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ABSTRACT

Research on transaction processing has made significant
progress towards improving performance of main memory
multicore OLTP systems under low contention. However,
these systems struggle on workloads with lots of conflicts.
Partitioned databases (and variants) perform well on high
contention workloads that are statically partitionable, but
time-varying workloads often make them impractical. To-
wards addressing this, we propose StrifeÐa novel transac-
tion processing scheme that clusters transactions together
dynamically and executes most of them without any con-
currency control. Strife executes transactions in batches,
where each batch is partitioned into disjoint clusters with-
out any cross-cluster conflicts and a small set of residuals.
The clusters are then executed in parallel with no concur-
rency control, followed by residuals separately executedwith
concurrency control. Strife uses a fast dynamic clustering al-
gorithm that exploits a combination of random sampling and
concurrent union-find data structure to partition the batch
online, before executing it. Strife outperforms lock-based
and optimistic protocols by up to 2× on high contention
workloads. While Strife incurs about 50% overhead relative
to partitioned systems in the statically partitionable case,
it performs 2× better when such static partitioning is not
possible and adapts to dynamically varying workloads.
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1 INTRODUCTION

As modern OLTP servers today ship with an increasing
number of cores, users expect transaction processing perfor-
mance to scale accordingly. In practice, however, achieving
scalability is challenging, with the bottleneck often being
the concurrency control needed to ensure a serializable ex-
ecution of the transactions. Consequently, a new class of
high performance concurrency control protocols [8, 18, 19,
37, 39, 44] have been developed and are shown to scale to
even thousands of cores [39, 43].
Yet, the performance of these protocols degrades rapidly

on workloads with high contention [1, 43]. One promising
approach to execute workloads with high contention is to
partition the data, and have each core execute serially the
transactions that access data in one partition [1, 15, 24, 29].
The intuition is that, if many transactions access a common
data item, then they should be executed serially by the core
hosting that data item without any need for synchroniza-
tion. In these systems, the database is partitioned statically

using either user input, application semantics, or workload-
driven techniques [6, 25, 26, 28]. Once the data is partitioned,
the transactions are routed to the appropriate core where
they are executed serially. For workloads where transactions
tend to access data from a single partition [34], static data
partitioning systems are known to scale up very well [15].
However, cross-partition transactions (i.e., those that ac-

cess data from two or more partitions) do require synchro-
nization among cores and can significantly degrade the per-
formance of the system. Unfortunately, in some applications,
a large fraction of the transactions are cross-partition as no
good static partitioning exists, or the hot data items change
dynamically over time. As an extreme example, in the 4Chan
social network, a post lives for only about 20-30 minutes,
and the popularity can vary within seconds [2]. The various
static partitioning schemes differ in how they synchronize
cross-partition transactions: H-Store [13] acquires partition-
level locks, Dora [1, 24] migrates transactions between cores,
while Orthrus [29] delegates concurrency control to a ded-
icated set of threads. If the database is statically partition-
able, then these approaches can mitigate a small fraction of
cross-partitioned transactions, however, their performance
degrades rapidly when this fraction increases, or when the
workload is not statically partitionable as discussed in [1].

Research 6: Transaction Processing and Query Optimization SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

527



In this paper, we propose Strife, a new batch-based OLTP
system that partitions transactions dynamically. Strife groups
transactions into batches, partitions them based on the data
they access, then executes transactions in each partition seri-
ally on an exclusive core. Our key insight is to recognize that
most OLTP workloads, even those that are not amenable to
static partitioning, can be łalmostž perfectly partitioned at a
batch granularity. More precisely, Strife divides the batch
into two parts. The first consists of transactions that can be
grouped into disjoint clusters, such that no conflicts exist
between transactions in different clusters, and the second
consists of residual transactions, which include the remain-
ing ones. Strife executes the batch in two phases: in the first
phase it executes each cluster on a dedicated core, without
any synchronization, and in the second phase it executes the
residual transactions using some fine-grained serializable
concurrency protocol.
As a result, Strife does not require a static partition

of the database apriori; it discovers the partitions dynam-
ically at runtime. If the workload is statically partitionable,
Strife will rediscover these partitions, setting aside the
cross-partition transactions as residuals. When the work-
load is not statically partitionable, Strife will discover a
good way to partition the workload at runtime, based on hot
data items. It easily adapts to time-varying workloads, since
it computes the optimal partition for every batch.

The major challenge in Strife is the clustering algorithm,
and this forms the main technical contribution of this paper.
Optimal graph clustering is NP-hard in general, which rules
out an exact solution. Several polynomial time approxima-
tion algorithms exist [9, 16, 21, 23], but their performance is
still too low for our needs. To appreciate the challenge, con-
sider a statically partitioned system that happens to execute
a perfectly partitionable balanced workload. Its runtime is
linear in the total number of data accesses and scales with the
number of cores. To be competitive, the clustering algorithm
must run in linear time, with a small constant, and must be
perfectly parallelizable across cores. Our novel clustering al-
gorithm satisfies both criteria ś it performs clustering using
only three passes over data items and exploits intra-batch
parallelism (Sec. 3). To achieve this, we also extend the union-
find data structure to support concurrent execution (Sec. 4).
We implemented a prototype of Strife and conducted

an extensive empirical evaluation of the entire algorithm
(Sec. 5). We start by evaluating Strife’s clustering algorithm
and show that, in addition to having high performance, it
also finds high quality clusters on three different benchmarks.
Next, we compare Strife with general purpose concurrency
control techniques, and find that its throughput is at least
2× that of the nearest competitor. A more interesting com-
parison is with protocols designed specifically for high con-
tention workloads. We find that, in the ideal case when the

workload is statically partitionable and there are very few
cross-partition transactions, Strife achieves about half of
the throughput of a statically partitioned system (due to
clustering overhead). However, when the workload is not
statically partitioned, or there are many cross-partition trans-
actions, then it can improve throughput by 2× as compared
to other systems. We conclude by reporting a number of
micro-benchmarks to evaluate the quality of the clustering
algorithm, and the impact of its parameters.

While many automated static partitioning techniques exist
in the literature (surveyed in Sec. 6), to the best of our knowl-
edge the only system that considers dynamic partitioning
is LADS [42]. Like Strife, LADS uses dynamic graph-based
partitioning for a batch of transactions. Unlike Strife, the
partitioning algorithm in LADS depends on range-based par-
titioning. In addition, it does not eliminate the need for con-
currency control, instead it breaks a transaction into record
actions, and migrates different pieces to different cores, to
reduce the number of locks required. This creates new chal-
lenges, such as cascading aborts, and is unclear how much
overhead it introduces. In contrast, Strife is not limited
to range partitions, is free from cascading aborts, and com-
pletely eliminates concurrency control when possible.
In summary, we make the following contributions:

• We describe Strife, an OLTP system that relies on dy-
namic clustering of transactions, aiming to eliminate con-
currency control for most transactions in a batch. (Sec. 2).

• We describe a novel clustering algorithm that produces
high quality clusters using only three scans over the set
of transactions in the batch. (Sec. 3).

• We then present a concurrent implementation of the union-
find data structure that enables parallelizing the clustering
of transactions. (Sec. 4).

• We conduct an extensive experimental evaluation, com-
paring our systemwith both general-purpose concurrency
control systems, and with systems designed for high con-
tention, based on a static partition of the database. (Sec. 5).

2 OVERVIEW

Strife executes transactions in batches, where it collects
transactions for a fixed duration and executes them together.
For each batch, Strife analyzes the conflicts among trans-
actions based on their read-write sets1 and partitions them
with the goal of minimizing concurrency control. Strife exe-
cutes batches in three phases: analysis, conflict-free, and
residual. These phases are executed synchronously on all
cores as shown in Fig. 1. During analysis phase, the batch is
partitioned into a number of conflict-free clusters and some

1Read-write sets can be obtained either through static analysis of
the transaction code or via a reconnaissance query and conditional
execution as in deterministic databases [36].
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Fig. 2. Access Graph of a batch of transactions

residuals. Transactions in a conflict-free cluster are executed
serially with no concurrency control, with several clusters ex-
ecuted in parallel on different cores in conflict-free phase.
After all conflict-free transactions are executed, residuals are
then executed in a separate residual phase across all cores
using a conventional concurrency control protocol. Once the
residual transactions are executed, Strife repeats the same
process for the next batch.
The goal of analysis phase is to partition the batch into

clusters such that transactions from two different clusters
are conflict-free. To do so, Strife first represents a batch of
transactions using its data access graph. A data access graph
is an undirected bipartite graph A = (B ∪ D, E), where
B is the set of transactions, D is the set of data items (e.g.,
tuples or tables) accessed by transactions in B, and the edges
E contain all pairs (T ,d ) where transaction T accesses data
item d . Transactions T , T ′ are in conflict if they access a
common data item with at least one of them updating it.
Fig. 2 depicts the access graph of an example batch (col-

ors explained later) derived from the TPC-C [5] benchmark.
Each transaction updates a warehouse (w1 orw2) and a set
of stocks (a −h). TransactionT1, for example, accesses ware-
housew1 and stocks a and b. Transactions T1, T2 are in con-
flict because they both accessw1; whereas T1, T5 are not.

A batch can be partitioned into many conflict-free clusters
when transactions access disjoint sets of data items. Trans-
actions T1 − T3 and T4 − T6 ( Fig. 2) access different data
items ({w1,a − d } and {w2, e − h} respectively). Hence, the
batch T1 − T6 can be partitioned into 2 clusters {T1,T2,T3}
and {T4,T5,T6} with no cross-cluster conflicts.

However, real workloads often contain outliers that access
data items from multiple clusters (such as red transaction T7
in Fig. 2). A conflict-free cluster for the batchT1−T7, thus will
contain all transactions. To avoid this, we instead remove
T7 as a residual and create conflict-free clusters only with
respect to the remaining batch. This results in 2 conflict-free
clusters {T1,T2,T3}, {T4,T5,T6} and a residual T7.
Formally, a clustering in Strife is an (n + 1)-partition of

a batch of transactions B into {C1,C2, . . . ,Cn ,R} such that,
for any i , j and transactions T ∈ Ci ,T

′ ∈ Cj , T and T ′ do
not conflict. Notice that there is no such requirement on R.

Ideally, we want to maximizen, the number of conflict-free
clusters, to maximize parallelism, while minimizing the size
of R. To elucidate the trade-offs, we describe two naive clus-
terings. The first is fallback clustering, where all transactions
are in R and set n = 0; this corresponds to running the entire
batch using conventional concurrency control. The second
is sequential clustering, where we place all transactions inC1,
and set n = 1 and R = ∅; this corresponds to executing all
transactions sequentially, on a single core. Obviously, neither
of these are good clusterings. Hence, we want n to be at least
as large as number of cores, and constrain R to be no larger
than a small fraction, α , of the batch.
In practice, a good clustering exists for most workloads,

except in the extreme cases. In one extreme, when all trans-
actions access a single highly contended data item, then no
good clustering exists besides fallback and sequential, and
Strife simply resorts to fallback clustering. Once data con-
tention decreases, i.e., the number of contentious data items
increases, a good clustering would try to place each hot
item in a different conflict-free cluster. When contention
further decreases such that all transactions access different
data items, then any n-clustering of roughly equal sizes is
adequate. Thus, we expect good clustering to exist in all but
most extreme workloads. The challenge, however, is to find
a good clustering efficiently.
After partitioning, conflict-free clusters are placed in a

shared worklist. Multiple cores then obtain a cluster from
the worklist, and execute all transactions in it serially one
after another in the conflict-free phase. Once done with a
cluster, a core obtains another from the worklist until done.
The degree of parallelism in this phase is determined by the
number and size of conflict-free clusters. More clusters result
in parallel execution, thus reducing total time to execute
them. Once the worklist has exhausted, a core waits for other
cores to finish processing their clusters before moving to the
residual phase. This is because the residuals may conflict
with the conflict-free transactions that are being executed
concurrently, and hence requires data synchronization. A
skew in cluster sizes may reduce concurrency since threads
that complete early cannot advance to next phase.

Research 6: Transaction Processing and Query Optimization SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

529



Algorithm 1: Strife Clustering Algorithm

Input: List<Txn, ReadWriteSet> batch

Output: Queue<Queue<Txn>> worklist

Queue<Txn> residuals

1 set<Cluster> special;

2 int count[k][k] = {0};

// Spot Step (initially each data node is a cluster)

3 i = 0;

4 repeat

5 Pick a random transaction T from batch;

6 set<Cluster> C = { Find(r ) | r ∈ T.nbrs };

7 set<Cluster> S = { c | c ∈ C and c is special };

8 if |S | == 0 then

9 c = C.first;

10 foreach other ∈ C do

11 Union(c, other);

12 c.id = i;

13 c.count++;

14 c.is_special = true;

15 special.insert(c);

16 i++;

17 until k times;

// Fuse Step

18 foreach T ∈ batch do

19 set<Cluster> C = { Find(r ) | r ∈ T.nbrs };

20 set<Cluster> S = { c | c ∈ C and c is special };

21 if |S | ≤ 1 then

22 c = ( |S | == 0) ? C.first : S.first;

23 foreach other ∈ C do

24 Union(c, other);

25 c.count++;

26 else

27 foreach (c1, c2) ∈ S × S do

28 count[c1.id][c2.id]++;

// Merge Step

29 foreach (c1, c2) ∈ special × special do

30 n1 = count[c1.id][c2.id];

31 n2 = c1.count + c2.count + n1;

32 if n1 ≥ α × n2 then

33 Union(c1, c2);

// Allocate Step

34 foreach T ∈ batch do

35 C = { Find(r ) | r ∈ T.nbrs };

36 if |C | = 1 then

37 c = C.first;

38 if c.queue = ∅ then

39 c.queue = new Queue<Txn>();

40 worklist.Push(c.queue);

41 c.queue.Push(T);

42 else

43 residuals.Push(T);

44 return (worklist, residuals);

As such, optimal allocation of conflict-free clusters to cores
can be modeled as a 1-D bin-packing problem. However,
solving this requires estimating the cost of executing a trans-
action, and the quality of solution critically depends on how
good the estimate is. We instead rely on work-sharing par-
allelism powered by a low-overhead concurrent queue to
balance load across cores dynamically.

After the conflict-free clusters are processed, transactions
in the residual cluster are executed in residual phase. As dis-
cussed earlier, concurrency control is needed to execute them
concurrently across cores. Strife uses two-phase locking
with no-wait deadlock avoidance policy as it is shown to be
highly scalable [43]. Under this policy, a transaction aborts
immediately when it fails to acquire a lock. Strife retries
transactions aborted this way until successful commit or
logical abort. Finally, after the residuals are executed, Strife
processes the next batch. We next describe the clustering
algorithm in Strife.

3 STRIFE CLUSTERING ALGORITHM

A batch of transactions in Strife, B, is partitioned into a
conflict-free clusters C1,C2, . . . ,Cn , and a set of residuals,
R, of size at most α |B|. The inputs to the algorithm are the
batch of transactions (denotedB) along with their read-write
sets, a number k , typically a small factor times core count,
and the residual parameter α , a fraction between 0 and 1.

Our clustering problem can be viewed as partitioning the
data access graph A = (B ∪ D, E) (refer Fig. 2) with dual
objectives: maximize number of conflict-free clusters, and
reduce the size of residuals. Graph partitioning in general
is NP-hard, and several PTIME approximations have been
proposed in the literature [9, 10, 21, 23, 27]. These solutions,
however, do not meet the latency budget of our use case. For
instance, our preliminary study revealed that partitioning a
batch from the TPC-C benchmark using METIS [21], a state-
of-the-art graph partitioning library, is an order of magnitude
slower than executing directly with concurrency protocol.
Hence, our key challenge is to devise a clustering algorithm
by touching each node in the graph as few times as possible.

In other words, we seek an approximation algorithm that
runs in linear time, with a very small constant and can be
parallelized to incur the least runtime overhead. We next
describe our algorithm (Sec. 3.1), illustrate it using an exam-
ple (Sec. 3.2), and finally analyze its runtime (Sec. 3.3); the
pseudo-code is listed in Alg. 1.

3.1 Description

Partitioning a batch of transactions in Strife is akin to par-
titioning the data nodes in A into data clusters. Once that is
done, we can then allocate each transaction to a conflict-free
cluster or residuals depending on how its connected data
nodes are clustered. Hence, our algorithm will cluster the
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data nodes first, then allocate transactions to an appropriate
cluster or the residuals. The algorithm runs in 5 steps: (1)
prepare (2) spot (3) fuse (4) merge and (5) allocate.

Initially each data node in the graph is a singleton cluster.
The algorithm repeatedly merges clusters connected to a
transaction, so that data nodes accessed by that transaction
belong to the same data cluster. It uses different heuristics
to prevent merging all data nodes into a single large data
cluster. We describe each step in detail below.

3.1.1 Prepare Step. First, Strife creates the data access
graph from read-write set of transactions in the batch. Strife
does not explicitly create a graph data structure in memory,
instead uses the read-write sets along with some metadata
to avoid overheads. We consider only data nodes that are
updated by at least one transaction in the batch, since there
is no need to coordinate concurrent access to read-only data
items. For instance, the Items table in the TPC-C benchmark
is only read and never updated; as a result Items is not part
of our access graph. We do this by scanning and labeling
records that are updated as active and ignoring all inactive
records in subsequent steps (not shown in Alg. 1 for brevity).

3.1.2 Spot Step. The spot step (Lines 3-17) identifies hot
data items in the batch so that we can avoid placing several of
them in the same data cluster. Initially, all data nodes in the
access graph are singleton data clusters. We say a transaction
is connected to a data cluster c if it accesses any data node in
c . In this step, we create a small number of clusters that are
all labeled łspecialž using a sample-reject scheme. We begin
by picking a transaction T from B uniformly at random. We
merge data clusters connected to T and label the resulting
cluster łspecial.ž
We continue by repeatedly picking another transaction

T ′ at random; if T ′ is connected to a special cluster, then we
reject it, otherwise we merge all its data nodes into a new
łspecialž cluster. We continue this for k trials, creating k or
fewer special clusters. Recall that k is an input parameter to
the algorithm, and is typically chosen to be a small factor
times the number of cores. For instance, in our experiments
we use k = 100 for 30 cores.

With a high probability, our scheme will find the łhotž
data items (i.e., items accessed by many transactions) and
create a special cluster for each of them. To understand the
intuition, suppose d is a hot data item accessed by half of
the transactions. Then, with high probability, one of the ran-
domly chosen transactions will access d , and spotwill create
a special cluster for d ; if another sampled transaction also ac-
cessesd , it will be rejected. Suppose now that there aren łhotž
data items, d1,d2, . . . ,dn , and each is accessed by approxi-
mately |B|/n transactions. In this case, with high probability,
spot will create a special cluster for each di , because the

probability that none of the k sampled transactions accesses
a data item di is (1−1/n)

k ≈ 1/ek/n , which is very low when
k ≫ n; for example, if k ≳ 3n, then 1/ek/n ≤ 1/e3 = 0.04.
This argument extends to the case of pairs of data items
d1,d2 that have direct affinity, meaning that a large number
of transactions access both; then, with high probability, some
special cluster will include both.

3.1.3 Fuse Step. The spot step processed only a small
number of transactions (up to k); the fuse step (Lines 18-
28) processes all remaining transactions in the batch. For
each transaction, we examine the data clusters connected to
it. If at most one of them is labeled łspecial,ž we merge all
of them together. To prevent creating a single cluster with
all data items, fuse never merges two special clusters: if a
transaction accesses two or more special clusters, then fuse

skips it, and instead records the count of such transactions
for each special cluster pair (Line 28). The number of special
clusters remains the same throughout fuse step, but each
special cluster may have grown from it’s initial size in the
spot step, and new non-special clusters may be created as
well. The merge of two clusters is łspecialž if and only if at
least one of them was special.

3.1.4 Merge Step. So far the special clusters created in
spot have never been merged. In this step, we revisit this
invariant and merge some of them to reduce the number of
residuals. If two hot data items d1,d2 are accessed by many
transactions, then the special clusters they belong to are
good candidates for merging; we say that d1,d2 have direct
affinity. Special clusters may also have to be merged due to
indirect affinity as illustrated by the following example.

Suppose there are two hot items, d1,d2, each in a separate
special cluster, and a third item d3, such that a large number
of transactions access both d1,d3 and another large number
access d2,d3; then we say that d1,d2 have high indirect affin-

ity. Depending on the order of processing, fuse will include
d3 either in d1’s special cluster or in d2’s special cluster. In
the first case, all transactions that access d2,d3 are skipped
as residuals, in the second case the d1,d3 transactions are
skipped. merge step examines the benefit of merging the
two special clusters of d1 and d2, thus allowing all these
transactions to be executed in the conflict-free phase.
In such scenarios, we relax the criterion from fuse step

and merge special clusters. We use a new heuristic to prevent
merging all data items into a single huge cluster in themerge
step (Lines 29-33). If two special clusters ci and c j are merged,
transactions connected to ci and c j can now be classified into
a conflict-free cluster. We merge them only when residuals
are more than the bound specified by parameter α , i.e., |R | ≥
α |B|. Recall that α is one of the input parameters of the
algorithm: it chooses between executing transactions on
more cores with concurrency control (if α is small) versus
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on fewer cores without concurrency control. Empirically, we
found α = 0.2 to give the best results in our experiments.

Let count[ci ][c j ] denote the number of transactions in B
that access data items in ci and c j . Note that the transactions
that are accounted for in count[ci ][c j ] can access data items
from clusters other than ci and c j as well. If the two clusters
ci and c j are not merged, then all of count[ci ][c j ] will be
residuals. So, we merge cluster pairs ci , c j when:

count[ci ][c j ] ≥ α × ( |ci | + |c j | + count[ci ][c j ])

Since, |R | ≤
∑

i,j count[ci ][c j ], this merge scheme results in
residuals fewer than α |B| when most transactions access at
most two special clusters.

3.1.5 Allocate Step. In the allocate step (Lines 34-43),
we examine data clusters connected to each transaction and
allot it to a conflict-free cluster or the residuals. If the number
of clusters connected to a transactionT , denoted |C |, is more
than one, thenT is added to the residuals since it has conflict-
ing data accesses with more than one data cluster. If |C | = 1,
all data items accessed by T belong to one data cluster and
hence does not conflict with transactions not connected to
the data cluster. So, T can be assigned to a conflict-free clus-
ter. We first check if the data cluster already has a designated
queue (Line 38). If so, we addT to that queue. Else, we create
a new conflict-free queue and addT to it. This queue is added
to the shared worklist. This way all transactions connected
to a data cluster are added to the same conflict-free queue,
thus ensuring a serializable execution.

3.2 Example

We illustrate in Fig. 3 how Strife clusters an example batch
of new-order transactions from the TPC-C benchmark. We
consider only stock and warehouse accesses for brevity. As
shown in Fig. 3a, each transaction (mid column) updates a
warehouse (right column) and few stock tuples (left column).
Each stock item is listed in the catalog of one warehouse, as
labeled on the left of Fig. 3a.

At the start, each warehouse and stock item is a singleton
data cluster. spot randomly samples one transaction, say the
first from the top, and merges its data items into one special
cluster: they are shown in orange. If the next transaction
sampled accesses any of the orange items, it is ignored, oth-
erwise its data items form a new special cluster. After several
trials, Strife creates four special clusters as shown in Fig. 3b:
orange, green, red, blue. All black data items continue to be
singleton clusters.

Next, fuse processes all transactions, top to bottom. fuse
merges each transaction’s data items into one single cluster,
unless if doing so will merge two special clusters, in which
case the transaction is skipped. For instance, the transaction
accessing both a green and a red data item is skipped. In our
example, after the fuse step, all data items will be included

in one of the four special clusters as shown in Fig. 3c; in
general, this is not the case, instead some new clusters may
be formed that are not special, or some data items may be left
in their singleton cluster (also non-special). Notice that most
of the catalog stock items ofw2 andw3 are also accessed by
transactions of the other warehouse and, since we process
transactions from top to bottom, most of themwill be allotted
to the green cluster (ofw2).

At this stage, most ofw1,w2 andw4 transactions are con-
nected to a single data cluster, while severalw3 transactions
access data from both green and red clusters (notice thatw3

itself is red). We say that the w2 and w3 warehouse tuples
have an indirect affinity via their stock items. These two
special clusters are candidates for merging, because many
transactions access both red and green items. More precisely,
merge checks that the number of transactions accessing both
clusters is more than α fraction of those accessing either of
them, then merges them (refer Fig. 3d). This reduces the
number of transactions in the residual cluster. Note that the
clusters of w1 and w2 (orange and green) are not merged,
because too few transactions access both (just two).
Finally, allocate iterates over all transactions, and for

each, checks if it can be included in a conflict-free cluster
or residuals. As shown in Fig. 3d, only three transactions
are residual, two accessing orange+red, the other accessing
red+blue; other transactions are included in one of the three
conflict-free clusters: orange, red, or blue.

3.3 Runtime Analysis

We use the union-find [33] data structure to maintain data
clusters in Strife. The amortized cost of a union-find opera-
tion isO (α (N )) ≈ O (1) where N is the number of data items
and α the inverse Ackermann function, thus we assume that
every union/find operation takes time O (1). prepare, fuse
and allocate steps iterate over the entire batch of trans-
actions B, but do this in parallel using n cores, thus, their
total runtime is O ( |B|/n), where the constant under O (· · · )

is small (about 3). spot and merge are executed sequentially,
and their runtime is as follows: spot takes timeO (k ), since it
samples using k trials, while merge takes timeO (k2), since it
examines up to k2 pairs of special clusters. The total runtime
of the clustering algorithm isO ( |B|/n+k2). For comparison,
if the database can be perfectly partitioned statically, and
there are no cross-partition transactions, then a system using
static partitioning can execute entire batch in timeO ( |B|/n).

4 PARALLEL UNION-FIND

Strife heavily exploits the union-find data structure to par-
tition the batch efficiently. The analysis is done in parallel

on multiple cores to reduce end-to-end transaction latency.
Specifically, the spot and merge steps are executed in a
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5 EVALUATION

In this section, we evaluate Strife, by comparing it to other
systems and on micro benchmarks. Specifically:

ğ5.1 First, we analyze how well Strife’s clustering algo-
rithm works on OLTP workloads.

ğ5.2 Then, we compare Strife with several concurrency
control (CC) protocols using the shared-everything
architecture.

ğ5.3 We next evaluate Strife against state-of-the-art CCs
for handling high contention workloads: MOCC [39],
Dora [24], Orthrus [29] and PartCC [13].

ğ5.4 We then evaluate Strife’s adaptability when the hot
data items dynamically vary over time.

ğ5.5 Finally, we study the impact of the residual parameter
α , batch size, and contention using microbenchmarks.

5.1 Setup, Implementation and Workloads

Experimental Setup. We run all our experiments on amulti-
socket Intel Xeon CPU E7-4890 v2 @ 2.80GHz machine with
2TBMemory and two sockets - each having 15 physical cores.
We implemented Strife and our baselines in C++. We use a
default batch size of 10K transactions.

System Implementation. Wehave implemented a prototype
of Strife that clusters transactions using the algorithm along
with optimizations described in Sec. 3. Strife, at its core,
is a multi-threaded transaction manager that interacts with
storage layer of the database using the standard get-put in-
terface. A table is implemented as a collection of in-memory
pages that contain sequentially organized records. Some ta-
bles are indexed using a hashmap that maps primary keys
to records. We implement the index using libcuckoo [22]
library, a thread-safe fast concurrent hashmap. Records con-
tain meta-data for clustering and concurrency control. We
chose this design to avoid overheads due to multiple hash
look-ups and focus primarily on concurrency control.
The analysis phase produces several conflict-free (CF)

queues and a residual queue. All CF queues are stored in a
multi-producer multi-consumer (MPMC) concurrent queue,
called the worklist. The worklist is shared among all threads.
In conflict-free phase, threads obtain a queue from the
worklist and execute the transactions in it serially one after
another without any concurrency control. Once a thread is
done with its queue, it obtains another from the worklist.
When worklist is empty, threads spin wait for other threads
to complete.
Once all threads are done with conflict-free queues, they

enter residual phase. The residuals are stored in a shared
MPMC queue. Threads dequeue and execute them using 2-
phase locking concurrency protocol with no wait deadlock

avoidance policy (i.e., immediately aborts the transaction if
it fails to grab a lock). This phase is similar to traditional
concurrency control based OLTP systems.

Strifemoves to analysis phase of next batch once resid-
ual phase is complete. Threads could start analyzing the next
batch while residual phase of previous batch is in-progress.
However, we did not implement this optimization to simplify
the analysis and interpretability of results.

Workloads. We use the following benchmarks:
TPC-C [5]: We use a subset of full TPC-C consisting of
a 50/50 mixture of new-order and payment transactions,
with all payments accessing customer through primary key
lookups. These two transactions make up the vast major-
ity of the benchmark and has been used previously [29] in
evaluating high contention workloads to stress concurrency
control. Refer Sec. 5.6.4 for payment transactions that access
customer records through last name. In TPC-C benchmark,
15% payment transactions are remote and 1% of items are
ordered from remote warehouses.
YCSB [4]: For YCSB, each transaction reads/updates 20 records
from a single table with 20M keys and a payload size of 128
bytes. We use a workload that is statically partitionable and
hence is the best case scenario for such protocols. Transac-
tions are such that intra-partition key access is determined
by a Zipfian distribution controlled by the θ parameter. Un-
less specified otherwise, we use θ = 0.99 to generate a highly
contended workload.
HOT: HOT is a microbenchmark on a single table database
with 50M records, each having an 8-byte key and twenty
8-byte integer fields. Each transaction updates 10 records
from the table. To add contention, we classify some records
(default: 100) as hot and the remaining as cold. Every trans-
action updates one hot record and 9 cold records. We control
partitionability of the workload by limiting remote parti-
tion accesses to at most 3. By default, hot records are evenly
distributed across all partitions.

5.2 Clustering Algorithm

Fig. 5 summarizes the clustering solutions produced by Strife
on a batch of 10K transactions, α = 0.2 and different bench-
mark parameters. Spot Clusters refers to the number of clus-
ters identified in the spot step, CF Clusters denotes the num-
ber of conflict-free clusters finally produced, and Residuals

denotes the size of residual cluster.
We present TPC-C results for different number of ware-

houses (denotedw), specifically 4, 15 and 30 in Fig. 5. spot
step correctly identifies 4, 15 and 30 special clusters, one
corresponding to each warehouse. TPC-C has around 25%

cross-warehouse transactions and hence some of them are
classified as residuals. We note that residuals are much less
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TPC-C YCSB (30 Partitions) HOT

Description/Workload Parameter 4 15 30 0.1 0.5 0.8 0.99 1.2 10 50 100 200

(a) Spot Clusters 4 15 30 100 98 78 48 30 10 43 63 84

(b) CF Clusters 4 15 30 100 98 78 30 30 10 43 63 84

(d) Residuals 636 191 94 0 0 298 0 0 350 371 330 250

Fig. 5. Clustering: TPC-C (Varying #Warehouses), YCSB (Varying θ ), HOT (Varying #Hot Records)

than 25% because a cross-warehouse transaction is not nec-
essarily a cross-cluster transaction in the batch. For example,
a remote order for item i from warehousew2 by aw1 trans-
action is cross-cluster only when somew2 transaction in the
batch orders item i fromw2, which is not always the case.
We vary the Zipfian parameter θ in YCSB with 30 par-

titions. spot identifies approximately 100 special clusters
when θ = 0.1 or 0.5 since there are very few conflicting ac-
cesses, resulting in 100 CF clusters of almost equal size with
no residuals. When θ = 0.8, spot identifies 78 special clusters
and produces same number of CF clusters. However, 30 of
them contain majority of transactions, each corresponding
to a partition. The remaining 48 CF clusters are small: they
contain transactions that access partition-local data from
one of these 30 partitions. Since some of these transactions
result in cross-edges with the main 30 CF clusters, we have
a small fraction (3%) of residuals; merge does not combine
them since it does not meet the merging threshold derived
from α . When θ = 0.99, spot identifies 48 special clusters.
But after fuse and merge, the final number of CF clusters is
30 since Strife merges some of them. When the contention
is very high (θ = 1.2), spot easily identifies the 30 partitions
and produces a conflict-free cluster for each.
We now vary number of hot records in the HOT bench-

mark. In each case, spot identifies most but not all of the
hot records in the batch since we sample the batch only 100

times. We found that more sampling attempts identify all hot
records. The same number of CF clusters are produced since
none of them are merged. As we will see in Sec. 5.3, differ-
ent sizes for CF clusters does not impact system throughput
heavily since Strife uses a shared worklist and dynamically
balances load across cores. In summary, the experiments
show that Strife identifies hot records and clusters conflict-
ing transactions together while distributing hot records to
as many clusters as possible.

5.3 CC protocols

We now compare Strife against 4 classes of CC protocols:
LockSorted sorts the read-write set and acquires locks in
an ordered fashion before executing the transaction.
DlDetect is a 2-Phase-Locking (2PL) variant which main-
tains a waits-for graph among transactions and uses it to
detect and eliminate deadlocks by abortion. To avoid scala-
bility bottlenecks, each thread maintains a local partition of

the graph and updates it only when waiting [43].
NoWait is 2PL variant that aborts a transaction immediately
when a lock cannot be acquired during transaction execution.
We do not use a centralized lock table in any of our 2PL im-
plementations since it is a known scalability bottleneck and
instead use metadata co-located with records in the database.
PreNoWait acquires all locks at the start of the transaction
and releases only after commit; it aborts the transaction im-
mediately if any of the requested locks cannot be acquired.
Silo [37] is a representative OCC protocol and is considered
state-of-the-art [1, 43, 44].
We implemented these protocols in the Strife code-base
and corroborated it with [43] to make the comparisons fair.
Fig. 6 depicts the throughput as we vary the number of

cores on TPC-C (4 and 30 warehouses), YCSB, and HOT
benchmarks.We present the execution profile for HOT bench-
mark on 30 cores in Fig. 7; these protocols exhibit similar
behavior on others. Abort is time spent in aborted execution,
Lock is time spent in acquiring, releasing and waiting for
locks, Execute is transaction code execution, Index is time
spent querying the index, Validation is time spent in validat-
ing for Silo, and Analysis is time spent in analysis (Strife).
Strife produces as many CF clusters as warehouses for

TPC-C (Sec. 5.2). With 2 cores, Strife is significantly better
than other protocols on TPC-C (4 warehouses) due to its
very high contention, and at the same time caching benefits
for clustering due to its small size. With more cores, through-
put doubles from 2 to 4 cores since conflict-free phase
is 2× faster. Beyond 4 cores, improvement in throughput is
only due to increased parallelism in analysis and residual

phases and conflict-free phase remains the same. With 30

warehouses, Strife increases parallelism in all three phases
to scale almost linearly. Strife throughput on YCSB (30 parti-
tions) also follows a similar trend. Since YCSB is partitionable
without any cross-partition transactions, no residuals are
created. Throughput increase from 15 to 25 cores is gradual
in both TPC-C (30 warehouses) and YCSB since the core
count is insufficient to execute all 30 CF clusters in paral-
lel. However, with 30 cores Strife exploits all parallelism
yielding almost a 2× improvement over 15 cores.
A batch in HOT benchmark is clustered into approxi-

mately 60 clusters, each containing at least one hot record.
conflict-free phase exploits maximum parallelism, thus
scaling linearly as we increase number of cores since Strife
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and releasing locks, so its performance is relatively stable
compared to Dora even with partition-induced skews. When
the distribution is very skewed, even CC threads in Orthrus
become a bottleneck and performance drops. MOCC is able
to detect changing hot items dynamically and is not affected
by partition-induced skews since it is oblivious to partitions.
Strife spots hot records in a given batch by random sam-
pling and distributes them dynamically across as many CF
clusters as possible. This eliminates any partition-induced
skews present in other architectures, and enables Strife to
outperform all other protocols with stable throughput as it
eliminates partition-induced skews.

5.6 Microbenchmarks

5.6.1 Clustering Performance. Fig. 9(a) depicts Strife anal-
ysis throughput (transactions analyzed per second) as we
vary number of cores. Strife algorithm scales almost lin-
early until 15 cores (within single NUMA socket). Beyond 15
cores, there is a slight drop in scalability due to cross-socket
communication but throughput still increases. analysis cost
depends on total number of data accesses in the batch. The de-
picted performance (YCSB) is for 20 read-write accesses and
analysis throughput is much better than most main-memory
OLTP engines today. This shows that in Strife execution
pipeline, analysis phase is unlikely to be the bottleneck.
Fig. 9(b) breaks down the time taken by each step dur-

ing analysis for TPC-C, YCSB-Low (θ = 0.1), YCSB-High
(θ = 0.99) and HOT. prepare step scans through read-write
sets, and this is the most expensive since records are looked
up for the first time and brought into cache. In subsequent
steps, cached data is reused, and hence they are much faster.
analysis time also depends on number of distinct data items
accessed and cache size. In YCSB-Low, data items are ac-
cessed almost uniformly, while YCSB-High access fewer dis-
tinct data items. So, analysis of a YCSB-Low batch is more
expensive than that of YCSB-High. We do not show spot

and merge as they are negligible compared to these 3 steps.
Our implementation caches the current set of clusters con-
nected to a transaction in thread-local cache, which further
improves fuse and allocate performance.

5.6.2 Residual Parameter. The residual parameter α plays
a key role in Strife. It determines (1) the proportion of
transactions executed with or without CC and (2) the number
of CF clusters. A largerα allows Strife to classify more cross-
cluster transactions as residuals improving the number of
CF clusters; but more transactions are executed with CC,
reducing the benefits of CC-free execution. A smaller α , on
the other hand, may reduce concurrency in the conflict-
free phase but fewer transactions are executed with CC.

Fig. 10(a) depicts the number of conflict-free clusters pro-
duced for different number of warehouses in TPC-C as we

vary α . When α is zero, Strife clusters all transactions into
a single cluster. However, as we increase α number of CF
clusters increase and settles at the number of warehouses.
Fig. 10(b) depicts the CF clusters produced for various values
of θ (controls contention in the workload) in YCSB with 30

partitions. A smaller θ implies lower contention and hence
Strife results in 100 special clusters, which is the maximum
value set in our experiments. Note that there is minimal im-
pact of increasing α for lower θ cases. For larger θ , each CF
cluster corresponds to a YCSB partition and hence no impact.

5.6.3 Latency and Batch Size. Strife employs a batched
execution strategy. Similar to streaming systems [3, 46],
batch size poses an important trade-off between throughput
and latency. With a larger batch size, the latency is higher,
but has more potential for amortization and hence through-
put. When the batch is small, other overheads in the system
become more prominent but with a smaller latency.
We present throughput, end-to-end latency and analysis

latency for TPC-C, YCSB and HOT as we vary batch size in
Fig. 11 (in log scale). For small batch sizes (1K), synchroniza-
tion overheads at phase boundaries affect the throughput. For
larger batches, throughput is marginally higher due to better
amortization and cache locality. Beyond a point, throughput
does not increase since the data structures no longer fit in
cache. End-to-end latency increases linearly with batch size.
Although, we can cluster a 1K batch in sub millisecond laten-
cies, the throughput is sub-optimal. In our experiments we
chose a batch size of 10K since it provides a good trade-off
between latency (< 5 ms) and throughput.

5.6.4 Cost of Reconnaissance Queries. When read write
sets are not known a priori, Strife uses the OLLP proto-
col [36]: issues a read-only, low isolation level query called
the reconnaissance query to acquire the entire read/write
set as part of the prepare step. Additionally index lookups
are cached in transaction context for later execution. A par-
ticularly common pattern of such transactions are those that
perform a secondary index lookup [36]. In full TPC-C, some
payment transactions obtain customer record through last
name which involves a secondary index lookup. Strife ex-
ecutes these transactions using the OLLP protocol. Fig. 12
depicts the throughput of Strife and other CC protocols on
30 warehouses as we increase the percentage of payment
transactions that require a reconnaissance query in a 50/50
mixture of payment and new-order transactions. While there
is a marginal decrease in performance for other CC proto-
cols due to secondary index lookups, the decrease is more
pronounced in Strife since it performs it twice. At the same
time, additional cost incurred is a single lock-free secondary
index lookup, so the impact of reconnaissance query is min-
imal (at most 9%) and Strife still outperforms other CC
protocols on high contention workloads.
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tracking [45] or reusing partial executions of aborted trans-
actions [7] have addressed this partially. MOCC [39], state-
of-the-art for high contention, combines pessimistic locking
with optimistic validation-based execution. There are no
aborts due to conflicts in Strife.

Partitioned and Deterministic Databases. H-Store [13,
15], Hyper [17] yield state-of-the-art performance on par-
titionable high contention workloads but are plagued by
cross-partition transactions [43]. Appuswamy et al. [1] advo-
cate for fine-grained partitioning to avoid skew induced by
static partitions, which Strife eliminates and dynamically
adapts to changing hot set. Calvin [31, 36] acquires locks in
a deterministic order on a single thread while Strife is free
from such concurrency bottlenecks and mostly avoids locks.

Alternate Architectures. Orthrus [29] delegates CC to ded-
icated threads and uses message passing to synchronize ac-
cess. Dora [1, 24] adopts thread-to-data assignment on a
partitioned database; transactions flow from one thread to
another acquiring/releasing locks. Both suffer on update-
intensive workload due to longer lock-hold times and wors-
ened by cross-partition transactions and skews [1]. Strife
does not use locks, adopts fine-grained partitioning, and
avoids skews. Tang et al. [35] propose adaptive concurrency
control (ACC) that clusters data and chooses optimal CC
for each cluster using a machine learning model. Both these
combine existing CC protocols to yield better performance
on a mixed workload. This is unlike Strife which optimizes
for and performs better than each of these CC protocols un-
der high contention.

Automatic Database Partitioning. Schism [6] partitions
the co-access graph among data items and uses the partition
to infer partition predicates statically; Horticulture [25] au-
tomatically partitions a database using local neighborhood
search on the design space with an analytical cost model.
While it seeks to reduce partition-induced skews and cross-
partition transactions similar to Strife, its solution space
is limited to hash/range partitioning. Sword [28] is an ex-
tension of Schism that uses hyper-graph compression to
partition a database also with incremental repartitioning. All
these approaches are designed for offline computation and

are not efficient enough for dynamic clustering in Strife.

TransactionDecomposition. Callas [41] partitions a trans-
action into groups that are executed independently under
different CC protocols. IC3 [40] tracks run time dependen-
cies allowing transactions to be chopped into finer pieces
than possible statically. LADS [42] breaks a transaction into
a set of record actions using their semantics. Overall, decom-
posing a transaction into smaller pieces can help alleviate
reduce contention by reducing effective lock hold time on hot
data items. LADS adopts a similar graph-based partitioning
strategy on batches of transactions as Strife, but there are
several key differences: LADS does not entirely eliminate CC
during execution since it synchronizes on logical dependen-
cies between record actions of a transaction. A user initiated
abort will lead to cascading aborts in LADS due to specula-
tive execution of record actions. Further, graph partitioning
algorithm in LADS initially assumes a range-based partition
and iteratively removes cross-edges by relocating records.
This does not perform well on workloads not suitable for
range-based partitioning, such as the HOT benchmark.

7 CONCLUSIONS

We presented Strife, a transaction processing protocol for
high-contention workloads. Strife identifies hot records in
the database during runtime, clusters transactions that ac-
cess them together, and executes them without concurrency
control. Strife achieves this with an algorithm that exploits
random sampling and efficient union-find data structures to
cluster thousands of transactions in milliseconds. Our ex-
periments have shown that Strife can achieve substantial
performance improvement over conventional CC protocols;
while it incurs about 50% overhead over partitioned systems
on a statically partitionable workload, Strife can improve
performance by up to 2× when such static partitioning is
not viable and when workload changes over time.
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