defined

// by query qc
Edges′′′ = Edges′′

⋃
for i in incidentE {

let (sfiu, sfiv) = i in

if (sfiu == sfi1 || sfiu == sfi2)

{ (sfiq, sfiv) }
else { (sfiu, sfiq) }

}

in addEdge(Edges′′′, Queries′′, mandE’, optE’)
} else (mandE, optE)
}
let (Edges, Queries) = ViewTree
in addEdge (Edges, Queries, {}, {})
}

Figure 17: Greedy algorithm for plan generation

fastest 32 plans. For Query 2, the plans generated from
the non-reduced view tree correspond to the fastest 32
plans, and the plans generated from the reduced view
tree correspond to the first 31 and the 34th fastest plans.
In Configuration B, the size of the database was 100
MB, so it was not possible to exhaustively test all 512
plans. Instead, we ran the greedy algorithm using view-

Edge = SFI× SFI A view-tree edge is a pair of Skolem-function indices
Query = SFI× SVI×Body A query is a Skolem-term and a body of relation names and filters
ViewTree = {Edge} × {Query} A view tree contains a set of edges and a set of queries
Cost = Int×Edge×Query The cost of an edge, the edge, and the query if the edge is collapsed
getQuery : SFI× {Query} → Query
incidentEdge : E : {Edge} × e : Edge→ [Edge] Returns edges in E incident to e
combineQueries : Query ×Query ×Edge→ Query Combines two queries on given edge into one query
addEdge : E : Edge× plan : Edge Sorts edges in E by costs and adds qualifying edge to plan
genPlan : ViewTree× Int× Int× Int× Int
→ {Edge} × {Edge} Returns plan containing mandatory and optional edges

Figure 16: Types and functions of greedy algorithm

tree reduction and compared the generated plans with
the unified and fully partitioned plans. Sixteen plans
were generated for Query 1; they appear in Fig. 18 (b).
(Each subset of the four optional edges defines a plan.)
Eight plans were generated for Query 2; they appear
in Fig. 18 (d). Fig. 15 plots the query-only and total-
execution times for these plans and for the unified outer-
union and fully partitioned plans.

For Query 1 in Fig. 15(a), the query-only time of the
outer-union was five times slower than the optimal plan
and the fully partitioned plan was 2.4 times slower. For
Query 2, the differences were similar; the outer-union
plan was 4.7 times slower than the optimal plan and the
fully partitioned plan was 2.6 times slower. These re-
sults indicate that as the size of the XML view increases,
generating optimal plans becomes imperative. Compar-
ing total execution times for both Query 1 and 2, the
outer-union plan was 4.6 times slower and the fully par-
titioned plan was 3.1 times slower.

For all the plans generated, we used the same values
for the coefficients a (100) and b (1) and the thresholds
t1 (-60000) and t2 (6000), which indicates that the linear
cost function depends primarily on the characteristics of
the database environment, and not on the characteris-
tics of the query. Further experiments using a larger set
of test queries are necessary to confirm this hypothesis.

Recall that the complexity of the plan-generation al-
gorithm is O(|Edges|2) and that on each edge access,
the algorithm requests the estimated costs of evaluation
time and data size from the target database’s query op-
timizer. For Queries 1 and 2, we found that the actual
number of database requests for query-cost estimates
were much smaller than the expected number of requests
(92 = 81). Both Queries 1 and 2 required 22 requests
for the non-reduced view tree and 25 requests for the
reduced view tree.

6. RELATED RESEARCH AND SYSTEMS
Shanmugasudaram et al. [9] describe several meth-

ods for computing XML views with relational engines.
They classify the methods along three axis: early/late
structuring, early/late tagging, and in-engine/outside-
engine XML generation. They consider a variety of
algorithms and compare them experimentally. In the
unordered outer union strategy, the tagger uses a main
memory hash table to assemble the XML objects, which
requires the XML view fit in main memory. In CLOB
De-correlated queries, the XML result is constructed by

the relational engine, which is also effective when the
XML view fits in main memory. The best overall per-
formance is achieved by the CLOB de-correlated algo-
rithm, the unsorted outer union, and the sorted outer
union. Of these, only the sorted outer union applies to
large XML views that exceed main memory. In Sec. 7,
we discuss when the outer-union plan is likely to per-
form as well as the optimal plans found by SilkRoute.

Three commercial XML publishing systems: Oracle
XML SQL Utility [10], IBM DB2 XML Extender [12],
and Microsoft SQL Server 2000 [6], support features
similar to those provided by SilkRoute. All three pro-
vide languages for defining XML views. Oracle’s XSQL
embeds individual SQL queries in XSLT [13] stylesheets.
The result of the SQL query is emitted in a canonical
XML format, and the stylesheet converts the XML into
the desired view. Of these systems, XSQL couples most
tightly the XML view to the corresponding SQL queries.
The IBM DB2 Data Access Definition (DAD) language,
like RXL, has a data extraction part and an XML tem-
plate. Each element in the XML template may contain
arbitrary selection and join conditions on the relational
tables. Unlike RXL, the criteria for grouping elements is
implicit in the DAD, and DAD specifications cannot be
nested arbitrarily. SQL Server 2000 supports XML view
mechanisms like the two described above. In addition,
the user may construct the unified SQL plan by hand.
This effectively hard wires the evaluation plan into the
view, but it allows the user to define arbitrarily com-
plex XML views. Hand-written unified queries are sim-
ilar to those constructed automatically by SilkRoute’s
plan-generation algorithm.

Although RXL is specific to SilkRoute, it can ex-
press the transformations provided by the three XML
publishing tools described above. SilkRoute’s view tree
representation of XML view queries captures the XML
mappings in all these systems. Our greedy optimiza-
tion algorithm takes a view tree as input, and therefore
could be directly applied to the XML view definitions
expressed by these tools.

7. DISCUSSION
Generating SQL queries from an XML view defini-

tion is a tedious task, and as we have shown, differ-
ent SQL-generation strategies dramatically effect query-
evaluation time. These observations indicate that the
user of a relational-to-XML publishing system should
not be responsible for choosing SQL queries. To bet-

S1

S1.1 S1.2 S1.3 S1.4

S1.4.2S1.4.1

S1.4.2.2S1.4.2.1 S1.4.2.3

S1

S1.1 S1.2 S1.3 S1.4

S1.4.1

S1.5

S1.5.2.1S1.5.2.2S1.5.2.3

S1

S1.1 S1.2 S1.3 S1.4

S1.4.2S1.4.1

S1.4.2.2S1.4.2.1 S1.4.2.3

S1

S1.1 S1.2 S1.3 S1.4

S1.4.1

S1.5

S1.5.2.1S1.5.2.2S1.5.2.3

(a) Query 1, Config A, 32 plans (b) Query 1, Config B, 16 plans (c) Query 2, Config A, 32 plans (d) Query 2, Config B, 8 plans

Mandatory edge Mandatory edge − reduced plan Optional edge

Figure 18: Plans selected by Greedy Algorithm

ter support large XML views, we presented a method
that decomposes the XML view definition into several,
smaller SQL queries and submits the decomposed SQL
queries to the target database. Our greedy algorithm for
decomposing an XML view definition relies on query-
cost estimates from the target query optimizer. This
method works well in practice and generates execution
plans that are near optimal. Although particularly ef-
fective in an XML middle-ware system, our view-tree
representation can encompass the view-definition lan-
guages of commercial relational-to-XML systems. Com-
mercial systems typically generate XML in-engine, be-
cause the cost of binding application variables to the
tuples dominates execution time [9]. Our decomposi-
tion method could be applied within a relational query
optimizer as a preprocessing step to XML publishing of
relational data in-engine.

This work is focussed on publishing large XML docu-
ments in an environment in which the middle-ware sys-
tem has no control over the physical environment or
query optimizer of the target database. Given these
constraints, our greedy algorithm for searching for opti-
mal query plans is necessary and effective. The simpler
outer-union strategy, however, might be adequate when
the middle-ware system has more control over the tar-
get database. SilkRoute’s generated optimal plans do
better than the unified outer-union plan, because each
individual query is smaller than the outer-union plan.
Small queries are less likely to stress the query opti-
mizer; they sort smaller result relations and therefore
are less likely to spill tuples to disk; and they typically
have many fewer null values than a unified query. An
outer-union plan can be reduced by hand, which would
provide the same benefits as automatic view-tree reduc-
tion. Assuming that the target database has plentiful
memory and/or multiple disks, and efficiently supports
null values, the resulting outer-union plan is likely to
be comparable to SilkRoute’s generated optimal plans.
Finally, the outer-union plan may also be appropriate
when a user query requests only a subset of the XML
view, and the result document is small. In this scenario,
the outer-union strategy should work well, because the
resulting SQL query is usually simple. This scenario is

considered in [5], where the XML view of the database
is virtual, and users query it using XML-QL.
Acknowledgements. Many thanks to Jai Shanmuga-
sudaram for his detailed and insightful comments.

8. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu, Foundations of

Databases, Addison Wesley, 1995

[2] C. Beeri, P Bernstein, “Computational Problems
Related to the Design of Normal Form Relational
Schemes”, ACM Transactions on Database Systems,
V4, #1, pp 30–59, 1979

[3] M. Carey, et al, “XPERANTO: Middleware for
Publishing Object-Relational Data as XML
Documents”, VLDB 2000, pp 646-648.

[4] A. Deutsch, M. Fernández, D. Florescu, A. Levy, and
D. Suciu. “A Query Language for XML”, WWW8,
1999.

[5] M. Fernández, W Tan, D Suciu, “SilkRoute : Trading
between Relations and XML”, WWW9, 2000.

[6] M. Rys, Microsoft, Support WebCast: Microsoft SQL
Server 2000: New XML Features, April, 2000
(http://support.microsoft.com/servicedesks/
Webcasts/wc042800/wcblurb042800.asp)

[7] A. Sahuguet, “Everything You Ever Wanted to Know
About DTDs, But Were Afraid to Ask”, SIGMOD
WebDB Workshop 2000, pp 69-74.

[8] P. Selinger, et al, “Access Path Selection in a Relational
Database Management System”, SIGMOD, pp 23-34,
1979.

[9] J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey,
B. Lindsay, H. Pirahesh, B. Reinwald, “Efficiently
Publishing Relational Data as XML Documents”,
VLDB 2000, pp 65-76.

[10] B. Wait, Oracle Corporation, “Using XML in Oracle
Database Applications”, Nov., 1999,
(http://technet.oracle.com/tech/xml/info
/htdocs/otnwp/about xml.htm)

[11] Transaction Processing Performance Council, TPC-H
(ad-hoc, decision support) benchmark,
http://www.tpc.org/

[12] XML Extender Administration and Programming,
“IBM DB2 Universal Database XML Extender”,
(http://www-4.ibm.com/software/data/db2/
extenders/xmlext/docs/v71wrk/english/index.htm)

[13] World-Wide Web Consortium XSL Transformations

(XSLT), Version 1.0. W3C Recommendation, Nov.,

1999. http://www.w3.org/TR/xslt/.

